
Libmarpa
Version 11.0.2

14 December 2022

Jeffrey Kegler

This manual (14 December 2022) is for Libmarpa 11.0.2.

Copyright c© 2022 Jeffrey Kegler.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Published 14 December 2022 by Jeffrey Kegler

i

Table of Contents

1 No warranty . 1
1.1 Updates . 1

2 About this document . 2
2.1 How to read this document . 2
2.2 Prerequisites . 2

3 Overview of Libmarpa . 3

4 Terms, definitions and notation 4
4.1 Miscellaneous definitions . 4
4.2 Parsing theory preliminaries . 4
4.3 Stages of parsing . 5
4.4 Rules . 5
4.5 Derivations . 6
4.6 Nulling . 7
4.7 Useless rules . 7
4.8 Recursion and cycles . 7
4.9 Trees . 8
4.10 Traversal . 10
4.11 Ambiguity . 10
4.12 Evaluating a parse . 11
4.13 Semantics terms . 11
4.14 Application and diagnostic behavior . 11

5 Architecture . 12
5.1 Major objects . 12
5.2 Time objects . 12
5.3 Reference counting . 13
5.4 Numbered objects . 14

6 Input . 15
6.1 Earlemes . 15

6.1.1 The traditional input model . 15
6.1.2 The latest earleme . 15
6.1.3 The current earleme . 15
6.1.4 The furthest earleme . 16

6.2 The basic models of input . 16
6.2.1 The standard model of input . 16
6.2.2 Ambiguous input . 17

6.3 Terminals . 17

ii

7 Exhaustion . 18

8 Semantics . 20

9 Threads . 21

10 Sequence rules . 22

11 Nullability . 23
11.1 Nullability in the valuator . 23
11.2 Assigning semantics to nulled symbols . 23
11.3 Evaluating nulled symbols . 23
11.4 Example of nulled symbol . 24

12 Failure . 26
12.1 Libmarpa’s approach to failure . 26
12.2 User non-conformity to specified behavior . 26
12.3 Classifying failure . 27
12.4 Memory allocation failure . 27
12.5 Undetected failure . 27
12.6 Irrecoverable hard failure . 28
12.7 Partially recoverable hard failure . 28
12.8 Library-recoverable hard failure . 28
12.9 Ancestry-recoverable hard failure . 29
12.10 Fully recoverable hard failure . 30
12.11 Soft failure . 30
12.12 Error codes . 30

13 Introduction to the method descriptions 31
13.1 About the overviews . 31
13.2 Naming conventions . 31
13.3 Return values . 31
13.4 How to read the method descriptions . 32

14 Static methods . 34

15 Configuration methods . 35

iii

16 Grammar methods . 36
16.1 Overview . 36
16.2 Creating a new grammar . 36
16.3 Tracking the reference count of the grammar 36
16.4 Symbol methods . 37
16.5 Rule methods . 38
16.6 Sequence methods . 41
16.7 Rank methods . 43
16.8 Precomputing the Grammar . 45

17 Recognizer methods . 47
17.1 Recognizer overview . 47
17.2 Creating a new recognizer . 47
17.3 Keeping the reference count of a recognizer 47
17.4 Life cycle mutators . 47
17.5 Location accessors . 51
17.6 Other parse status methods . 53

18 Progress reports . 55

19 Bocage methods . 58
19.1 Overview . 58
19.2 Bocage data structure . 58
19.3 Creating a new bocage . 58
19.4 Reference counting . 58
19.5 Accessors . 59

20 Ordering methods . 60
20.1 Overview . 60
20.2 Freezing the ordering . 60
20.3 Creating an ordering . 60
20.4 Reference counting . 60
20.5 Accessors . 60
20.6 Non-default ordering . 61

21 Tree methods . 62
21.1 Overview . 62
21.2 Creating a new tree iterator . 62
21.3 Reference counting . 62
21.4 Iterating through the trees . 62

iv

22 Value methods . 64
22.1 Overview . 64
22.2 How to use the valuator . 64
22.3 Advantages of step-driven valuation . 64
22.4 Maintaining the stack . 65

22.4.1 Sizing the stack . 66
22.5 Creating a new valuator . 66
22.6 Reference counting . 66
22.7 Stepping through the valuator . 67
22.8 Valuator step types . 67
22.9 Basic step accessors . 68
22.10 Step location accessors . 69

23 Events . 71
23.1 Overview . 71
23.2 Basic event accessors . 71
23.3 Completion events . 72
23.4 Symbol nulled events . 74
23.5 Prediction events . 76
23.6 Symbol expected events . 78
23.7 Event codes . 78

24 Error methods, macros and codes 80
24.1 Error methods . 80
24.2 Error Macros . 80
24.3 External error codes . 80
24.4 Internal error codes . 88

25 Technical notes . 91
25.1 Elizabeth Scott’s SPPFs . 91
25.2 Data types used by Libmarpa . 91
25.3 Why so many time objects? . 91
25.4 Numbered objects . 91
25.5 Trap representations . 92

26 Advanced input models . 93
26.1 The dense variable-length token model . 93
26.2 The fully general input model . 93

27 Support . 95

v

28 Futures . 96
28.1 Nulling versus nulled . 96
28.2 Document pre-conditions more formally . 96
28.3 Simpler events interface . 96
28.4 Better defined ambiguity metric . 96
28.5 Report item traverser should be a time object 96
28.6 Orthogonal treatment of soft failures . 96
28.7 Orthogonal treatment of exhaustion . 97
28.8 Furthest earleme values . 97
28.9 Additional recoverable failures in marpa r alternative() 97
28.10 Untested methods . 97

28.10.1 Zero-width assertion methods . 97
28.10.2 Methods for revising parses . 98

29 Deprecated techniques and methods 99
29.1 LHS terminals . 99

29.1.1 Overview of LHS terminals . 99
29.1.2 Motivation of LHS terminals . 99
29.1.3 LHS terminal methods . 99
29.1.4 Precomputation and LHS terminals . 100
29.1.5 Nulling terminals . 100

29.2 Valued and unvalued symbols . 100
29.2.1 What unvalued symbols were . 100
29.2.2 Grammar methods dealing with unvalued symbols 101
29.2.3 Registering semantics in the valuator 101

30 History of the Marpa algorithm 103

31 Annotated bibliography . 104
31.1 Aho and Ullman 1972 . 104
31.2 Aycock and Horspool 2002 . 104
31.3 Dominus 2005 . 104
31.4 Earley 1970 . 104
31.5 Grune and Jacobs 1990 . 105
31.6 Grune and Jacobs 2008 . 105
31.7 Kegler 2022 . 105
31.8 Timeline . 105
31.9 Leo 1991 . 105
31.10 Wikipedia . 106

Index of terms . 107

1

1 No warranty

The Libmarpa license takes precedence over the statements in this document. In particular,
the license states that Libmarpa is free software and has no warranty. No statement in this
document should be construed as providing any kind of warranty.

1.1 Updates

For important information that has changed since the last stable release, there is an “up-
dates” document (https: / / github . com / jeffreykegler / libmarpa / blob / updated /
UPDATES.md). The updates document includes

item descriptions of bugs in the latest stable release;

• notices which are useful to current users, but which do not justify a full new stable
distribution; and

• other information that we want to be able to update without issuing a new stable
release.

To allow that information to be kept current without issuing a new stable release, we
describe how to obtain support in the updates document. See Chapter 27 [Support], page 95.

https://github.com/jeffreykegler/libmarpa/blob/updated/UPDATES.md
https://github.com/jeffreykegler/libmarpa/blob/updated/UPDATES.md

2

2 About this document

2.1 How to read this document

This is essentially a reference document, but its early chapters lay out concepts essential
to the others. Readers will usually want to read the chapters up and including Chapter 13
[Introduction to the method descriptions], page 31, in order. Otherwise, they should follow
their interests.

2.2 Prerequisites

This document is very far from self-contained. It assumes the following:

• The reader knows the C programming language at least well enough to understand
function prototypes and return values.

• The reader has read the documents for one of Libmarpa’s upper layers. As of this
writing, the only such layer is Marpa::R2 or Marpa::R3, in Perl.

• The reader knows some parsing theory. See Section 4.2 [Parsing theory preliminaries],
page 4.

3

3 Overview of Libmarpa

This chapter contains a quick overview of Libmarpa, using standard parsing terminology.
It is intended to help a prospective reader of the whole document to know what to expect.
Details and careful definitions will be provided in later chapters.

Libmarpa implements the Marpa parsing algorithm. Marpa is named after the legendary
11th century Tibetan translator, Marpa Lotsawa. In creating Marpa, I depended heavily
on previous work by Jay Earley, Joop Leo, John Aycock and Nigel Horspool.

Libmarpa implements the entire Marpa algorithm. This library does the necessary gram-
mar preprocessing, recognizes the input, and produces a “bocage”, which is an optimized
parse forest. Libmarpa also supports the ordering, iteration and evaluation of the parse
trees in the bocage.

Libmarpa is very low-level. For example, it has no strings. Rules, symbols, and token
values are all represented by integers. This, of course, will not suffice for many applications.
Users will very often want names for the symbols, non-integer values for tokens, or both.
Typically, applications will use arrays to translate Libmarpa’s integer ID’s to strings or
other values as required.

Libmarpa also does not implement most of the semantics. Libmarpa does have an
evaluator (called a “valuator”), but it does not manipulate the stack directly. Instead,
Libmarpa, based on its traversal of the parse tree, passes optimized step by step stack
manipulation instructions to the upper layer. These instructions indicate the token or rule
involved, and the proper location for the true token value or the result of the rule evaluation.
For rule evaluations, the instructions include the stack location of the arguments.

Marpa requires most semantics to be implemented in the application. This allows the
application total flexibility. It also puts the application is in a much better position to
prevent errors, to catch errors at runtime or, failing all else, to successfully debug the logic.

4

4 Terms, definitions and notation

4.1 Miscellaneous definitions

• application means an “application” of Libmarpa. In this document, a Libmarpa appli-
cation is not necessarily an application program. For our purposes, an “application”
might be another library that uses Libmarpa.

• A boolean value, or boolean, is an integer that is 0 or 1.

• iff abbreviates “if and only if”.

• max(x,y) is the maximum of x and y, where x and y are two numbers.

• An indeterminate value is either an unspecified value or a trap value. Our use of this
term is consistent with its use in the C99 standard.

• Libmarpa method, or just method means a C function or a function-like macro of the
Libmarpa library.

• A trap value, also called a trap representation, is a value that when accessed causes
undefined behavior. Our use of this term is consistent with its use in the C99 standard.
See Section 25.5 [Trap representations], page 92.

• An undefined behavior is a behavior that this document does not specify. One impli-
cation is that this behavior might be problematic. Our use of this term is consistent
with its use in the C99 standard.

• An unspecified behavior is a behavior that, within a range of possibilities, is not further
specified by this document. This is usually not problematic. Our use of this term is
consistent with its use in the C99 standard.

• An unspecified value is a value on which this document imposes no restrictions, except
that it cannot be a trap value. Our use of this term is consistent with its use in the
C99 standard.

• User means a “user” of the Libmarpa library. A user of the library is also a programmer,
so that in this document, “user” and “programmer” are essentially synonyms.

• We (and “us” and ”our”) refer to the authors. As of this writing, there is a one primary
author, but the plural is traditional, and our “we” is intended to include the reader
and everyone we are joining on the millenia-old voyage of discovery into mathematics
and language.

4.2 Parsing theory preliminaries

This document assumes the reader is familiar with parsing theory. The following exposition
is not intended an introduction or a reference. Instead, it is intended to serve as a guide to
the definitions of parsing terms as used in this document.

Where a narrow or specialized sense of the term is the one that applies within Marpa, that
is the only definition given. Marpa also sometimes uses a standard term with a definition
which is slightly different from the standard one. “Ambiguous grammar” is one example:
See Section 4.11 [Ambiguity], page 10. The term “grammar” itself is another. See [grammar-
non-standard], page 5. When a definition is non-standard, this is explicitly pointed out.

Chapter 4: Terms, definitions and notation 5

Readers who want a textbook or tutorial in parsing theory can look at Mark Jason
Dominus’s excellent chapter on parsing in the Perl context. See [Bibliography-Dominus-
2005], page 104. It is available on-line. Wikipedia is also an excellent place to start. See
[Bibliography-Wikipedia], page 105.

A grammar is a set of rules, associated with a set of symbols, one of which is distinguished
as the start symbol. A symbol string, or simply string where the meaning is clear, is an
ordered series of symbols. The length of a string is the number of symbols in it. A symbol
string is also called a sentential form.

Some of the symbols are terminals. For the purposes of this subsection, a terminal is a
symbol which may occur in an input to a parse of a grammar. In a parse, an input is either
accepted or rejected. A potential input string, that is, a sentential form which is made up
entirely of terminal symbols, is called a sentence. The set of sentences that a grammar
accepts is the language of the grammar.

It is important to note that the term language, as it is used in parsing theory, means
something very different from what it means in ordinary use. The meaning of the strings
is an essential part of the ordinary idea of what a language is. In ordinary use, the word
“language” means far more than a unordered list of its sentences. In parsing terminology,
meaning (or semantics as it is called) is a separate issue. For parsing theory a language is
exactly a set of strings – that and nothing more.

The Marpa definition of a grammar differs slightly from the various standard ones. Stan-
dard definitions usually sharply distinguish terminal symbols from non-terminals. Marpa
does not. Further discussion of Marpa’s handling of terminal is below (see Section 6.3
[Terminals], page 17).

4.3 Stages of parsing

A recognizer is a program that determines whether its input is in the language of a grammar
and a start symbol. A parser is a program which finds the structure of that input.

The term parsing is used in a strict and a loose sense. Parsing in the loose sense is all
phases of finding a grammar’s structure, including a separate recognition phase if the parser
has one. (Marpa does.) If a parser has phases, parsing in the strict sense refers specifically
to the phase that finds the structure of the input. When the Marpa documents use the
term parsing in its strict sense, they will speak explicitly of “parsing in the strict sense”.
Otherwise, parsing will mean parsing in the loose sense.

Parsers often use a lexical analyzer to convert raw input, usually input text, into a token
stream, which is a series of tokens. Each token represents a symbol of the grammar and
has a value. A lexical analyzer is often called a lexer or a scanner, and lexical analysis is
often called lexing or scanning.

The series of symbols represented by the series of tokens becomes the symbol string input
seen by the recognizer. The symbol string input is more often called the input sentence.

The output of the Marpa parser is a parse forest. See [def-forest], page 10.

4.4 Rules

A standard way of describing rules is Backus-Naur Form, or BNF. A rule of a grammar is
sometimes called a rule. In one common way of writing BNF, a rule looks like this:

Chapter 4: Terms, definitions and notation 6

Expression ::= Term Factor

In the rule above, Expression, Term and Factor are symbols. A rule consists of a left
hand side and a right hand side. In a context-free grammar, like those Marpa parses, the
left hand side of a rule is always a symbol string of length 1. The right hand side of a rule is
a symbol string of zero or more symbols. In the example, Expression is the left hand side,
and Term and Factor are right hand side symbols.

Left hand side and right hand side are often abbreviated as RHS and LHS. If the RHS
of a rule has no symbols, the rule is called an empty rule or an empty rule.

In a standard grammar, all rules are BNF rules, as just described. Marpa grammars
differ from standard grammars in allowing a second kind of rule: a sequence rule. The RHS
of a sequence rules is a single symbol, which is repeated zero or more times. Libmarpa allows
the application to specify other parameters, including a separator symbol. See Chapter 10
[Sequence rules], page 22.

4.5 Derivations

A step of a derivation, or derivation step, is a change made to a symbol string by applying
one of the rules from the grammar. The rule must be one of those with a LHS that occurs
in the symbol string. The result of the derivation step is another symbol string, one in
which every occurence of the LHS symbol from the rule is replaced by the RHS of the rule.
For example, if A, B, C, D, and X are symbols, and

X ::= B C

is a rule, then

A X D -> A B C D

is a derivation step,

• with “A X D” as its beginning,

• “A B C D” as its end or result, and

• X ::= B C as its rule.

A derivation is a sequence of derivation steps. The length of a derivation is its length in
steps.

• A string X derives a string Y iff there is a derivation of zero or more steps which begins
with the string X and ends in the string Y. In the example above (see [derivation-
example], page 6), we say that the symbol string “A X D” derives the symbol string “A
B C D” in one step.

• We say that a first symbol string directly derives a second symbol string if and only
if there is a derivation of length 1 from the first symbol string to the second symbol
string. In the example above (see [derivation-example], page 6), we say that the symbol
string “A X D” directly derives the symbol string “A B C D”.

• Every symbol string is said to derive itself in a derivation of length 0. A zero length
derivation is a trivial derivation.

• A derivation which is not trivial (that is, a derivation which has one or more steps) is
a non-trivial derivation.

• If a derivation is not trivial or direct, that is, if it has more than one step, then it is an
indirect derivation.

Chapter 4: Terms, definitions and notation 7

Technically, a symbol X and a string that consists of only that symbol are two different
things. But we often say “the symbol X” as shorthand for “the string of length 1 whose
only symbol is X”. For example, if the string containing only the symbol X derives a string
Y, we will usually say simply that “X derives Y”.

Wherever symbol or string X derives Y, we may also say X produces Y. Derivations
are often described as symbol matches. Wherever symbol or string X derives Y, we may
also say that Y matches X or that X matches Y. It is particularly common to say that X
matches Y when X or Y is a sentence.

The parse of an input by a grammar is successful if and only if, according to the grammar,
the start symbol produces the input sentence. The set of all input sentences that a grammar
will successfully parse is the language of the grammar.

4.6 Nulling

The zero length symbol string is called the empty string. The empty string can be considered
to be a sentence, in which case it is the empty sentence. A string of one or more symbols is
non-empty. A derivation which produces the empty string is a null derivation. A derivation
from the start symbol which produces the empty string is a null parse.

If a symbol has a null derivation, it is a nullable symbol. If the only sentence produced
by a symbol is the empty sentence, it is a nulling symbol. All nulling symbols are nullable
symbols.

If a symbol is not nullable, it is non-nullable. If a symbol is not nulling, it is non-nulling.

A rule is nullable iff it is the rule of the first step of a null derivation. A rule is nullable
iff its LHS symbol is nullable.

A rule R is nulling iff every derivation whose first step has R as its rule is a null derivation.
A rule is nulling iff its LHS symbol is nulling.

If a rule is not nullable, it is non-nullable. If a rule is not nulling, it is non-nulling.

4.7 Useless rules

If any derivation from the start symbol uses a rule, that rule is called reachable or accessible.
A rule that is not accessible is called unreachable or inaccessible. If any derivation which
results in a sentence uses a rule, that rule is said to be productive. A rule that is not
productive is called unproductive. A rule is productive iff every symbol on its RHS is
productive. A symbol is productive iff it is a terminal or it is the LHS of a productive
rule. A rule which is inaccessible or unproductive is called a useless rule. Marpa can handle
grammars with useless rules.

A symbol is reachable or accessible if it appears in a reachable rule. If a symbol is not
reachable, it is unreachable or inaccessible. A symbol is productive if it appears on the
LHS of a productive rule, or if it is a nullable symbol. If a symbol is not productive, it is
unproductive. A symbol which is inaccessible or unproductive is called a useless symbol.
Marpa can handle grammars with useless symbols.

4.8 Recursion and cycles

If any symbol in the grammar non-trivially produces a symbol string containing itself, the
grammar is said to be recursive. If any symbol non-trivially produces a symbol string

Chapter 4: Terms, definitions and notation 8

with itself on the left, the grammar is said to be left-recursive. If any symbol non-trivially
produces a symbol string with itself on the right, the grammar is said to be right-recursive.
Marpa can handle all recursive grammars, including grammars which are left-recursive,
grammars which are right-recursive, and grammars which contain both left- and right-
recursion.

A cycle is a non-trivial derivation of a string of symbols from itself. If it is not possible
for any derivation using a grammar to contain a cycle, then that grammar is said to be
cycle-free. Traditionally, a grammar is considered useless if it is not cycle-free.

The traditional deprecation of cycles is well-founded. A cycle is the parsing equivalent
of an infinite loop. Once a cycle appears, it can be repeated over and over again. Even a
very short input sentence can have an infinite number of parses when the grammar is not
cycle-free.

For that reason, a grammar which contains a cycle is also called infinitely ambiguous.
Marpa can parse with grammars which are not cycle-free, and will even parse inputs that
cause cycles. When a parse is infinitely ambiguous, Marpa limits cycles to a single loop, so
that only a finite number of parses is returned.

4.9 Trees

In this document, unless otherwise stated,

• by tree, we mean a labeled ordered tree; and

• by tree node, we mean a labeled ordered tree node.

For brevity, in contexts where the meaning is clear, we refer to a tree node simply as a
node. Especially when looked at from the point of view of its labels, a node is often called
an instance.

A node is a pair of tuples:

• The first element tuple of a node is a “label tuple”. The label tuple is a triple of symbol
ID, start Earley set ID, and end Earley set ID. For more about the Earley set IDs, see
Chapter 6 [Input], page 15.

• The second element tuple of a node is a list (ordered set) of nodes.

We note that this definition of a tree node is recursive.

In the following list of definitions and assertions, let

nd = [[sym, start, end], children]

be a tree node:

• We say that that sym is the symbol of nd.

• We say that nd is an instance of the symbol with ID sym starting at start and ending
at end.

• We say that nd is an instance of the symbol with ID sym at location end.

• We say that the length of nd is the difference between its start and end, that is
end−start.

• The length of nd is zero iff start is the same as end. Put another way, the length of nd
is zero iff start = end.

• We say that the elements of children are the children of nd.

Chapter 4: Terms, definitions and notation 9

• We say that every element of children is a child of nd.

• For brevity, we say that the symbol sym is at end. Note that this means we consider
the location of a symbol to be where it ends.

• nd is a leaf node iff children is the empty list. A leaf node is also call a leaf.

• nd is an rule node iff it is not a leaf node.

• Every node is either a leaf node or a rule node, but no node is both a leaf and a rule
node.

• We say that nd is a terminal node iff nd is a leaf node and sym is a terminal. A
terminal node is also called a token node.

• We say that nd is a nulled node iff nd is a leaf node and sym is not a terminal. A
nulled node is also called a nulling node.

• Every leaf node is either a nulled node or a terminal node. But, because nullable LHS
terminals are not allowed, no node is both nulled and terminal.

• We say that nd is a BNF node iff nd is not a terminal node and sym is the LHS of a
BNF rule.

• We say that nd is a sequence node iff nd is not a terminal node and sym is the LHS of
a sequence rule.

• Every node is a terminal node, a BNF node or a sequence node. But no node is more
than one of the these three. This is because sequence rules never share a LHS with a
BNF rule, and no BNF node or sequence node is a terminal node.

• If nd is a rule node, its LHS is sym.

• If nd is a rule node, its RHS is the concatenation, from first to last, of the symbols of
the nodes in children.

• All nulled nodes are zero-length. No terminal node is zero-length.

• We say that nd is an instance of sym starting at start and ending at end. We also say
that nd is an instance of sym at end or, simply, that nd is an instance of sym.

• Let r be the rule whose LHS is equal to the LHS of nd, and whose RHS is equal to the
RHS of nd. If nd is a BNF rule node, there must be such a rule. In that case, We say
that nd is an instance of r starting at start and ending at end. We also say that nd is
an instance of r at end or, simply, that nd is an instance of r.

• Let r be the sequence rule whose LHS is equal to the LHS of nd. If nd is a sequence
rule node, there must be such a rule. In that case, We say that nd is an instance of r
starting at start and ending at end. We also say that nd is an instance of r at end or,
simply, that nd is an instance of r.

• If nd is a nulled instance, that sym is nulled at location end or, simply, say that the
symbol sym is nulled.

Let nd1 and nd2 be two nodes. If nd2 is a child of nd1, then nd1 is the parent of nd2.

We define ancestor recursively such that nd1 is the ancestor of a node nd2 iff one of the
following are true:

• nd1 and nd2 are the same node. In this case we say that nd1 is the trivial ancestor of
nd2.

• nd1 is the parent of an ancestor of nd2. In this case we say that nd1 is a proper
ancestor of nd2.

Chapter 4: Terms, definitions and notation 10

Simlarly, we define descendant recursively such that nd1 is the descendant of a node
nd2 iff one of the following are true:

• nd1 and nd2 are the same node. In this case we say that nd1 is the trivial descendant
of nd2.

• nd1 is the parent of an descendant of nd2. In this case we say that nd1 is a proper
descendant of nd2.

A tree is its own root node. That implies that, in fact, tree and node are just two
different terms for the same thing. We usually speak of trees when we are thinking of the
nodes/trees as a collection of nodes, and we speak of nodes when we are more focused on
the individual nodes.

A parse forest is a set of one or more parse trees. Each tree represents a parse.

We have used “parse” as a noun in several senses. Depending on context a “parse” may
be

• the process of parsing an input using a grammar,

• a parse tree, or

• a parse forest.

When the meaning of “parse” is not clear in context, we will be explicit about which
sense is intended.

[TODO: give example of tree] [TODO: define path] [TODO: define left vs. right] [
TODO: define cut] [TODO: define frontier] [TODO: define top-down traversal] [TODO:
define bottom-down traversal]

4.10 Traversal

The structure of a parse can be represented as a series of derivation steps from the start
symbol to the input. The node at the root of the tree is also called the start node.

4.11 Ambiguity

Marpa allows ambiguous grammars. Traditionally we say that a parse is ambiguous if, for
a given grammar and a given input, more than one derivation tree is possible. However,
Marpa allows ambiguous input tokens, which the traditional definition does not take into
account. If Marpa used the traditional definition, all grammars would be ambiguous except
those grammars which allowed only the null parse.

[TODO: Rewrite two reasons to differ from traditional definition – ambiguous tokens
and pruned null forests. Def is that cardinality of forest > 1.]

It is easiest if the Marpa definition and the traditional definition were extensionally
equivalent — that is, if Marpa’s set of ambiguous grammars was exactly the same as the
set of traditionally ambiguous grammars. This can be accomplished by using a slightly
altered definition. In the Marpa context, a grammar is ambiguous if and only if, for some
UNAMBIGUOUS stream of input tokens, that grammar produces more than one parse
tree.

Chapter 4: Terms, definitions and notation 11

4.12 Evaluating a parse

A parser is an algorithm that takes a string of symbols (tokens or characters) and finds a
structure in it. Traditionally, that structure is a tree.

Rarely is an application interested only in the tree. Usually the idea is that the string
“means” something: the idea is that the string has a semantics. Traditionally and most
often, the tree is an intermediate step in producing a value, a value which represents the
“meaning” or “semantics” of the string. Evaluating a tree means finding its semantics.

4.13 Semantics terms

In real life, the structure of a parse is usually a means to an end. Grammars usually have a
semantics associated with them, and what the user actually wants is the value of the parse
according to the semantics.

The tree representation is especially useful when evaluating a parse. In the traditional
method of evaluating a parse tree, every node which represents a terminal symbol has a
value associated with it on input. Recall that nodes are often called “instances” of their
symbols or rules. Semantics is associated with instances of rules or of lexemes.

Non-null inner nodes take their semantics from the rule whose LHS they represent.
Nulled nodes are dealt with as special cases.

The semantics for a rule describe how to calculate the value of the node which represents
the LHS (the parent node) from the values of zero or more of the nodes which represent
the RHS symbols (child nodes). Values are computed recursively, bottom-up. The value of
a parse tree is the value of its start symbol.

4.14 Application and diagnostic behavior

An application behavior is a behavior on which it is intended that the design of applications
will be based. In this document, a behavior is an application behavior unless otherwise
stated. Most of the behaviors specified in this document are application behaviors. We
sometimes say that “applications may expect” a certain behavior to emphasize that that
behavior is an application behavior.

After an irrecoverable failure, the behavior of a Libmarpa application is undefined, so
that there are no behaviors that can be relied on for normal application processing, and
therefore, there are no application behaviors. In this circumstance, some of the application
behaviors become diagnostic behaviors. A diagnostic behavior is a behavior that this docu-
ment suggests that the programmer may attempt in the face of an irrecoverable failure, for
purpose of testing, diagnostics and debugging. Diagnostic behaviors are hoped for, rather
than expected, and intended to allow the programmer to deal with irrecoverable failures as
smoothly as possible. (See Chapter 12 [Failure], page 26.)

In this document, a behavior is a diagnostic behavior only if that is specifically indicated.
Applications should not be designed to rely on diagnostic behaviors. We sometimes say
that “diagnostics may attempt” a certain behavior to emphasize that that behavior is a
diagnostic behavior.

12

5 Architecture

5.1 Major objects

The classes of Libmarpa’s object system fall into two types: major and numbered. These
are the Libmarpa’s major classes, in sequence.

• Configuration: A configuration object is a thread-safe way to hold configuration vari-
ables, as well as the return code from failed attempts to create grammar objects.

• Grammar: A grammar object contains rules and symbols, with their properties.

• Recognizer: A recognizer object reads input.

• Bocage: A bocage object is a collection of parse trees, as found by a recognizer. A
bocages is a way of representing a parse forest.

• Ordering: An ordering object is an ordering of the trees in a bocage.

• Tree: A tree object is a bocage iterator.

• Value: A value object is a tree iterator. Iteration of tree using a value object produces
“steps”. These “steps” are instructions to the application on how to evaluate the
semantics, and how to manipulate the stack.

The major objects have one letter abbreviations, which are used frequently. These are,
in the standard sequence,

• Configuration: C

• Grammar: G

• Recognizer: R

• Bocage: B

• Ordering: O

• Tree: T

• Value: V

5.2 Time objects

All of Libmarpa’s major classes, except the configuration class, are “time” classes. Except
for objects in the grammar class, all time objects are created from another time object.
Each time object is created from a time object of the class before it in the sequence. A
recognizer cannot be created without a precomputed grammar; a bocage cannot be created
without a recognizer; and so on.

When one time object is used to create a second time object, the first time object is the
parent object and the second time object is the child object. For example, when a bocage
is created from a recognizer, the recognizer is the parent object, and the bocage is the child
object.

Grammars have no parent object. Every other time object has exactly one parent object.
Value objects have no child objects. All other time objects can have any number of children,
from zero up to some machine-determined limit, such as memory.

An object is the ancestor of another object if it is the parent of that object, or if it is
the parent of an ancestor of that object. An object is the descendant of another object if it

Chapter 5: Architecture 13

is the child of that object, or if it is the child of an descendant of that object. The following
three statements are mutually exclusive:

• Object X is of class C.

• Object X has an ancestor of class C.

• Object X has a descendant of class C.

It follows from the definitions of “parent” and “ancestor” that, for any time object class,
an object can have at most one ancestor of that class. On the other hand, if an object has
descendants in a class, there can be many of them.

An object is a base of another object, if it is that object, or if it is the ancestor of the
object. For each time object class, an object has at most one base object. For example, a
recognizer is its own base recognizer, and has exactly one base grammar.

The base grammar of a time object is of special importance. Every time object has
a base grammar. A grammar object is its own base grammar. The base grammar of a
recognizer is its parent grammar, the one that it was created with. The base grammar
of any other time object is the base grammar of its parent object. For example, the base
grammar of a bocage is the base grammar of the recognizer that it was created with.

5.3 Reference counting

Every object in a “time” class has its own, distinct, lifetime, which is controlled by the
object’s reference count. Reference counting follows the usual practice. Contexts that take
a share of the “ownership” of an object increase the reference count by 1. When a context
relinquishes its share of the ownership of an object, it decreases the reference count by 1.

Each class of time object has a “ref” and an “unref” method, to be used by those
contexts that need to explicitly increment and decrement the reference count. For example,
the “ref” method for the grammar class is marpa_g_ref() and the “unref” method for the
grammar class is marpa_g_unref().

Time objects do not have explicit destructors. When the reference count of a time object
reaches 0, that time object is destroyed.

Much of the necessary reference counting is performed automatically. The context calling
the constructor of a time object does not need to explicitly increase the reference count,
because Libmarpa time objects are always created with a reference count of 1.

Child objects “own” their parents, and when a child object is successfully created, the
reference count of its parent object is automatically incremented to reflect this. When a
child object is destroyed, it automatically decrements the reference count of its parent.

In a typical application, a calling context needs only to remember to “unref” each time
object that it creates, once it is finished with that time object. All other reference decre-
ments and increments are taken care of automatically. The typical application never needs
to explicitly call one of the “ref” methods.

More complex applications may find it convenient to have one or more contexts share
ownership of objects created in another context. These more complex situations are the
only cases in which the “ref” methods will be needed.

Chapter 5: Architecture 14

5.4 Numbered objects

In addition to its major, “time” objects, Libmarpa also has numbered objects. Numbered
objects do not have lifetimes of their own. Every numbered object belongs to a time object,
and is destroyed with it. Rules and symbols are numbered objects. Tokens values are
another class of numbered objects.

15

6 Input

6.1 Earlemes

6.1.1 The traditional input model

In traditional Earley parsers, the concept of location is very simple. Locations are numbered
from 0 to n, where n is the length of the input. Every location has an Earley set, and vice
versa. Location 0 is the start location. Every location after the start location has exactly
one input token associated with it.

Some applications do not fit this traditional input model — natural language processing
requires ambiguous tokens, for example. Libmarpa allows a wide variety of alternative input
models.

In Libmarpa a location is called a earleme. The number of an Earley set is the ID of
the Earley set, or its ordinal. In the traditional model, the ordinal of an Earley set and its
earleme are always exactly the same, but in Libmarpa’s advanced input models the ordinal
of an Earley set can be different from its location (earleme).

The important earleme values are the latest earleme. the current earleme, and the
furthest earleme. Latest, current and furthest earleme, when they have specified values,
obey a lexical order in this sense: The latest earleme is always at or before the current
earleme, and the current earleme is always at or before the furthest earleme.

6.1.2 The latest earleme

The latest Earley set is the Earley set completed most recently. This is initially the Earley
set at location 0. The latest Earley set is always the Earley set with the highest ordinal,
and the Earley set with the highest earleme location. The latest earleme is the earleme
of the latest Earley set. If there is an Earley set at the current earleme, it is the lat-
est Earley set and the latest earleme is equal to the current earleme. There is never an
Earley set after the current earleme, and therefore the latest Earley set is never after the
current earleme. The marpa_r_start input() and marpa_r_earleme_complete() meth-
ods are only ones that change the latest earleme. See [marpa r start input], page 47, and
[marpa r earleme complete], page 49.

The latest earleme is different from the current earleme if and only if there is no Earley
set at the current earleme. A different end of parsing can be specified, but by default,
parsing is of the input in the range from earleme 0 to the latest earleme.

6.1.3 The current earleme

The current earleme is the earleme that Libmarpa is currently working on. More specifically,
it is the one at which new tokens will start. Since tokens are never zero length, a new
token will always end after the current earleme. marpa_r_start_input() initializes the
current earleme to 0, and every call to marpa_r_earleme_complete() advances the current
earleme by 1. The marpa_r_start input() and marpa_r_earleme_complete() methods
are only ones that change the current earleme. See [marpa r start input], page 47, and
[marpa r earleme complete], page 49.

Chapter 6: Input 16

6.1.4 The furthest earleme

Loosely speaking, the furthest earleme is the furthest earleme reached by the parse. More
precisely, it is the highest numbered earleme at which a token ends and is 0 if there are
no tokens. The furthest earleme is 0 when a recognizer is created. With every call to
marpa_r_alternative(), the end of the token it adds is calculated. A token ends at the
earleme location current+length, where current is the current earleme, and length is the
length of the newly added token. If old_f is the furthest earleme before a call to marpa_

r_alternative(), the furthest earleme after the call is max(old_f, current+length).
The marpa_r_new() and marpa_r_alternative() methods are only ones that change the
furthest earleme. See [marpa r new], page 47, and [marpa r alternative], page 48.

In the basic input models, where every token has length 1, calling marpa_r_earleme_

complete() after each marpa_r_alternative() call is sufficient to process all inputs, and
the furthest earleme’s value can be typically be ignored. In alternative input models, where
tokens have lengths greater than 1, calling marpa_r_earleme_complete() once after the
last token is read may not be enough to ensure that all tokens have been processed. To
ensure that all tokens have been processed, an application must advance the current earleme
by calling marpa_r_earleme_complete(), until the current earleme is equal to the furthest
earleme.

6.2 The basic models of input

For the purposes of presentation, we (somewhat arbitrarily) divide Libmarpa’s input models
into two groups: basic and advanced. In the basic input models of input, every token is
exactly one earleme long. This implies that, in a basic model of input,

• every token is the same length,

• the ordinal of an Earley set will always be the same as its earleme location, and

• the latest earleme and the current earleme are always equal.

In the advanced models of input, tokens may have a length other than 1. Most applica-
tions use the basic input models. The details of the advanced models of input are presented
in a later chapter. See Chapter 26 [Advanced input models], page 93.

6.2.1 The standard model of input

In the standard model of input, there is exactly one successful marpa_r_alternative()
call immediately previous to every marpa_r_earleme_complete() call. A marpa_r_

alternative() call is immediately previous to a marpa_r_earleme_complete() call iff
that marpa_r_earleme_complete() call is the first marpa_r_earleme_complete() call
after the marpa_r_alternative() call.

Recall that, since the standard model is a basic model, the token length in every suc-
cessful call to marpa_r_alternative() will be one. For an input of length n, there will
be exactly n marpa_r_earleme_complete() calls, and all but the last call to marpa_r_

earleme_complete() must be successful.

In the standard model, after a successful call to marpa_r_alternative(), if c is the
value of the current earleme before the call,

• the current earleme will remain unchanged and therefore will be c; and

• the furthest earleme be c+1.

Chapter 6: Input 17

In the standard model, a call to marpa_r_earleme_complete() follows a successful call
of marpa_r_alternative(), so that the value of the furthest earleme before the call to
marpa_r_earleme_complete() will be c+1, where c is the value of the current earleme.
After a successful call to marpa_r_earleme_complete(),

• the current earleme will be advanced to c+1; and

• the furthest earleme will be c+1, and therefore equal to the current earleme.

Recall that, in the basic models of input, the latest earleme is always equal to the current
earleme.

6.2.2 Ambiguous input

We can loosen the standard model to allow more than one successful call to marpa_r_

alternative() immediately previous to each call to marpa_r_earleme_complete(). This
change will mean that multiple tokens become possible at each earleme — in other words,
that the input becomes ambiguous. We continue to require that there be at least one suc-
cessful call to marpa_r_alternative() before each call to marpa_r_earleme_complete().
And we recall that, since this is a basic input model, all tokens must have a length of 1.

In the ambiguous input model, the behavior of the current, latest and furthest earlemes
are exactly as described for the standard model. See Section 6.2.1 [The standard model of
input], page 16.

6.3 Terminals

Traditionally, a terminal symbol is a symbol that may appear in the input. Traditional
grammars divide all symbols sharply into terminals and non-terminals: A terminal symbol
must always be used as a terminal. A non-terminal symbol can never be used as a terminal.

In Libmarpa, by default, a symbol is a terminal, and therefore may appear in the input
iff both of the following are true:

• The symbol is non-nulling. It is a logical contradiction for a nulling symbol to appear
in the input. For this reason, Marpa does not allow it.

• The symbol does not appear on the LHS of any rule.

Marpa’s default behavior follows tradition. A now-deprecated feature of Marpa allowed
for LHS terminals. See Section 29.1 [LHS terminals], page 99. Most readers will want
to stick to Marpa’s default behavior, and can and should ignore the possibility of LHS
terminals. Even when LHS terminals are allowed, terminals can never be zero length.

In Libmarpa, every terminal instance has a token value associated with it. Token values
are int’s. Libmarpa does nothing with token values except accept them from the application
and return them during parse evaluation.

18

7 Exhaustion

A parse is exhausted when it cannot accept any further input. A parse is active iff it is not
exhausted. For a parse to be exhausted, the furthest earleme and the current earleme must
be equal. However, the converse is not always the case: if more tokens can be read at the
current earleme, then it is possible for the furthest earleme and the current earleme to be
equal in an active parse.

Parse exhaustion always has a location. That is, if a parse is exhausted it is exhausted
at some earleme location X. If a parse is exhausted at location X, then

• There may be valid parses at X.

• The parse was active at all locations earlier than X.

• There may be valid parses at locations before X.

• There will be no valid parses at locations after X.

• No tokens can start at location X.

• No tokens can end at a location after X.

• No tokens can start at any location after X.

• No tokens will be accepted by an exhausted parser. It is an irrecoverable hard failure
to call marpa_r_alternative() after a parser has become exhausted.

• No Earley sets will be at any location after X.

• No earlemes are completed by, and no Earley sets are created by, an exhausted parser.
It is an irrecoverable hard failure to call marpa_r_earleme_complete() after a parser
has become exhausted.

Users sometimes assume that parse exhaustion means parse failure. But other users
sometimes assume that parse exhaustion means parse success. For many grammars, there
are strong associations between parse exhaustion and parse success, but the strong associ-
ation can go either way, Both exhaustion-loving and exhaustion-hating grammars are very
common in practical application.

In an exhaustion-hating application, parse exhaustion typically means parse failure. C
programs, Perl scripts and most programming languages are exhaustion-hating applications.
If a C program is well-formed, it is always possible to read more input. The same is true of
a Perl program that does not have a __DATA__ section.

In an exhaustion-loving application parse exhaustion means parse success. A toy exam-
ple of an exhaustion-loving application is the language consisting of balanced parentheses.
When the parentheses come into perfect balance the parse is exhausted, because any further
input would unbalance the brackets. And the parse succeeds when the parentheses come
into perfect balance. Exhaustion means success. Any language that balances start and end
indicators will tend to be exhaustion-loving. HTML and XML, with their start and end
tags, can be seen as exhaustion-loving languages.

One common form of exhaustion-loving parsing occurs in lexers that look for longest
matches. Exhaustion will indicate that the longest match has been found.

It is possible for a language to be exhaustion-loving at some points and exhaustion-hating
at others. We mentioned Perl’s __DATA__ as a complication in a basically exhaustion-hating
language.

Chapter 7: Exhaustion 19

marpa_r_earleme_complete() and marpa_r_start_input are the only methods
that may encounter parse exhaustion. See [marpa r earleme complete], page 49, and
[marpa r start input], page 47. When the marpa_r_start_input or marpa_r_earleme_

complete() methods exhaust the parse, they generate a MARPA_EVENT_EXHAUSTED

event. Applications can also query parse exhaustion status directly with the
marpa_r_is_exhausted() method. See [marpa r is exhausted], page 53.

20

8 Semantics

Libmarpa handling of semantics is unusual. Most semantics are left up to the applica-
tion, but Libmarpa guides them. Specifically, the application is expected to maintain the
evaluation stack. Libmarpa’s valuator provides instructions on how to handle the stack.
Libmarpa’s stack handling instructions are called “steps”. For example, a Libmarpa step
might tell the application that the value of a token needs to go into a certain stack position.
Or a Libmarpa step might tell the application that a rule is to be evaluated. For rule eva-
lution, Libmarpa will tell the application where the operands are to be found, and where
the result must go.

The detailed discussion of Libmarpa’s handling of semantics is in the reference chapters of
this document, under the appropriate methods and classes. The most extensive discussion
of the semantics is in the section that deals with the methods of the value time class
(Chapter 22 [Value methods], page 64).

21

9 Threads

Libmarpa is thread-safe, given circumstances as described below. The Libmarpa methods
are not reentrant.

Libmarpa is C89-compliant. It uses no global data, and calls only the routines that are
defined in the C89 standard and that can be made thread-safe. In most modern implemen-
tations, the default C89 implementation is thread-safe to the extent possible. But the C89
standard does not require thread-safety, and even most modern environments allow the user
to turn thread safety off. To be thread-safe, Libmarpa must be compiled and linked in an
environment that provides thread-safety.

While Libmarpa can be used safely across multiple threads, a Libmarpa grammar cannot
be. Further, a Libmarpa time object can only be used safely in the same thread as its base
grammar. This is because all time objects with the same base grammar share data from
that base grammar.

To work around this limitation, the same grammar definition can be used to a create
a new Libmarpa grammar time object in each thread. If there is sufficient interest, future
versions of Libmarpa could allow thread-safe cloning of grammars and other time objects.

22

10 Sequence rules

Traditionally, grammars only allow BNF rules. Libmarpa allows sequence rules, which
express sequences by allowing a single RHS symbol to be repeated.

A sequence rule consists of a LHS and a RHS symbol. Additionally, the application must
indicate the minimum number of repetitions. The minimum count must be 0 or 1.

Optionally, a separator symbol may be specified. For example, a comma-separated
sequence of numbers

1,42,7192,711,

may be recognized by specifying the rule Seq ::= num and the separator
comma ::= ’,’. By default, an optional final separator, as shown in the example above, is
recognized, but “proper separation” may also be specified. In proper separation separators
must, in fact, come between (“separate”) items of the sequence. A final separator is not a
separator in the strict sense, and therefore is not recognized when proper separation is in
effect. For more on specifying sequence rules, see [marpa g sequence new], page 42.

Sequence rules are “sugar” — their presence in the Libmarpa interface does not extend
its power. Every Libmarpa grammar that can be written using sequence rules can be
rewritten as a grammar without sequence rules.

The RHS symbol and the separator, if there is one, must not be nullable. This is because
it is not completely clear what an application intends when it asks for a sequence of items,
some of which are nullable — the most natural interpretation of this usually results in a
highly ambiguous grammar.

Libmarpa allows highly ambiquous grammars and a programmer who wants a grammar
with sequences containing nullable items or separators can write that grammar using BNF
rules. The use of BNF rules make it clearer that ambiguity is what the programmer intended,
and allows the programmer more flexibility.

A sequence rule must have a dedicated LHS — that is, the LHS of a sequence rule must
not be the LHS of any other rule. This implies that the LHS of a sequence rule can never
be the LHS of a BNF rule.

The requirement that the LHS of a sequence rule be unique is imposed for reasons similar
to those for the prohibition against RHS and separator nullables. Often reuse of the LHS
of a sequence rule is simply a mistake. Even when deliberate, reuse of the LHS results in a
complex grammar, one which often parses in ways that the programmer did not intend.

A programmer who believes they know what they are doing, and really does want alter-
native sequences starting at the same input location, can specify this behavior indirectly.
They can do this by creating two sequence rules with distinct LHS’s:

Seq1 ::= Item1

Seq2 ::= Item2

and adding a new “parent” LHS which recognizes the sequences as alternatives.

SeqChoice ::= Seq1

SeqChoice ::= Seq2

23

11 Nullability

In Libmarpa, there is no direct way to mark a symbol nullable or nulling. All Libmarpa’s
terminal symbols are non-nullable. By default, Libmarpa’s non-terminal symbols are nul-
lable or nulling depending on the rules in which they appear on the LHS. The default
behavior for non-terminals can be changed (see Section 29.1 [LHS terminals], page 99), but
this is deprecated.

To make a symbol x nullable, a user must create an nulling rule whose LHS is x. The
empty rule is nulling, so that one way a user can ensure x is nullable is by making it the
LHS of an empty rule. If every rule with x on the LHS is nulling, x will be not just nullable,
but nulling as well.

11.1 Nullability in the valuator

In the valuator, every nulling tree is pruned back to its topmost nulling symbol. This means
that there are no nulling rules in the valuator, only nulling symbols. For an example of how
this works, see Section 11.4 [Example of nulled symbol], page 24.

While this may sound draconian, the “lost” semantics of the nulled rules and non-
topmost nulled symbols are almost never missed. Nulled subtrees cannot contain input, and
therefore do not contain token symbols. So no token values are lost when nulled subtrees
are pruned, and we are dealing with the semantics of the empty string. See Section 11.3
[Evaluating nulled symbols], page 23.

11.2 Assigning semantics to nulled symbols

Libmarpa leaves the semantics to an upper layer, so that we usually treat semantics as
outside the scope of this document. But most upper layers will find that nulled symbols are
a corner case for their semantics, and we therefore offer the writers of upper layers some
hints.

Typically, upper layers will assign semantics to a LHS symbol based on the rule instance
in which the LHS occurs. All nulled symbols are LHS symbols, but the valuator prunes
all nulled rules, forcing the application to determine the semantics of a nulled symbol
instance based on its symbol. One method of making this determination is the one which is
implemented in Marpa::R2. Call a grammar g ; let x be a symbol that is nulled in a parse
that uses g ; and call a rule in g with x on its LHS, an “x LHS rule”. Marpa::R2 assigns a
semantics to x using the first of following guidelines that applies:

• If every x LHS rule in g has the same semantics, Marpa::R2 assigns that shared se-
mantics to x.

• If there is an empty x LHS rule in g, Marpa::R2 assigns the semantics of that empty
rule to x.

• If none of the previous guidelines apply, Marpa::R2 reports an error.

11.3 Evaluating nulled symbols

In theory, the semantics of nulled symbols, like any semantics, can be arbitrarily complex.
In practice, we are dealing with the semantics of the empty string, which is literally the

Chapter 11: Nullability 24

“semantics of nothing”. If what we are dealing with truly is primarily a parsing problem,
we can usually expect that the semantics of nothing will be simple.

The possible subtrees below a nulled symbol can be seen as a set, and that set is a
constant that depends on the grammar. Since the input corresponding to the nulled symbol
is also a constant (the empty string), the semantics of a nulled symbol will also be constant,
with a few exceptions:

• The semantics are non-deterministic.

• The semantics depend on parse location. For example, the nulled symbol instance of x
at location 5 might mean something different from an nulled instance of x at location
50.

• The semantics take into account, not just the input, but its context.

All of these exceptions are unusual or rare. When they do occur, the upper layer can
implement the semantics of the nulled symbols with a function or a closure.

11.4 Example of nulled symbol

As already stated, Marpa prunes every null subtree back to its topmost null symbol. Here
is an example grammar, with S as the start symbol.

S ::= L R

L ::= A B X

L ::=

R ::= A B Y

R ::=

A ::=

B ::=

X ::=

X ::= "x"

Y ::=

Y ::= "y"

If we let the input be ‘x’, we can write the unpruned parse tree in pre-order, depth-first,
indenting children below their parents, like this:

0: Visible Rule: S := L R

1: Visible Rule L := A B X

1.1: Nulled Symbol A

1.2: Nulled Symbol B

1.3: Token, Value is "x"

2: Nulled Rule, Rule R := A B Y

2.1: Nulled Symbol A

2.2: Nulled Symbol B

2.3: Nulled Symbol Y

In this example, five symbols and a rule are nulled. The nulled rule and three of the
nulled symbols are in a nulled subtree: 2, 2.1, 2.2 and 2.3. Marpa prunes every null subtree

25

back to its topmost symbol, which in this case is the LHS of the rule numbered 2. The
pruned tree looks like this:

0: Visible Rule: S := L R

1: Visible Rule L := A B X

1.1: Nulled Symbol A

1.2: Nulled Symbol B

1.3: Token, Value is "x"

2: LHS of Nulled Rule, Symbol R

Nulled nodes 1.1, 1.2 and 2 were all kept, because they are topmost in their nulled
subtree. All the other nulled nodes were discarded.

26

12 Failure

As a reminder, no language in this chapter (or, for that matter, in this document) should
be read as providing, or suggesting the existence of, a warranty. See [license], page 2. Also,
see Chapter 1 [No warranty], page 1.

12.1 Libmarpa’s approach to failure

Libmarpa is a C language library, and inherits the traditional C language approach to
avoiding and handling user programming errors. This approach will strike readers unfa-
miliar with this tradition as putting an appallingly large portion of the burden of avoiding
application programmer error on the application programmer themself.

But in the early 1970’s, when the C language first stabilized, the alternative, and the
consensus choice for its target applications was assembly language. In that context, C was
radical in its willingness to incur a price in efficiency in order to protect the programmer
from themself. C was considered to take a excessively “hand holding” approach which very
much flew in the face of consensus.

The decades have made a large difference in the trade-offs, and the consensus about the
degree to which even a low-level language should protect the user has changed. It seems
inevitable that C will be replaced as the low-level language of choice, by a language that
places fewer burdens on the programmer, and more on the machine. The question seems to
be not whether C will be dethroned as the “go to” language for low-level progamming, but
when, and by which alternative.

Modern hardware makes many simple checks essentially cost-free, and Libmarpa’s efforts
to protect the application programmer go well beyond what would have been considered
best practice in the past. But it remains a C language library. But, on the whole, the Lib-
marpa application programmer must be prepared to exercise the high degree of carefulness
traditionally required by its C language environment. Libmarpa places the burden of avoid-
ing irrecoverable failures, and of handling recoverable failures, largely on the application
programmer.

12.2 User non-conformity to specified behavior

This document specifies many behaviors for Libmarpa application programs to follow, such
as the nature of the arguments to each method. The C language environment specifies many
more behaviors, such as proper memory management. When a non-conformity to specified
behavior is unintentional and problematic, it is frequently called a “bug”. Even the most
carefully programmed Libmarpa application may sometimes contain a “bug”. In addition,
some specified behaviors are explicitly stated as characterizing a primary branch of the
processing, rather than made mandatory for all successful processing. Non-conformity to
non-mandatory behaviors can be efficiently recoverable, and is often intentional.

This chapter describes how non-conformity to specified behavior by a Libmarpa applica-
tion is handled by Libmarpa. Non-conformity to specified behavior by a Libmarpa applica-
tion is also called, for the purposes of this document, a Libmarpa application programming
failure. In contexts where no ambiguity arises, Libmarpa application programming failure
will usually be abbreviated to failure.

Chapter 12: Failure 27

Libmarpa application programming success in a context is defined as the absence of
unrecovered failure in that context. When no ambiguity arises, Libmarpa application pro-
gramming success is almost always abbreviated to success. For example, the success of
an application means the application ran without any irrecoverable failures, and that it
recovered from all the recoverable failures that were detected.

12.3 Classifying failure

A Libmarpa application programming failure, unless stated otherwise, is an irrecoverable
failure. Once an irrecoverable failure has occurred, the further behavior of the program
is undefined. Nonetheless, we specify, and Libmarpa attempts, diagnostics behaviors (see
Section 4.14 [Application and diagnostic behavior], page 11) in an effort to handle irrecov-
erable failures as smoothly as possible.

A Libmarpa application programming failure is not recoverable, unless this document
states otherwise.

A failure is called a hard failure is it has an error code associated with it. A recoverable
failure is called a soft failure if it has no associated error code. (For more on error codes,
see Section 12.12 [Error codes], page 30.)

All failures fall into one of five types. In order of severity, these are

• memory allocation failures,

• undetected failures,

• irrecoverable hard failures,

• partially recoverable hard failures, and

• fully recoverable hard failures, and

• soft failures.

12.4 Memory allocation failure

Failure to allocate memory is the most irrecoverable of irrecoverable errors. Even effective
error handling assumes the ability to allocate memory, so that the practice has been, in
the event of a memory allocation failure, to take Draconian action. On memory allocation
failure, as with all irrecoverable failures, Libmarpa’s behavior in undefined, but Libmarpa
attempts to terminate the current program abnormally by calling abort().

Memory allocation failure is the only case in which Libmarpa terminates the program.
In all other cases, Libmarpa leaves the decision to terminate the program, whether normally
or abnormally, up to the application programmer.

Memory allocation failure does not have an error code. As a pedantic matter, memory
allocation failure is neither a hard or a soft failure.

12.5 Undetected failure

An undetected failure is a failure that the Libmarpa library does not detect. Many failures
are impossible or impractical for a C library to detect. Two examples of failure that the
Libmarpa methods do not detect are writes outside the bounds of allocated memory, and
use of memory after it has been freed. C is not strongly typed, and arguments of Libmarpa

Chapter 12: Failure 28

routines undergo only a few simple tests, tests which are inadequate to detect many of the
potential problems.

By undetected failure we emphasize that we mean failures undetected by the Libmarpa
methods. In the examples just given, there exist tools that can help the programmer detect
memory errors and other tools exist to check the sanity of method arguments.

This document points out some of the potentially undetected problems, when doing so
seems more helpful than tedious. But any attempt to list all the undetected problems would
be too large and unwieldy to be useful.

Undetected failure is always irrecoverable. An undetected failure is neither a hard or a
soft failure.

12.6 Irrecoverable hard failure

An irrecoverable hard failure is an irrecoverable Libmarpa application programming failure
that has an error code associated with it. Libmarpa attempts to behave as predictably as
possible in the face of a hard failure, but once an irrecoverable failure occurs, the behavior
of a Libmarpa application is undefined.

In the event of an irrecoverable failure, there are no application behaviors. The diagnostic
behavior for a hard failure is as described for the method that detects the hard failure. At
a minimum, this diagnostic behavior will be returning from the method that detects the
hard failure with the return value specified for hard failure, and setting the error code as
specified for hard failure.

12.7 Partially recoverable hard failure

A partially recoverable hard failure is a recoverable Libmarpa application programming
failure

• that has an error code associated with it; and

• after which some, but not all, of the application behaviors remain available to the
programmer.

For every partially recoverable hard failure, this document specifies the application be-
haviors that remain available after it occurs. The most common kind of partially recoverable
hard failure is a library-recoverable hard failure. For an example of partially recoverable
hard failure, see Section 12.8 [Library-recoverable hard failure], page 28.

12.8 Library-recoverable hard failure

A library-recoverable hard failure is a type of partially recoverable hard failure. Loosely
described, it is a hard failure that allows the programmer to continue to use many of the
Libmarpa methods in the library, but that disallows certain methods on some objects.

To state the restrictions of application behaviors more precisely, let the “failure gram-
mar” be the base grammar of the method that detected the library-recoverable hard failure.
After a library-recoverable hard failure, the following behaviors are no longer applcation be-
haviors:

• Libmarpa mutator and constructor method calls where the base grammar is the failure
grammar.

Chapter 12: Failure 29

Recall that any use of a behavior that is not an application behavior is an irrecoverable
failure.

The application behaviors remaining after a library-recoverable hard failure are the fol-
lowing:

• All non-Libmarpa interfaces, including calls to other libraries and the C language en-
vironment.

• All Libmarpa static method calls.

• All Libmarpa accessor and destructor method calls.

• All Libmarpa mutator and constructor method calls whose base grammar is not the
failure grammar.

Note that Libmarpa destructors remain available after a library recoverable failure. An
application will often want to destroy all Libmarpa objects whose base grammar is the
failure grammar, in order to clear memory of problematic objects.

An example of a library-recoverable hard failure is the MARPA_ERR_COUNTED_NULLABLE

error in the marpa_g_precompute method. See [marpa g precompute], page 45.

12.9 Ancestry-recoverable hard failure

An ancestry-recoverable hard failure is a type of partially recoverable hard failure. An
ancestry-recoverable failure allows a superset of the application behaviors allowed by a
library-recoverable hard failure. More precisely, let the “failure object” be the object that
detected the ancestry-recoverable hard failure. After an ancestry-recoverable hard failure,
the following behaviors are no longer applcation behaviors:

• Libmarpa mutator and constructor method calls where the object is the failure object,
or one of its descendants.

Recall that any use of a behavior that is not an application behavior is an irrecoverable
failure.

The application behaviors remaining after a ancestry-recoverable hard failure are the
following:

• All non-Libmarpa interfaces, including calls to other libraries and the C language en-
vironment.

• All Libmarpa static method calls.

• All Libmarpa accessor and destructor method calls.

• All Libmarpa mutator and constructor method calls for time objects that are not the
failure object, or one of its descendants.

Note that all Libmarpa destructors remain available after an ancestry-recoverable failure.
An application will often want to destroy the failure object and all of its descendants, in
order to clear memory of problematic objects.

As an example, users calling marpa_g_precompute() will often want to treat a MARPA_

EVENT_EARLEY_ITEM_THRESHOLD event as if it were an ancestry-recoverable hard failure.
See [marpa g precompute], page 45.

Library-recoverable failure is a special case of ancestry-recoverable failure. When the fail-
ure object is a grammar, ancestry-recoverable failure is synonymous with library-recoverable
failure.

Chapter 12: Failure 30

12.10 Fully recoverable hard failure

A fully recoverable hard failure is a recoverable Libmarpa application programming failure

• that has an error code associated with it; and

• after which all of the application behaviors remain available to the programmer.

One example of a fully recoverable hard failure is the error code MARPA_ERR_UNEXPECTED_
TOKEN_ID. The “Ruby Slippers” parsing technique (see [Ruby Slippers], page 49), which
has seen extensive usage, is based on Libmarpa’s ability to recover from a MARPA_ERR_

UNEXPECTED_TOKEN_ID error fully and efficiently,

12.11 Soft failure

An soft failure is an recoverable Libmarpa application programming failure that has no
error code associated with it. Hard errors are assigned error codes in order to tell them
apart. Error codes are not necessary or useful for soft errors, because there is at most one
type of soft failure per Libmarpa method.

Soft failures are so called, because they are the least severe kind of failure. The most
severe failures are “bugs” — unintended, and a symptom of a problem. Soft failures, on
the other hand, are a frequent occurrence in normal, successful, processing. In the phrase
“soft failure”, the word “failure” is used in the same sense that its cognate “fail” is used
when we say that a loop terminates when it “fails” its loop condition. That ”failure” is of
a condition necessary to continue on a main branch of processing, and a signal to proceed
on another branch.

It is expected that Libmarpa applications will be designed such that successful execution
is based on the handling specified for soft failures. In fact, a non-trival Libmarpa application
can hardly be designed except on that basis.

12.12 Error codes

As stated, every hard failure has an associated error code. Full descriptions of the error
codes that are returned by the external methods are given in their own section (Section 24.3
[External error codes], page 80).

How the error code is accessed depends on the method that detects the hard failure
associated with that error code. Methods for time objects always set the error code in the
base grammar, from which it may be accessed using the error methods described below
(Section 24.1 [Error methods], page 80). If a method has no base grammar, the way in
which the error code for the hard failures that it detects can be accessed will be stated in
the description of that method.

Since the error of a time object is set in the base grammar, it follows that every object
with the same base grammar has the same error code. Objects with different base grammars
may have different error codes.

While error codes are properties of a base grammar, irrecoverability is application-wide.
That is, whenever any irrecoverable failure occurs, the entire application is irrecoverable.
Once an application becomes irrecoverable, those Libmarpa objects with error codes for
recoverable errors are still subject to the general irrecoverability.

31

13 Introduction to the method descriptions

The following chapters describe Libmarpa’s methods in detail.

13.1 About the overviews

The method descriptions are grouped into chapters and sections. Each such group of meth-
ods descriptions begins, optionally, with an overview. These overviews, again optionally,
end with a “cheat sheet”. The “cheat sheets” name the most important Libmarpa methods
in that chapter or section, in the order in which they are typically used, and very briefly
describe their purpose.

The overviews sometimes speak of an “archetypal” application. The archetypal Lib-
marpa application implements a complete logic flow, starting with the creation of a gram-
mar, and proceeding all the way to the return of the final result from a value object. In
the archetypal Libmarpa application, the grammar, input and semantics are all small but
non-trivial.

13.2 Naming conventions

Methods in Libmarpa follow a strict naming convention. All methods have a name beginning
with marpa_, if they are part of the external interface. If an external method is not a
static method, its name is prefixed with one of marpa_c_, marpa_g_, marpa_r_, marpa_b_,
marpa_o_, marpa_t_ or marpa_v_, where the single letter between underscores is one of the
Libmarpa major class abbreviations. The letter indicates which class the method belongs
to.

Methods that are exported, but that are part of the internal interface, begin with _

marpa_. Methods that are part of the internal interface (often called “internal methods”)
are subject to change and are intended for use only by Libmarpa’s developers.

Libmarpa reserves the marpa_ and _marpa_ prefixes for itself, with all their capitalization
variants. All Libmarpa names visible outside the package will begin with a capitalization
variant of one of these two prefixes.

13.3 Return values

Some general conventions for return values are worth mentioning:

• For methods that return an integer, a return value of −1 usually indicates soft method
failure.

• For methods that return an integer, a return value of −2 usually indicates hard method
failure.

• For methods that return an integer, a return value greater of zero or more usually
indicates method success.

• If a method returns an pointer value, NULL usually indicates method failure. Any other
result usually indicates method success.

The words “success” and “failure” are heavily overloaded in these documents. But
in contexts where our meaning is clear we will usually abbreviate “method success” and
“method failure” to “success” and “failure”, respectively.

Chapter 13: Introduction to the method descriptions 32

The Libmarpa programmer should not overly rely on the general conventions for re-
turn values. In particular, −2 may sometimes be ambiguous — both a valid return value
for method success, and a potential indication of hard method failure. In this case, the
programmer must distinguish the two return statuses based on the error code, and a pro-
grammer who is relying too heavily on the general conventions will fall into a trap. For a
the description of the return values of marpa_g_rule_rank_set(), see Section 16.7 [Rank
methods], page 43.

13.4 How to read the method descriptions

The method descriptions are written on the assumption that the reader has the following
in mind while reading them:

• Each method description begins with the signature of its “topic method”.

• In the method description, the phrase “this method” always refers to the topic method.

• Whenever “this method” is the subject of a sentence in the method description, it may
be elided, so that, for example, “This method returns 42” becomes “returns 42”.

• If the return type of a method is not void, the last paragraph of its method description
is a “return value summary”. The return value summary starts with the label “Return
Value”.

• Every method returns in exactly one of three statuses: success, hard failure, or soft
failure.

• A return status of hard failure indicates that the method detected a hard failure.

• Amethod may have several kinds of hard failure, including several kinds of irrecoverable
hard failure and several kinds of recoverable hard failure. On return, these can be
distinguished by their error codes.

• If a method call hard fails, its error code is that associated with the hard failure.
Unless stated otherwise in the return value summary, the error code is set in the base
grammar of the method call, and may be accessed with the methods described below.
See Section 24.1 [Error methods], page 80.

• If a method allows a recoverable hard failure, this is explicitly stated in its return
value summary, along with the associated error code. The method description with
state the circumstances under which the recoverable hard failure occurs, and what the
application must do to recover.

• A return status of soft failure indicates that the method detected a soft failure.

• Every method has at most one kind of soft failure.

• If a method allows a soft failure, this is explicitly stated in its return value summary,
and the method description will state the circumstances under which the soft failure
occurs, and what the application must do to recover.

• If a method call soft fails, the value of the error code is unspecified.

• If a method call succeeds, the value of the error code is unspecified.

• A return status of success indicates that the method did not detect any failures.

• If both a hard failure and a soft failure occur, the return status will be hard failure.

• If both a recoverable hard failure and an irrecoverable hard failure occur, the error code
will be for an irrecoverable hard failure.

33

• The behaviors specified for success and soft failure are application behaviors.

• The behaviors specified for hard failures are diagnostic behaviors if an irrecoverable
failure occurred, and application behaviors otherwise.

34

14 Static methods

[Accessor function]Marpa_Error_Code marpa_check_version (int
required_major, int required_minor, int required_micro)

Checks that the Marpa library in use is compatible with the given version. Generally,
the application programmer will pass in the constants MARPA_MAJOR_VERSION, MARPA_
MINOR_VERSION, and MARPA_MICRO_VERSION as the three arguments, to check that
their application was compiled with headers the match the version of Libmarpa that
they are using.

If required major.required minor.required micro is an exact match with 11.0.2, the
method succeeds. Otherwise the return status is an irrecoverable hard failure.

Return value: On success, MARPA_ERR_NONE. On hard failure, the error code.

[Accessor function]Marpa_Error_Code marpa_version (int* version)
Writes the version number in version. It is an undetected irrecoverable hard failure
if version does not have room for three int’s.

Return value: Always succeeds. The return value is unspecified.

35

15 Configuration methods

The configuration object is intended for future extensions. These may allow the application
to override Libmarpa’s memory allocation and fatal error handling without resorting to
global variables, and therefore in a thread-safe way. Currently, the only function of the
Marpa_Config class is to give marpa_g_new() a place to put its error code.

Marpa_Config is Libmarpa’s only “major” class which is not a time class. There is no
constructor or destructor, although Marpa_Config objects do need to be initialized before
use. Aside from its own accessor, Marpa_Config objects are only used by marpa_g_new()

and no reference to their location is not kept in any of Libmarpa’s time objects. The intent
is to that it be convenient to have them in memory that might be deallocated soon after
marpa_g_new() returns. For example, they could be put on the stack.

[Mutator function]int marpa_c_init (Marpa Config* config)
Initialize the config information to “safe” default values. An irrecoverable error will
result if an uninitialized configuration is used to create a grammar.

Return value: Always succeeds. The return value is unspecified.

[Accessor function]Marpa_Error_Code marpa_c_error (Marpa Config*
config, const char** p_error_string)

Error codes are usually kept in the base grammar, which leaves marpa_g_new() no
place to put its error code on failure. Objects of the Marpa_Config class provide such
a place. p error string is reserved for use by the internals. Applications should set it
to NULL.

Return value: The error code in config. Always succeeds, so that marpa_c_error()
never requires an error code for itself.

36

16 Grammar methods

16.1 Overview

An archetypal application has a grammar. To create a grammar, use the marpa_g_new()

method. When a grammar is no longer in use, its memory can be freed using the marpa_

g_unref() method.

To be precomputed, a grammar must have one or more symbols. To create symbols, use
the marpa_g_symbol_new() method.

To be precomputed, a grammar must have one or more rules. To create rules, use the
marpa_g_rule_new() and marpa_g_sequence_new() methods.

To be precomputed, a grammar must have exactly one start symbol. To mark a symbol
as the start symbol, use the marpa_g_start_symbol_set() method.

Before parsing with a grammar, it must be precomputed. To precompute a grammar,
use the marpa_g_precompute() method.

16.2 Creating a new grammar

[Constructor function]Marpa_Grammar marpa_g_new (Marpa Config*
configuration)

Creates a new grammar time object. The returned grammar object is not yet pre-
computed, and will have no symbols and rules. Its reference count will be 1.

Unless the application calls marpa_c_error() Libmarpa will not reference the loca-
tion pointed to by the configuration argument after marpa_g_new() returns. (See
[marpa c error], page 35.) The configuration argument may be NULL, but if it is,
there will be no way to determine the error code on failure.

Return value: On success, the grammar object. On hard failure, NULL. Also on hard
failure, if the configuration argument is not NULL, the error code is set in configuration.
The error code may be accessed using marpa_c_error().

[Mutator function]int marpa_g_force_valued (Marpa Grammar g)
It is recommended that this call be made immediately after the grammar constructor.
It turns off a deprecated feature.

The marpa_g_force_valued() forces all the symbols in a grammar to be “valued”.
The opposite of a valued symbol is one about whose value you do not care. This
distinction has been made in the past in hope of gaining efficiencies at evaluation
time. Current thinking is that the gains do not repay the extra complexity.

Return value: On success, a non-negative integer, whose value is otherwise unspeci-
fied. On failure, -2.

16.3 Tracking the reference count of the grammar

[Mutator function]Marpa_Grammar marpa_g_ref (Marpa Grammar g)
Increases the reference count of g by 1. Not needed by most applications.

Return value: On success, g. On hard failure, NULL.

Chapter 16: Grammar methods 37

[Destructor function]void marpa_g_unref (Marpa Grammar g)
Decreases the reference count by 1, destroying g once the reference count reaches
zero.

16.4 Symbol methods

[Accessor function]Marpa_Symbol_ID marpa_g_start_symbol
(Marpa Grammar g)

When successful, returns the ID of the start symbol. Soft fails, if there is no start
symbol. The start symbol is set by the marpa_g_start_symbol_set() call.

Return value: On success, the ID of the start symbol, which is always a non-negative
number. On soft failure, −1. On hard failure, −2.

[Mutator function]Marpa_Symbol_ID marpa_g_start_symbol_set (
Marpa Grammar g, Marpa Symbol ID sym_id)

When successful, sets the start symbol of grammar g to symbol sym id. Soft fails if
sym id is well-formed (a non-negative integer), but a symbol with that ID does not
exist.

Return value: On success, sym id, which will always be a non-negative number. On
soft failure, −1. On hard failure, −2.

[Accessor function]int marpa_g_highest_symbol_id (Marpa Grammar g)
Return value: On success, the numerically largest symbol ID of g. On hard failure,
−2.

[Accessor function]int marpa_g_symbol_is_accessible (Marpa Grammar g,
Marpa Symbol ID sym_id)

A symbol is accessible if it can be reached from the start symbol. Soft fails if sym id
is well-formed (a non-negative integer), but a symbol with that ID does not exist. A
common hard failure is calling this method with a grammar that is not precomputed.

Return value: On success, 1 if symbol sym id is accessible, 0 if not. On soft failure,
−1. On hard failure, −2.

[Accessor function]int marpa_g_symbol_is_nullable (Marpa Grammar g,
Marpa Symbol ID sym id)

A symbol is nullable if it sometimes produces the empty string. A nulling symbol is
always a nullable symbol, but not all nullable symbols are nulling symbols. Soft fails
if sym id is well-formed (a non-negative integer), but a symbol with that ID does
not exist. A common hard failure is calling this method with a grammar that is not
precomputed.

Return value: On success, 1 if symbol sym id is nullable, 0 if not. On soft failure,
−1. On hard failure, −2.

[Accessor function]int marpa_g_symbol_is_nulling (Marpa Grammar g,
Marpa Symbol ID sym_id)

A symbol is nulling if it always produces the empty string. Soft fails if sym id is
well-formed (a non-negative integer), but a symbol with that ID does not exist. A
common hard failure is calling this method with a grammar that is not precomputed.

Chapter 16: Grammar methods 38

Return value: On success, 1 if symbol sym id is nulling, 0 if not. On soft failure, −1.
On hard failure, −2.

[Accessor function]int marpa_g_symbol_is_productive (Marpa Grammar g,
Marpa Symbol ID sym_id)

A symbol is productive if it can produce a string of terminals. All nullable symbols are
considered productive. Soft fails if sym id is well-formed (a non-negative integer), but
a symbol with that ID does not exist. A common hard failure is calling this method
with a grammar that is not precomputed.

Return value: On success, 1 if symbol sym id is productive, 0 if not. On soft failure,
−1. On hard failure, −2.

[Accessor function]int marpa_g_symbol_is_start (Marpa Grammar g,
Marpa Symbol ID sym_id)

On success, if sym id is the start symbol, returns 1. On success, if sym id is not the
start symbol, returns 0. On success, if no start symbol has been set, returns 0. is the
start symbol.

Soft fails if sym id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, 1 or 0. On soft failure, −1. On hard failure, −2.

[Accessor function]int marpa_g_symbol_is_terminal (Marpa Grammar g,
Marpa Symbol ID sym_id)

On succcess, returns the “terminal status” of a sym id. The terminal status is 1 if
sym id is a terminal, 0 otherwise. To be used as an input symbol in the marpa_r_

alternative() method, a symbol must be a terminal.

Soft fails if sym id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, 1 or 0. On soft failure, −1. On hard failure, −2.

[Mutator function]Marpa_Symbol_ID marpa_g_symbol_new (Marpa Grammar
g)

When successful, creates a new symbol in grammar g. The symbol ID’s are non-
negative integers. Within each grammar, a symbol’s ID is unique to that symbol.

Symbols are numbered consecutively, starting at 0. That is, the first successful call
of this method for a grammar returns the symbol with ID 0. The n’th successful
call returns the symbol for a grammar with ID n−1. This makes it convenient for
applications to store additional information about the symbols in an array.

Return value: On success, the ID of the new symbol, which will be a non-negative
integer. On hard failure, −2.

16.5 Rule methods

[Accessor function]int marpa_g_highest_rule_id (Marpa Grammar g)
Return value: On success, the numerically largest rule ID of g. On hard failure, −2.

Chapter 16: Grammar methods 39

[Accessor function]int marpa_g_rule_is_accessible (Marpa Grammar g,
Marpa Rule ID rule_id)

A rule is accessible if it can be reached from the start symbol. A rule is accessible if
and only if its LHS symbol is accessible. The start rule is always an accessible rule.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if rule with ID rule id is accessible, 0 if not. On
soft failure, −1. On hard failure, −2.

[Accessor function]int marpa_g_rule_is_nullable (Marpa Grammar g,
Marpa Rule ID ruleid)

A rule is nullable if it sometimes produces the empty string. A nulling rule is always
a nullable rule, but not all nullable rules are nulling rules.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule id is nullable, 0 if not.
On soft failure, −1. On hard failure, −2.

[Accessor function]int marpa_g_rule_is_nulling (Marpa Grammar g,
Marpa Rule ID ruleid)

A rule is nulling if it always produces the empty string.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule id is nulling, 0 if not. On
soft failure, −1. On hard failure, −2.

[Accessor function]int marpa_g_rule_is_loop (Marpa Grammar g,
Marpa Rule ID rule_id)

A rule is a loop rule if it non-trivially produces the string of length one that consists
only of its LHS symbol. Such a derivation takes the parse back to where it started,
hence the term “loop”. “Non-trivially” means the zero-step derivation does not count
— the derivation must have at least one step.

The presence of a loop rule makes a grammar infinitely ambiguous, and applications
will typically want to treat them as fatal errors. But nothing forces an application to
do this, and Marpa will successfully parse and evaluate grammars with loop rules.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule id is a loop rule, 0 if not.
On soft failure, −1. On hard failure, −2.

Chapter 16: Grammar methods 40

[Accessor function]int marpa_g_rule_is_productive (Marpa Grammar g,
Marpa Rule ID rule_id)

A rule is productive if it can produce a string of terminals. A rule is productive if
and only if all the symbols on its RHS are productive. The empty string counts as a
string of terminals, so that a nullable rule is always a productive rule. For that same
reason, an empty rule is considered productive.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule id is productive, 0 if not.
On soft failure, −1. On hard failure, −2.

[Accessor function]int marpa_g_rule_length (Marpa Grammar g,
Marpa Rule ID rule_id)

The length of a rule is the number of symbols on its RHS.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, the length of the rule with ID rule id. On soft failure, −1.
On hard failure, −2.

[Accessor function]Marpa_Symbol_ID marpa_g_rule_lhs (Marpa Grammar g,
Marpa Rule ID rule_id)

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, the ID of the LHS symbol of the rule with ID rule id. On
soft failure, −1. On hard failure, −2.

[Mutator function]Marpa_Rule_ID marpa_g_rule_new (Marpa Grammar g,
Marpa Symbol ID lhs_id, Marpa Symbol ID *rhs_ids, int length)

On success, creates a new external BNF rule in grammar g. In addition to BNF rules,
Marpa also allows sequence rules, which are created by the marpa_g_sequence_new()
method. See [marpa g sequence new], page 42. We call marpa_g_rule_new() and
marpa_g_sequence_new() rule creation methods.

Sequence rules and BNF rules are both rules: They share the same series of rule IDs,
and are accessed and manipulated by the same methods, with the only differences
being as noted in the descriptions of those methods.

Each grammar’s rule ID’s are a consecutive sequence of non-negative integers, starting
at 0. This is intended to make it convenient for applications to store additional
information about a grammar’s rules in an array. Within each grammar, the following
is true:

• A rule’s ID is unique to that rule.

• The first successful call of a rule creation method returns the rule with ID 0.

• The n’th successful call of a rule creation method returns the rule with ID n−1.

The LHS symbol is lhs id, and there are length symbols on the RHS. The RHS
symbols are in an array pointed to by rhs ids.

Chapter 16: Grammar methods 41

Possible hard failures, with their error codes, include:

• MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE: The LHS symbol is the same as that of
a sequence rule.

• MARPA_ERR_DUPLICATE_RULE: The new rule would duplicate another BNF rule.
Another BNF rule is considered the duplicate of the new one, if its LHS symbol
is the same as symbol lhs id, if its length is the same as length, and if its RHS
symbols match one for one those in the array of symbols rhs ids.

Return value: On success, the ID of the new external rule. On hard failure, −2.

[Accessor function]Marpa_Symbol_ID marpa_g_rule_rhs (Marpa Grammar g,
Marpa Rule ID rule_id, int ix)

When successful, returns the ID of the symbol at index ix in the RHS of the rule with
ID rule id. The indexing of RHS symbols is zero-based.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

A common hard failure is for ix not to be a valid index of the RHS. This happens if
ix is less than zero, or or if ix is greater than or equal to the length of the rule.

Return value: On success, a symbol ID, which is always non-negative. On soft failure,
−1. On hard failure, −2.

16.6 Sequence methods

[Accessor function]int marpa_g_rule_is_proper_separation (
Marpa Grammar g, Marpa Rule ID rule_id)

When successful, returns

• 1 if rule id is the ID of a sequence rule whose proper separation flag is set,

• 0 if rule id is the ID of a sequence rule whose proper separation flag is not set,

• 0 if rule id is the ID of a rule that is not a sequence rule.

Does not distinguish sequence rules without proper separation from non-sequence
rules. That is, does not distinguish an unset proper separation flag from a proper
separation flag whose value is unspecified because rule id is the ID of a BNF rule.
Applications that want to determine whether or not a rule is a sequence rule can use
marpa_g_sequence_min() to do this. See [marpa g sequence min], page 41.

Soft fails if rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, 1 or 0. On soft failure, −1. On hard failure, −2.

[Accessor function]int marpa_g_sequence_min (Marpa Grammar g,
Marpa Rule ID rule_id)

On success, returns the mininum length of a sequence rule. Soft fails if a rule with ID
rule id exists, but is not a sequence rule. This soft failure can used to test whether
or not a rule is a sequence rule.

Hard fails irrecoverably if rule id is not well-formed (a non-negative number). Also,
hard fails irrecoverably if no rule with ID rule id exists, even when rule id is well

Chapter 16: Grammar methods 42

formed. Note that, in its handling of the non-existence of a rule for its rule argument,
this method differs from many of the other grammar methods. Grammar methods
that take a rule ID argument more often treat the non-existence of rule for a well-
formed rule ID as a soft, recoverable, failure.

Return value: On success, the minimum length of the sequence rule with ID rule id,
which is always non-negative. On soft failure, −1. On hard failure, −2.

[Mutator function]Marpa_Rule_ID marpa_g_sequence_new (Marpa Grammar
g, Marpa Symbol ID lhs_id, Marpa Symbol ID rhs_id,
Marpa Symbol ID separator_id, int min, int flags)

When successful, adds a new sequence rule to grammar g, and returns its ID. In
addition to sequence rules, Marpa also allows BNF rules, which are created by the
marpa_g_rule_new() method. See [marpa g rule new], page 40. We call marpa_g_
rule_new() and marpa_g_sequence_new() rule creation methods. For details on the
use of sequence rules, see Chapter 10 [Sequence rules], page 22.

Sequence rules and BNF rules are both rules: They share the same series of rule IDs,
and are accessed and manipulated by the same methods, with the only differences
being as noted in the descriptions of those methods.

Each grammar’s rule ID’s are a consecutive sequence of non-negative integers, starting
at 0. This is intended to make it convenient for applications to store additional
information about a grammar’s rules in an array. Within each grammar, the following
is true:

• A rule’s ID is unique to that rule.

• The first successful call of a rule creation method returns the rule with ID 0.

• The n’th successful call of a rule creation method returns the rule with ID n−1.

The LHS of the sequence is lhs id, and the item to be repeated on the RHS of the
sequence is rhs id. The sequence must be repeated at least min times, where min is
0 or 1. The sequence RHS, or item, is restricted to a single symbol, and that symbol
cannot be nullable. If separator id is non-negative, it is a separator symbol, which
cannot be nullable. flags is a bit vector. Use of any other bit except MARPA_PROPER_
SEPARATION results in undefined behavior.

By default, a sequence rule recognizes a trailing separator. If flags & MARPA_PROPER_

SEPARATION is non-zero, separation is “proper”. Proper separation means the the rule
does not recognize a trailing separator. Specifying proper separation has no effect
unless a separator symbol has also been specified.

The LHS symbol cannot be the LHS of any other rule, whether a BNF rule or a
sequence rule. On an attempt to create an sequence rule with a duplicate LHS, this
method hard fails, with an error code of MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE.

Return value: On success, the ID of the newly added sequence rule, which is always
non-negative. On hard failure, −2.

[Accessor function]int marpa_g_sequence_separator (Marpa Grammar g,
Marpa Rule ID rule_id)

On success, returns the symbol ID of the separator of the sequence rule with ID
rule id. Soft fails if there is no separator. The causes of hard failure include rule id

Chapter 16: Grammar methods 43

not being well-formed; rule id not being the ID of a rule that exists; and rule id not
being the ID a sequence rule.

Return value: On success, a symbol ID, which is always non-negative. On soft failure,
−1. On hard failure, −2.

[Accessor function]int marpa_g_symbol_is_counted (Marpa Grammar g,
Marpa Symbol ID sym_id)

On success, returns a boolean whose value is 1 iff the symbol with ID sym id is
counted. A symbol is counted iff

• it appears on the RHS of a sequence rule, or

• it is used as the separator symbol of a sequence rule.

Soft fails iff sym id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, a boolean. On soft failure, −1. On hard failure, −2.

16.7 Rank methods

[Accessor function]Marpa_Rank marpa_g_default_rank (Marpa Grammar g)
On success, returns the default rank of the grammar g. For more about the default
rank of a grammar, see [marpa g default rank set], page 43.

Return value: On success, returns the default rank of the grammar, and sets the
error code to MARPA_ERR_NONE. On failure, returns −2, and sets the error code to an
appropriate value, which will never be MARPA_ERR_NONE. Note that when the default
rank of the grammar is −2, the error code is the only way to distinguish success from
failure. The error code can be determined by using the marpa_g_error() call. See
[marpa g error], page 80.

[Mutator function]Marpa_Rank marpa_g_default_rank_set (Marpa Grammar
g, Marpa Rank rank)

On success, sets the default rank of the grammar g to rank. When a grammar is
created, the default rank is 0. When rules and symbols are created, their rank is the
default rank of the grammar.

Changing the grammar’s default rank does not affect those rules and symbols already
created, only those that will be created. This means that the grammar’s default rank
can be used to, in effect, assign ranks to groups of rules and symbols. Applications
may find this behavior useful.

Return value: On success, returns rank and sets the error code to MARPA_ERR_NONE.
On failure, returns −2, and sets the error code to an appropriate value, which will
never be MARPA_ERR_NONE. Note that when the rank is −2, the error code is the only
way to distinguish success from failure. The error code can be determined by using
the marpa_g_error() call. See [marpa g error], page 80.

[Accessor function]Marpa_Rank marpa_g_symbol_rank (Marpa Grammar g,
Marpa Symbol ID sym_id)

When successful, returns the rank of the symbol with ID sym id. When a symbol is
created, its rank is initialized to the default rank of the grammar.

Chapter 16: Grammar methods 44

Return value: On success, returns a symbol rank, and sets the error code to MARPA_

ERR_NONE. On hard failure, returns −2, and sets the error code to an appropri-
ate value, which will never be MARPA_ERR_NONE. Note that −2 is a valid symbol
rank, so that when −2 is returned, the error code is the only way to distinguish suc-
cess from failure. The error code can be determined using marpa_g_error(). See
[marpa g error], page 80.

[Mutator function]Marpa_Rank marpa_g_symbol_rank_set (Marpa Grammar
g, Marpa Symbol ID sym_id, Marpa Rank rank)

When successful, sets the rank of the symbol with ID sym id to rank. When a symbol
is created, its rank is initialized to the default rank of the grammar.

Return value: On success, returns rank, and sets the error code to MARPA_ERR_NONE.
On hard failure, returns −2, and sets the error code to an appropriate value, which
will never be MARPA_ERR_NONE. Note that rank may be −2, and in this case the
error code is the only way to distinguish success from failure. The error code can be
determined using marpa_g_error(). See [marpa g error], page 80.

[Accessor function]Marpa_Rank marpa_g_rule_rank (Marpa Grammar g,
Marpa Rule ID rule id)

When successful, returns the rank of the rule with ID rule id. When a rule is created,
its rank is initialized to the default rank of the grammar.

Return value: On success, returns a rule rank, and sets the error code to MARPA_ERR_

NONE. The rule rank is an integer. On hard failure, returns −2, and sets the error code
to an appropriate value, which will never be MARPA_ERR_NONE. Note that −2 is a valid
rule rank, so that when −2 is returned, the error code is the only way to distinguish
success from failure. The error code can be determined using marpa_g_error(). See
[marpa g error], page 80.

[Mutator function]Marpa_Rank marpa_g_rule_rank_set (Marpa Grammar g,
Marpa Rule ID rule_id, Marpa Rank rank)

When successful, sets the rank of the rule with ID rule id to rank and returns rank.

Return value: On success, returns rank, which will be an integer, and sets the error
code to MARPA_ERR_NONE. On hard failure, returns −2, and sets the error code to
an appropriate value, which will never be MARPA_ERR_NONE. Note that −2 is a valid
rule rank, so that when −2 is returned, the error code is the only way to distinguish
success from failure. The error code can be determined using marpa_g_error(). See
[marpa g error], page 80.

[Accessor function]int marpa_g_rule_null_high (Marpa Grammar g,
Marpa Rule ID rule id)

On success, returns a boolean whose value is 1 iff “null ranks high” is set in the rule
with ID rule id. When a rule is created, it has “null ranks high” set.

For more on the “null ranks high” setting, read the description of marpa_g_rule_
null_high_set(). See [marpa g rule null high set], page 45.

Soft fails iff rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, a boolean. On soft failure, −1. On hard failure, −2.

Chapter 16: Grammar methods 45

[Mutator function]int marpa_g_rule_null_high_set (Marpa Grammar g,
Marpa Rule ID rule_id, int flag)

On success,

• sets “null ranks high” in the rule with ID rule id if the value of the boolean flag
is 1;

• unsets “null ranks high” in the rule with ID rule id if the value of the boolean
flag is 0; and

• returns flag.

The “null ranks high” setting affects the ranking of rules with properly nullable sym-
bols on their right hand side. If a rule has properly nullable symbols on its RHS, each
instance in which it appears in a parse will have a pattern of nulled and non-nulled
symbols. Such a pattern is called a “null variant”.

If the “null ranks high” is set, nulled symbols rank high. If the “null ranks high”
is unset is the default), nulled symbols rank low. Ranking of a null variants is done
from left-to-right.

Soft fails iff rule id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Hard fails if the grammar has been precomputed.

Return value: On success, a boolean. On soft failure, −1. On hard failure, −2.

16.8 Precomputing the Grammar

[Accessor function]int marpa_g_has_cycle (Marpa Grammar g)
On success, returns a boolean which is 1 iff g has a cycle. Cycles make a grammar
infinitely ambiguous, and are considered useless in current practice. Cycles make
processing the grammar less efficient, sometimes considerably so. Applications will
almost always want to treat cycles as mistakes on the part of the writer of the gram-
mar. To determine which rules are in the cycle, marpa_g_rule_is_loop() can be
used.

Return value: On success, a boolean. On hard failure, −2.

[Accessor function]int marpa_g_is_precomputed (Marpa Grammar g)
Return value: On success, a boolean which is 1 iff grammar g is precomputed. On
hard failure, −2.

[Mutator function]int marpa_g_precompute (Marpa Grammar g)
On success, and on fully recoverable hard failure, precomputes the grammar g. Pre-
computation involves running a series of grammar checks and “precomputing” some
useful information which is kept internally to save repeated calculations. After pre-
computation, the grammar is “frozen” in many respects, and many grammar mutators
that succeed before precomputation will cause hard failures after precomputation.
Precomputation is necessary for a recognizer to be generated from a grammar.

When called, clears any events already in the event queue. May return one or more
events. The types of event that this method may return are A MARPA_EVENT_LOOP_

RULES, MARPA_EVENT_COUNTED_NULLABLE, MARPA_EVENT_NULLING_TERMINAL. All of

Chapter 16: Grammar methods 46

these events occur only on failure. Applications must be prepared for this method
to return additional events, including events that occur on success. Events may be
queried using the marpa_g_event() method. See [marpa g event], page 71.

The fully recoverable hard failure is MARPA_ERR_GRAMMAR_HAS_CYCLE. Recall that
for fully recoverable hard failures this method precomputes the grammar. Most
appplications, however, will want to treat a grammar with cycles as if it were a
library-recoverable error. A MARPA_ERR_GRAMMAR_HAS_CYCLE error occurs iff a MARPA_
EVENT_LOOP_RULES event occurs. For more details on cycles, see [marpa g has cycle],
page 45.

The error code MARPA_ERR_COUNTED_NULLABLE is library-recoverable. This failure
occurs when a symbol on the RHS of a sequence rule is nullable, which Libmarpa
does not allow in a grammar. Error code MARPA_ERR_COUNTED_NULLABLE occurs iff
one or more MARPA_EVENT_COUNTED_NULLABLE events occur. There is one MARPA_

EVENT_COUNTED_NULLABLE event for every symbol that is a nullable on the right hand
side of a sequence rule. An application may use these events to inform the user of the
problematic symbols, and this detail may help the user fix the grammar.

The error code MARPA_ERR_NULLING_TERMINAL occurs only if LHS terminals are en-
abled. The LHS terminals feature is deprecated. See Section 29.1 [LHS terminals],
page 99. Error code MARPA_ERR_NULLING_TERMINAL is library-recoverable. One or
more MARPA_EVENT_NULLING_TERMINAL events will occur iff this method fails with
error code MARPA_ERR_NULLING_TERMINAL. See Section 29.1.5 [Nulling terminals],
page 100.

Among the other error codes that may case this method to fail are the following:

• MARPA_ERR_NO_RULES: The grammar has no rules.

• MARPA_ERR_NO_START_SYMBOL: No start symbol was specified.

• MARPA_ERR_INVALID_START_SYMBOL: A start symbol ID was specified, but it is
not the ID of a valid symbol.

• MARPA_ERR_START_NOT_LHS: The start symbol is not on the LHS of any rule.

• MARPA_ERR_UNPRODUCTIVE_START: The start symbol is not productive.

More details of these can be found under the description of the appropriate code. See
Section 24.3 [External error codes], page 80.

Return value: On success, a non-negative number, whose value is otherwise unspec-
ified. On hard failure, −2. For the error code MARPA_ERR_GRAMMAR_HAS_CYCLE, the
hard failure is fully recoverable. For the error codes MARPA_ERR_COUNTED_NULLABLE
and MARPA_ERR_NULLING_TERMINAL, the hard failure is library-recoverable.

47

17 Recognizer methods

17.1 Recognizer overview

An archetypal application uses a recognizer to read input. To create a recognizer, use the
marpa_r_new() method. When a recognizer is no longer in use, its memory can be freed
using the marpa_r_unref() method.

To make a recognizer ready for input, use the marpa_r_start_input() method.

The recognizer starts with its current earleme at location 0. To read a token at the
current earleme, use the marpa_r_alternative() call.

To complete the processing of the current earleme, and move forward to a new one, use
the marpa_r_earleme_complete() call.

17.2 Creating a new recognizer

[Constructor function]Marpa_Recognizer marpa_r_new (Marpa Grammar g)
On success, creates a new recognizer and increments the reference count of g, the base
grammar, by one. In the new recognizer,

• the reference count will be 1;

• the furthest earleme will be 0; and

• the values of the latest and current earleme will be unspecified.

Return value: On success, the newly created recognizer, which is never NULL. If g is
not precomputed, or on other hard failure, NULL.

17.3 Keeping the reference count of a recognizer

[Mutator function]Marpa_Recognizer marpa_r_ref (Marpa Recognizer r)
Increases the reference count by 1. This method is not needed by most applications.

Return value: On success, the recognizer object, r, which is never NULL. On hard
failure, NULL.

[Destructor function]void marpa_r_unref (Marpa Recognizer r)
Decreases the reference count by 1, destroying r once the reference count reaches zero.
When r is destroyed, the reference count of its base grammar is decreased by one. If
this takes the reference count of the base grammar to zero, the base grammar is also
destroyed.

17.4 Life cycle mutators

[Mutator function]int marpa_r_start_input (Marpa Recognizer r)
When successful, does the following:

• Readies r to accept input.

• Completes the first Earley set. The ID of the first Earley set is 0, and it is located
at earleme 0.

Chapter 17: Recognizer methods 48

• Leaves the latest, current and furthest earlemes all at 0.

• Clears any events that were in the event queue before this method was called.

• If this method exhausts the parse, generates a MARPA_EVENT_EXHAUSTED event.
See Chapter 7 [Exhaustion], page 18.

• May generate one or more MARPA_EVENT_SYMBOL_NULLED, MARPA_EVENT_SYMBOL_
PREDICTED, or MARPA_EVENT_SYMBOL_EXPECTED events. See Chapter 23 [Events],
page 71.

Return value: On success, a non-negative value, whose value is otherwise unspecified.
On hard failure, −2.

[Mutator function]int marpa_r_alternative (Marpa Recognizer r,
Marpa Symbol ID token_id, int value, int length)

The token id argument must be the symbol ID of a terminal. The value argument
is an integer that represents the “value” of the token, and which should not be zero.
The length argument is the length of the token, which must be greater than zero.

On success, does the following, where current is the value of the current earleme
before the call and furthest is the value of the furthest earleme before the call:

• Reads a new token into r. The symbol ID of the token will be token id. The
token will start at current and end at current+length.

• Sets the value of the furthest earleme to max(current+length,furthest).

• Leaves the values of the latest and current earlemes unchanged.

After recoverable failure, the following are the case:

• The tokens read into r are unchanged. Specifically, no new token has been read
into r.

• The values of the latest, current and furthest earlemes are unchanged.

Libmarpa allows tokens to be ambiguous. Two tokens are ambiguous if they end at
the same earleme location. If two tokens are ambiguous, Libmarpa will attempt to
produce all the parses that include either of them.

Libmarpa allows tokens to overlap. Let the notation t@s-e indicate that token t starts
at earleme s and ends at earleme e. Let t1@s1-e1 and t2@s2-e2 be two tokens such
that s1<=s2. We say that t1 and t2 overlap iff e1>s2.

The value argument is not used inside Libmarpa — it is simply stored to be returned
by the valuator as a convenience for the application. In applications where the token’s
actual value is not an integer, it is expected that the application will use value as a
“virtual” value, perhaps finding the actual value by using value to index an array.
Some applications may prefer to track token values on their own, perhaps based on
the earleme location and token id, instead of using Libmarpa’s token values.

A value of 0 does not cause a failure, but it is reserved for unvalued symbols, a
now-deprecated feature. See Section 29.2 [Valued and unvalued symbols], page 100.

Hard fails irrecoverably with MARPA_ERR_DUPLICATE_TOKEN if the token added would
be a duplicate. Two tokens are duplicates iff all of the following are true:

• They would have the same start earleme. In other words, if marpa_

r_alternative() attempts to read them while at the same current
earleme.

Chapter 17: Recognizer methods 49

• They have the same token id.

• They have the same length.

If a token was not accepted because of its token ID, hard fails with the MARPA_ERR_

UNEXPECTED_TOKEN_ID. This hard failure is fully recoverable so that, for example, the
application may retry this method with different token IDs until it succeeds. These
retries are efficient, and are quite useable as a parsing technique — so much so we
have given the technique a name: the Ruby Slippers. The Ruby Slippers are used in
several applications.

Return value: On success, MARPA_ERR_NONE. On failure, an error code other than
MARPA_ERR_NONE. The hard failure for MARPA_ERR_UNEXPECTED_TOKEN_ID is fully
recoverable.

[Mutator function]int marpa_r_earleme_complete (Marpa Recognizer r)
For the purposes of this method description, we define the following:

• current is the value of the current earleme before the call of marpa_r_earleme_
complete.

• latest is the value of the latest earleme before the call of marpa_r_earleme_
complete.

• An “expected” terminal is one expected at a current earleme, in the same sense
that marpa_r_terminal_is_expected() determines if a terminal is “expected”
at the current earleme. See [marpa r terminals expected], page 53.

• An “anticipated” terminal is one that was accepted by the marpa_r_

alternative() to end at an earleme after the current earleme. An anticipated
terminal will have length greater than one. “Anticipated” terminals only
occur if the application is using an advanced model of input. See Chapter 26
[Advanced input models], page 93.

On success, does the final processing for the current earleme, including the following:

• Advances the current earleme, incrementing its value by 1. That is, sets the
current earleme to current+1.

• If any token was accepted at current, creates a new Earley set, which will be
the latest Earley set. After the call, the latest earleme will be equal to the new
current earleme, current+1.

• If no token was accepted at current, no Earley set is created. After the call, the
value of the latest earleme will be unchanged — that is, it will remain at latest.
Success when no tokens were accepted at current can only occur if the application
is using an advanced model of input. See Chapter 26 [Advanced input models],
page 93.

• The value of the furthest earleme is never changed by a call to marpa_r_earleme_
complete().

• Clears the event queue of any events that occured before this method was called.

• May generate one or more MARPA_EVENT_SYMBOL_COMPLETED, MARPA_EVENT_

SYMBOL_NULLED, MARPA_EVENT_SYMBOL_PREDICTED, or MARPA_EVENT_SYMBOL_

EXPECTED events. See Chapter 23 [Events], page 71.

Chapter 17: Recognizer methods 50

• If an application-settable threshold on the number of Earley items has been
reached or exceeded, generates a MARPA_EVENT_EARLEY_ITEM_THRESHOLD event.
Often, the application will want to treat this event as if it were a ancestry-
recoverable failure. See [marpa r earley item warning threshold set], page 53.

• If the parse is exhausted, triggers a MARPA_EVENT_EXHAUSTED event. Exhaustion
on success only occurs if no terminals are expected at the current earleme after
the call to this method (that is, at current+1) and no terminals are anticipated
after current+1.

On hard failure with the code MARPA_ERR_PARSE_EXHAUSTED, does the following:

• Leaves the current earleme at current. The current earleme will be the same as
the furthest earleme.

• The value of the furthest earleme is never changed by a call to marpa_r_earleme_
complete().

• Leaves the value of the latest earleme at latest. No new Earley set is created.

• Sets the parse exhausted, so that no more tokens will be accepted. See Chapter 7
[Exhaustion], page 18.

• Leaves the parse in a state where no terminals are expected or anticipated.

• Clears the event queue of any events that occured before the call to this method.

• Triggers a MARPA_EVENT_EXHAUSTED event and no others.

• Leaves valid any parses that were valid at the current or earlier earlemes. Pro-
cessing with these can continue, and it for this reason that we consider hard
failures with the code MARPA_ERR_PARSE_EXHAUSTED to be fully recoverable.

We note that exhaustion can occur when this method fails and when it succeeds.
The distinction is that, on success, the call creates a new Earley set before becoming
exhausted while, on failure, it becomes exhausted without creating a new Earley set.

This method is commonly called at the top of a loop. Almost all applications will
want to check the return value and take special action in case of a value other than
zero. If the value is greater than zero, an event will have occurred and almost all appli-
cations should react to MARPA_EVENT_EARLEY_ITEM_THRESHOLD events, as described
above, and to unexpected events. If the value is less than zero, it may be due to an
irrecoverable error, and only in very unusual circumstances will an application wish
to ignore these.

How an application reacts to exhaustion will depend on the kind of parsing it is doing:

• Very often an application knows the length of its input in advance. In this case,
the application will treat exhaustion before the end of input as a parse error.
Depending on the application, exhaustion on success at the end of input might
be ignored.

• An exhaustion-loving application that does not know the length of its input will
often want terminate the parse in case of exhaustion on method success, treating
exhaustion as an end-of-input indicator. These application will usually want to
treat exhaustion on method failure as a parse error.

• Occasionally, an exhaustion-hating application may not know the length of its
input in advance. Since these applications will not know from the length of the

Chapter 17: Recognizer methods 51

input, or from exhaustion, that they are at end of input, they will need some
other way of determining this. One way they may do this is with a MARPA_EVENT_
SYMBOL_COMPLETED event. Typically, these applications will treat exhaustion on
method failure and exhaustion before the end of input as parse errors. They may
wish to ignore exhaustion on method success at the end of input.

Return value: On success, the number of events generated. On hard failure, −2.
Hard failure with the code MARPA_ERR_PARSE_EXHAUSTED is fully recoverable.

17.5 Location accessors

[Accessor function]Marpa_Earleme marpa_r_current_earleme
(Marpa Recognizer r)

Successful iff input has started. If input has not started, returns soft failure.

Return value: On success, the current earleme, which is always non-negative. On soft
failure, −1. Never returns a hard failure.

[Accessor function]Marpa_Earleme marpa_r_earleme (Marpa Recognizer r,
Marpa Earley Set ID set_id)

On success, returns the earleme of the Earley set with ID set_id. The ID of an
Earley set ID is also called its ordinal. In the default, token-stream model, Earley set
ID and earleme are always equal, but this is not the case in other input models.

Hard fails if there is no Earley set whose ID is set id. This hard failure is fully
recoverable. If set id was negative, the error code of the hard failure is MARPA_ERR_
INVALID_LOCATION. If set id is greater than the ordinal of the latest Earley set, the
error code of the hard failure is MARPA_ERR_NO_EARLEY_SET_AT_LOCATION.

At this writing, there is no method for the inverse operation (conversion of an earleme
to an Earley set ID). One consideration in writing such a method is that not all
earlemes correspond to Earley sets. Applications that want to map earlemes to Earley
sets will have no trouble if they are using the standard input model — the Earley set
ID is always exactly equal to the earleme in that model. For other applications that
want an earleme-to-ID mapping, the most general method is create an ID-to-earleme
array using the marpa_r_earleme() method and invert it.

Return value: On success, the earleme corresponding to Earley set set id, which is
always non-negative. On hard failure, −2. The hard failures with error codes MARPA_
ERR_INVALID_LOCATION and MARPA_ERR_NO_EARLEY_SET_AT_LOCATION are fully re-
coverable.

[Accessor function]int marpa_r_earley_set_value (Marpa Recognizer r,
Marpa Earley Set ID earley set)

On success, returns the “integer value” of earley set. For more about the integer
value of an Earley set, see [marpa r earley set values], page 52.

Return value: On success, returns the the integer value of earley set, and sets the
error code to MARPA_ERR_NONE. On hard failure, returns −2, and sets the error code
to the error code of the hard failure, which will never be MARPA_ERR_NONE. Note
that −2 is a valid “integer value” for an Earley set, so that when −2 is returned, the
error code is the only way to distinguish success from failure. The error code can be
determined using marpa_g_error(). See [marpa g error], page 80.

Chapter 17: Recognizer methods 52

[Mutator function]int marpa_r_earley_set_values (Marpa Recognizer r,
Marpa Earley Set ID earley_set, int* p_value, void** p_pvalue)

On success, does the following:

• If p value is non-zero, sets the location pointed to by p value to the integer value
of the Earley set with ID earley set.

• If p pvalue is non-zero, sets the location pointed to by p pvalue to the pointer
value of the Earley set with ID earley set.

The “value” and “pointer” of an Earley set are an arbitrary integer and an arbitrary
pointer. Libmarpa never examines them and the application is free to use them for
its own purposes. In an application with a character-per-earleme input model, for
example, the integer value of the Earley set can used to store the codepoint of the
current character. In a traditional token-per-earleme input model, the integer and
pointer values could be used to track the string value of the token – the pointer could
point to the start of the string, and the integer could indicate its length.

The Earley set integer value defaults to −1, and the pointer value defaults to NULL.
The Earley set value and pointer can be set using the marpa_r_latest_earley_set_
values_set() method. See [marpa r latest earley set values set], page 52.

Return value: On success, returns a non-negative integer. On hard failure, returns
−2.

[Accessor function]unsigned int marpa_r_furthest_earleme
(Marpa Recognizer r)

Return value: The furthest earleme. Always succeeds.

[Accessor function]Marpa_Earley_Set_ID marpa_r_latest_earley_set
(Marpa Recognizer r)

Returns the Earley set ID of the latest Earley set. The ID of an Earley set ID is also
called its ordinal. Applications that want the value of the latest earleme can convert
this value using the marpa_r_earleme() method. See [marpa r earleme], page 51.

Return value: The ID of the latest Earley set. Always succeeds.

[Mutator function]int marpa_r_latest_earley_set_value_set (
Marpa Recognizer r, int value)

Sets the “integer value” of the latest Earley set to value. For more about the integer
value of an Earley set, see [marpa r earley set values], page 52.

Return value: On success, returns the newly set integer value of the latest earley set,
and sets the error code to MARPA_ERR_NONE. On hard failure, returns −2, and sets the
error code to the error code of the hard failure, which will never be MARPA_ERR_NONE.
Note that −2 is a valid “integer value” for an Earley set, so that when −2 is returned,
the error code is the only way to distinguish success from failure. The error code can
be determined using marpa_g_error(). See [marpa g error], page 80.

[Mutator function]int marpa_r_latest_earley_set_values_set (
Marpa Recognizer r, int value, void* pvalue)

Sets the integer and pointer value of the latest Earley set. For more about the “integer
value” and “pointer value” of an Earley set, see [marpa r earley set values], page 52.

Chapter 17: Recognizer methods 53

Return value: On success, returns a non-negative integer. On hard failure, returns
−2.

17.6 Other parse status methods

[Accessor function]int marpa_r_earley_item_warning_threshold
(Marpa Recognizer r)

For details about the “earley item warning threshold”, see [marpa r earley item warning threshold set],
page 53.

Return value: The Earley item warning threshold. Always succeeds.

[Mutator function]int marpa_r_earley_item_warning_threshold_set
(Marpa Recognizer r, int threshold)

On success, sets the Earley item warning threshold. The Earley item warning thresh-
old is a number that is compared with the count of Earley items in each Earley set.
When it is matched or exceeded, a MARPA_EVENT_EARLEY_ITEM_THRESHOLD event is
created. See [MARPA EVENT EARLEY ITEM THRESHOLD], page 78.

If threshold is zero or less, an unlimited number of Earley items will be allowed
without warning. This will rarely be what the user wants.

By default, Libmarpa calculates a value based on the grammar. The formula Lib-
marpa uses is the result of some experience, and most applications will be happy with
it.

What should be done when the threshold is exceeded, depends on the application,
but exceeding the threshold means that it is very likely that the time and space
resources consumed by the parse will prove excessive. This is often a sign of a bug
in the grammar. Applications often will want to smoothly shut down the parse,
in effect treating the MARPA_EVENT_EARLEY_ITEM_THRESHOLD event as equivalent to
library-recoverable hard failure.

Return value: The value that the Earley item warning threshold has after the method
call is finished. Always succeeds.

[Accessor function]int marpa_r_is_exhausted (Marpa Recognizer r)
A parser is “exhausted” if it cannot accept any more input. See Chapter 7 [Exhaus-
tion], page 18.

Return value: 1 if the parser is exhausted, 0 otherwise. Always succeeds.

[Accessor function]int marpa_r_terminals_expected (Marpa Recognizer r,
Marpa Symbol ID* buffer)

Returns a list of the ID’s of the symbols that are acceptable as tokens at the current
earleme. buffer is expected to be large enough to hold the result. This is guaranteed
to be the case if the buffer is large enough to hold an array of Marpa_Symbol_ID’s
whose length is greater than or equal to the number of symbols in the grammar.

Return value: On success, the number of Marpa_Symbol_ID’s in buffer, which is
always non-negative. On hard failure, −2.

54

[Accessor function]int marpa_r_terminal_is_expected (Marpa Recognizer r,
Marpa Symbol ID symbol_id)

On success, does the folloing:

• If symbol id is not the ID of a terminal symbol, returns 0.

• If symbol id is the ID of a terminal symbol, but that symbol is not expected at
the current earleme, returns 0.

• If symbol id is the ID of a terminal symbol, but that symbol is expected at the
current earleme, returns 1.

Hard fails if the symbol with ID symbol id does not exist.

Return value: On success, 0 or 1. On hard failure, −2.

55

18 Progress reports

It is an important property of the Marpa algorithm that the Earley sets are added one at a
time, so that before we have started the construction of the Earley set at n+1, we know the
full state of the parse at and before location n. Libmarpa’s progress reports allow access to
the Earley items in an Earley set.

To start a progress report, use the marpa_r_progress_report_start() command. For
each recognizer, only one progress report can be in use at any one time.

To step through the Earley items, use the marpa_r_progress_item() method.

[Mutator function]int marpa_r_progress_report_reset (Marpa Recognizer
r)

On success, sets the current vertex of the report traverser to the null vertex. For more
about the report traverser, including details about the current and null vertices, see
[marpa r progress report start], page 55.

This method is not usually needed. Its effect is to leave the traverser in the same state
as it is immediately after the marpa_r_progress_report_start() method. Loosely
speaking, it allows the traversal to “start over”.

Hard fails if the recognizer is not started, or if no progress report traverser is active.

Return value: On success, a non-negative value. On failure, −2.

[Mutator function]int marpa_r_progress_report_start (Marpa Recognizer
r, Marpa Earley Set ID set_id)

Creates a progress report traverser in recognizer r for the Earley set with ID set id.
A progress report traverser is a non-empty directed cycle graph whose vertices consist
of the following:

• For every Earley item, exactly one vertex that corresponds to that Earley item.
This vertex is called the progress report item or, when the meaning is clear, the
report item. In this method description, we will say the the number of report
items is n, and we will write ritem[i] for the i’th report item.

• A special vertex, called the null vertex, which does not correspond to any Earley
item. In this method description, we will write null for the null vertex.

There may be no Earley items in an Earley set, and therefore a progress report
traverser may contain no report items. A progress report traverser with no report
items is called a “trivial traverser”. A trivial traverser has exactly one edge: (null,
null).

The edges of a non-trivial traverser are

• (null, ritem[0]),

• (ritem[n-1], null), and

• for every 0 <= i < v-1, (ritem[i-1], ritem[i]).

This implies that every vertex has exactly one direct successor. The report items
are a subgraph, and this graph can be seen as inducing the sequence ritem[0] ...

ritem[n-1].

Chapter 18: Progress reports 56

When a progress report traverser is active, one vertex is distinguished as the current
vertex, which we will write as current. We call the direct successor of the current
vertex, the next vertex.

On success, does the following:

• If a progress report traverser was active in this recognizer before this method
call, it is destroyed and its memory is freed..

• Creates a new progress report traverser from the Earley items for the Earley set
with ID set id.

• Activates the newly created progress report traverser, setting the current vertex
to the null vertex. Intuitively, in a non-trivial traverser, this can be thought of
as positioning the traverser before the first report item.

• Returns n, the number of report items. n may be zero.

Hard fails if no Earley set with ID set id exists. The error code is MARPA_ERR_

INVALID_LOCATION if set id is negative. The error code is MARPA_ERR_NO_EARLEY_

SET_AT_LOCATION if set id is greater than the ID of the latest Earley set.

Return value: On success, the number of report items, which will always be non-
negative. On hard failure, −2.

[Mutator function]int marpa_r_progress_report_finish (Marpa Recognizer
r)

On success, destroys the progress report traverser for recognizer r, freeing its memory.
For details about the report traverser, see [marpa r progress report start], page 55.

It is often not necessary to call this method. marpa_r_progress_report_start()

destroys any previously existing progress report. And, when a recognizer is destroyed,
its progress report is destroyed as a side effect.

Hard fails if no progress report is active.

Return value: On success, a non-negative value. On hard failure, −2.

[Mutator function]Marpa_Rule_ID marpa_r_progress_item (
Marpa Recognizer r, int* position, Marpa Earley Set ID* origin)

This method allows access to the data for the next progress report item of a progress
report. For details about progress reports, see [marpa r progress report start],
page 55.

In the event of success:

• Advances the current vertex to the next vertex. More precisely, let c_before be
the vertex that is the current vertex immediately before the call to this method.
The report item traverser has exactly one edge such that c_before is its first
element. Let this edge be (c_before,c_after). This method sets the current
vertex to c_after. In this method description, we will write current as an alias
for c_after.

• current will be a report item vertex and therefore there will be an Earley item
corresponding to current.

• Writes the “cooked dot position” of the Earley item corresponding to current

to the location pointed to by the position argument.

57

• Writes the origin of the Earley item corresponding to current to the location
pointed to by the origin argument.

• Returns the rule ID of the Earley item corresponding to current.

The “cooked dot position” is

• the standard 0-based start-relative dot position, if the dotted rule is not a com-
pletion; and

• the end-relative dot position, where the last position is −1, if the dotted rule is
a completion.

Use of the cooked dot position allows an application to quickly determine if the dotted
rule is a completion. The cooked dot position is −1 iff the dotted rule is a completion.

In the event of soft failure:

• current is the null vertex.

• Sets the error code to MARPA_ERR_PROGRESS_REPORT_EXHAUSTED.

• Leaves unchanged the locations pointed to by the position and origin arguments.

• Returns −1.

In addition to watching for soft failure, the application can use the item count returned
by marpa_r_progress_report_start() to determine when the last item has been
seen.

Return value: On success, the rule ID of the progress report item, which is always
non-negative. On soft failure, −1. If either the position or the origin argument is
NULL, or on other hard failure, −2.

58

19 Bocage methods

19.1 Overview

To create a bocage, use the marpa_b_new() method.

When a bocage is no longer in use, its memory can be freed using the marpa_b_unref()
method.

19.2 Bocage data structure

A bocage is a data structure containing the parses found by processing the input according
to the grammar. It is related to a parse forest, but is in a form that is more compact and
easily traversable. “Bocage” is our term, and we discovered this structure independently,
but our work was preceded by Elizabeth Scott. And, unlike us, Prof. Scott did the all-
important work of documenting it and providing the appropriate mathematical apparatus.
See Section 25.1 [Elizabeth Scott’s SPPFs], page 91.

The bocage contains the data for the parse trees whose root is an instance of the start
symbol that begins at Earley set 0 and ends at the end of parse Earley set. Applications
usually use the Earley set at the current earleme as the “end of parse Earley set”, so that
the bocage is for parses of the entire input. But some applications may be interested in
parsing prefixes of the input, and these applications can choose other end of parse Earley
sets in their constructor. See [marpa b new], page 58.

19.3 Creating a new bocage

[Constructor function]Marpa_Bocage marpa_b_new (Marpa Recognizer r,
Marpa Earley Set ID earley_set_ID)

On success, the following is the case:

• If earley_set_ID is non-negative, creates a new bocage object, whose “end of
parse Earley set” is the Earley set with ID earley_set_ID.

• If earley_set_ID is −1, creates a new bocage object, whose “end of parse Earley
set” is the Earley set at the current earleme.

• The new bocage object has a reference count of 1.

• The reference count of its parent recognizer object, r, is increased by 1.

If earley set ID is −1 and there is no Earley set at the current earleme; or if ear-
ley set ID is non-negative and there is no parse ending at Earley set earley set ID,
marpa_b_new() hard fails with the error code MARPA_ERR_NO_PARSE.

Return value: On success, the new bocage object. On hard failure, NULL.

19.4 Reference counting

[Mutator function]Marpa_Bocage marpa_b_ref (Marpa Bocage b)
On success, increases the reference count by 1. This method is not needed by most
applications.

Return value: On success, b. On hard failure, NULL.

Chapter 19: Bocage methods 59

[Destructor function]void marpa_b_unref (Marpa Bocage b)
Decreases the reference count by 1, destroying b once the reference count reaches
zero. When b is destroyed, the reference count of its parent recognizer is decreased
by 1.

19.5 Accessors

[Accessor function]int marpa_b_ambiguity_metric (Marpa Bocage b)
On success, returns an ambiguity metric. If the parse is unambiguous, the metric is
1. If the parse is ambiguous, the metric is 2 or greater, and is otherwise unspecified.
See Section 28.4 [Better defined ambiguity metric], page 96.

Return value: On success, the ambiguity metric, which is always non-negative. On
hard failure, −2.

[Accessor function]int marpa_b_is_null (Marpa Bocage b)
Return value On success, a non-negative integer: 1 or greater if the bocage is for a
null parse, and 0 if the bocage is not for a null parse. On hard failure, −2.

60

20 Ordering methods

20.1 Overview

Before iterating through the parse trees in the bocage, the parse trees must be ordered. To
create an ordering, use the marpa_o_new() method.

When an ordering is no longer in use, its memory can be freed using the marpa_o_

unref() method.

20.2 Freezing the ordering

An ordering is frozen under the following circumstances:

• The first tree iterator is created using the ordering. See [marpa t new], page 62.

• marpa_o_ambiguity_metric() is successfully called. See [marpa o ambiguity metric],
page 60.

• marpa_o_rank() is successfully called. See [marpa o rank], page 61.

A frozen ordering cannot be changed. There is no way to “unfreeze” an ordering.

20.3 Creating an ordering

[Constructor function]Marpa_Order marpa_o_new (Marpa Bocage b)
On success, does the following:

• Creates a new ordering object, with a reference count of 1.

• Increases the reference count of its parent bocage object, b, by 1.

Return value: On success, the new ordering object. On hard failure, NULL.

20.4 Reference counting

[Mutator function]Marpa_Order marpa_o_ref (Marpa Order o)
On success, increases the reference count by 1. Not needed by most applications.

Return value: On success, o. On hard failure, NULL.

[Destructor function]void marpa_o_unref (Marpa Order o)
Decreases the reference count by 1, destroying o once the reference count reaches zero.

20.5 Accessors

[Accessor function]int marpa_o_ambiguity_metric (Marpa Order o)
On success, returns an ambiguity metric. If the parse is unambiguous, the metric is
1. If the parse is ambiguous, the metric is 2 or greater, and is otherwise unspecified.
See Section 28.4 [Better defined ambiguity metric], page 96.

If “high rank only” is in effect, this ambiguity metric may differ from that returned
by marpa_b_ambiguity_metric(). In particular, a “high rank only” ordering may

Chapter 20: Ordering methods 61

be unambiguous even if its base bocage is ambiguous. But note also, because mul-
tiple parses choices may have the same rank, a “high rank only” ordering may be
ambiguous.

If the ordering is not already frozen, it will be frozen on return from marpa_o_

ambiguity_metric(). For our purposes, marpa_o_ambiguity_metric() is consid-
ered an “accessor”, because it treats its ordering as if it was frozen before the call to
marpa_o_ambiguity_metric().

Return value: On success, the ambiguity metric, which is non-negative. On hard
failure, −2.

[Accessor function]int marpa_o_is_null (Marpa Order o)
Return value: On success: A number greater than or equal to 1 if the ordering is for
a null parse; otherwise, 0. On hard failure, −2.

20.6 Non-default ordering

[Accessor function]int marpa_o_high_rank_only (Marpa Order o)
On success, returns, the “high rank only” flag of ordering o. See
[marpa o high rank only set], page 61.

Return value: On success, the value of the “high rank only” flag, which is a boolean.
On hard failure, −2.

[Mutator function]int marpa_o_high_rank_only_set (Marpa Order o, int
flag)

Sets the “high rank only” flag of ordering o. A flag of 1 indicates that, when ranking,
all choices should be discarded except those of the highest rank. A flag of 0 indicates
that no choices should be discarded on the basis of their rank.

A value of 1 is the default. The value of the “high rank only” flag has no effect until
ranking is turned on using the marpa_o_rank() method.

Hards fails if the ordering is frozen.

Return value: On success, a boolean which is the value of the “high rank only” flag
after the call. On hard failure, −2.

[Mutator function]int marpa_o_rank (Marpa Order o)
By default, the ordering of parse trees is arbitrary. On success, the following happens:

• The ordering is ranked according to the ranks of symbols and rules, the “null
ranks high” flags of the rules, and the “high rank only” flag of the ordering.

• The ordering is frozen. See Section 20.2 [Freezing the ordering], page 60.

Return value: On success, a non-negative value. On hard failure, −2.

62

21 Tree methods

21.1 Overview

Once the bocage has an ordering, the parses trees can be iterated. Marpa’s parse tree
iterators iterate the parse trees contained in a bocage object. In Libmarpa, “parse tree
iterators” are usually just called trees.

To create a tree, use the marpa_t_new() method. A newly created tree iterator is
positioned before the first parse tree.

When a tree iterator is no longer in use, its memory can be freed using the marpa_t_

unref() method.

To position a newly created tree iterator at the first parse tree, use the marpa_t_next()
method. Once the tree iterator is positioned at a parse tree, the same marpa_t_next()

method is used to position it to the next parse tree.

21.2 Creating a new tree iterator

[Constructor function]Marpa_Tree marpa_t_new (Marpa Order o)
On success, does the following:

• Creates a new tree iterator, with a reference count of 1.

• Increases the reference count of its parent ordering object, o, by 1.

• Positions the new tree iterator before the first parse tree.

Return value: On success, a newly created tree. On hard failure, NULL.

21.3 Reference counting

[Mutator function]Marpa_Tree marpa_t_ref (Marpa Tree t)
On success, increases the reference count by 1. Not needed by most applications.

Return value: On success, t. On hard failure, NULL.

[Destructor function]void marpa_t_unref (Marpa Tree t)
Decreases the reference count by 1, destroying t once the reference count reaches zero.

21.4 Iterating through the trees

[Mutator function]int marpa_t_next (Marpa Tree t)
On success, positions t at the next parse tree in the iteration.

Tree iterators are initialized to the position before the first parse tree, so this method
must be called before creating a valuator from a tree.

If a tree iterator is positioned after the last parse, the tree is said to be “exhausted”.
A tree iterator for a bocage with no parse trees is considered to be “exhausted” when
initialized.

If the tree iterator is exhausted, soft fails, and sets the error code to MARPA_ERR_

TREE_EXHAUSTED. See Section 28.6 [Orthogonal treatment of soft failures], page 96.

Chapter 21: Tree methods 63

It the tree iterator is paused, hard fails, and sets the error code to MARPA_ERR_TREE_

PAUSED. This hard failure is fully recoverable. See [marpa v new], page 66.

Return value: On success, a non-negative value. On soft failure, −1. On hard failure,
−2. The hard failure with error code MARPA_ERR_TREE_PAUSED is fully recoverable.

[Accessor function]int marpa_t_parse_count (Marpa Tree t)
Returns the count of the number of parse trees traversed so far. The count includes
the current iteration of the tree. A value of 0 indicates that the tree iterator is at its
initialized position, before the first parse tree.

Return value: The number of parses traversed so far. Always succeeds.

64

22 Value methods

22.1 Overview

The archetypal application needs a value object (or valuator) to produce the value of the
parse tree. To create a valuator, use the marpa_v_new() method.

The application is required to maintain the stack, and the application is also required
to implement most of the semantics, including the evaluation of rules. Libmarpa’s valuator
provides instructions to the application on how to manipulate the stack. To iterate through
this series of instructions, use the marpa_v_step() method.

When successful, marpa_v_step() returns the type of step. Most step types have values
associated with them. See Section 22.9 [Basic step accessors], page 68, see Section 22.2
[How to use the valuator], page 64, and see Section 22.7 [Stepping through the valuator],
page 67.

When a valuator is no longer in use, its memory can be freed using the marpa_v_unref()
method.

22.2 How to use the valuator

Libmarpa’s valuator provides the application with “steps”, which are instructions for stack
manipulation. Libmarpa itself does not maintain a stack. This leaves the upper layer in
total control of the stack and the values that are placed on it.

As example may make this clearer. Suppose the evalution is at a place in the parse tree
where an addition is being performed. Libmarpa does not know that the operation is an
addition. It will tell the application that rule number R is to be applied to the arguments
at stack locations N and N+1, and that the result is to placed in stack location N.

In this system the application keeps track of the semantics for all rules, so it looks up
rule R and determines that it is an addition. The application can do this by using R as
an index into an array of callbacks, or by any other method it chooses. Let’s assume a
callback implements the semantics for rule R. Libmarpa has told the application that two
arguments are available for this operation, and that they are at locations N and N+1 in
the stack. They might be the numbers 42 and 711. So the callback is called with its two
arguments, and produces a return value, let’s say, 753. Libmarpa has told the application
that the result belongs at location N in the stack, so the application writes 753 to location
N.

Since Libmarpa knows nothing about the semantics, the operation for rule R could be
string concatenation instead of addition. Or, if it is addition, it could allow for its arguments
to be floating point or complex numbers. Since the application maintains the stack, it is
up to the application whether the stack contains integers, strings, complex numbers, or
polymorphic objects that are capable of being any of these things and more.

22.3 Advantages of step-driven valuation

Step-driven valuation hides Libmarpa’s grammar rewrites from the application, and is quite
efficient. Libmarpa knows which rules are sequences. Libmarpa optimizes stack manipu-
lations based on this knowledge. Long sequences are very common in practical grammars.

Chapter 22: Value methods 65

For these, the stack manipulations suggested by Libmarpa’s step-driven valuator will be
significantly faster than the traditional stack evaluation algorithm.

Step-driven evalution has another advantage. To illustrate this, consider what is a very
common case: The semantics are implemented in a higher-level language, using callbacks.
If Libmarpa did not use step-driven valuation, it would need to provide for this case. But
for generality, Libmarpa would have to deal in C callbacks. Therefore, a middle layer would
have to create C language wrappers for the callbacks in the higher level language.

The implementation that results is this: The higher level language would need to wrap
each callback in C. When calling Libmarpa, it would pass the wrappered callback. Libmarpa
would then need to call the C language “wrappered” callback. Next, the wrapper would
call the higher-level language callback. The return value, which would be data native to the
higher-level language, would need to be passed to the C language wrapper, which will need
to make arrangements for it to be based back to the higher-level language when appropriate.

A setup like this is not terribly efficient. And exception handling across language bound-
aries would be very tricky.

But neither of these is the worst problem. The worst problem is that callbacks are hard
to debug. Wrappered callbacks are even worse. Calls made across language boundaries are
harder yet to debug. In the system described above, by the time a return value is finally
consumed, a language boundary will have been crossed four times. The ability to debug
can make the difference between code that works and code that does not work.

So, while step-driven valuation seems a roundabout approach, it is simpler and more
direct than the likely alternatives. And there is something to be said for pushing semantics
up to the higher levels — they can be expected to know more about it.

These advantages of step-driven valuation are strictly in the context of a low-level in-
terface. We are under no illusion that direct use of Libmarpa’s valuator will be found
satisfactory by most Libmarpa users, even those using the C language. Libmarpa’s valua-
tor is intended to be used via an upper layer, one that does know about semantics.

22.4 Maintaining the stack

This section discusses in detail the requirements for maintaining the stack. In some cases,
such as implementation using a Perl array, fulfilling these requirements is trivial. Perl auto-
extends its arrays, and initializes the element values, on every read or write. For the C
programmer, things are not quite so easy.

In this section, we will assume a C89 standard-conformant C application. This assump-
tion is convenient on two grounds. First, this will be the intended use for many readers.
Second, standard-conformant C89 is a “worst case”. Any issue faced by a programmer of
another environment is likely to also be one that must be solved by the C programmer.

Libmarpa often optimizes away unnecessary stack writes to stack locations. When it
does so, it will not necessarily optimize away all reads to that stack location. This means
that a location’s first access, as suggested by the Libmarpa step instructions, may be a read.
This possibility requires a special awareness from the C programmer. See Section 22.4.1
[Sizing the stack], page 66.

Chapter 22: Value methods 66

22.4.1 Sizing the stack

In our discussion of the stack handler for the valuator, we will treat the stack as a 0-based
array. If an implementation applies Libmarpa’s step instructions literally, using a physical
stack, it must make sure that all locations in the stack are initialized. The range of locations
that must be initialized is from stack location 0 to the “end of stack” location. The result
of the parse tree is always stored in stack location 0, so that a stack location 0 is always
needed. Therefore, the end of stack location is always a specified value, and greater than
or equal to 0. The end of stack location must also be greater than or equal to

• marpa_v_result(v) for every MARPA_STEP_TOKEN step,

• marpa_v_result(v) for every MARPA_STEP_NULLING_SYMBOL step, and

• marpa_v_arg_n(v) for every MARPA_STEP_RULE step.

In practice, an application will often extend the stack as it iterates through the steps,
initializing the new stack locations as they are created.

Note that our requirement is not merely that the stack locations exist and be writable,
but that they be initialized. This is necessary for C89 conformance. Because of write
optimizations in our implementation, the first access to any stack location may be a read.
C89 allows trap values, so that a read of an uninitialized location could result in undefined
behavior. See Section 25.5 [Trap representations], page 92.

22.5 Creating a new valuator

[Constructor function]Marpa_Value marpa_v_new (Marpa Tree t)
On success, does the following:

• Creates a new valuator. The parent object of the new valuator will be the tree
iterator t.

• Sets the reference count of the new valuator to 1.

• Sets new valuator to active. A valuator is always either active or inactive.

• Increases the reference count of t by 1.

• “Pauses” the parent tree iterator.

As long as a parent tree iterator is paused marpa_t_next() will not succeed, and
therefore the parent tree iterator cannot move on to a new parse tree. Many valuators
can share the same parent parse tree. A tree iterator is “unpaused” when all of the
valuators of that tree iterator are destroyed.

Return value: On success, the newly created valuator. On hard failure, NULL.

22.6 Reference counting

[Mutator function]Marpa_Value marpa_v_ref (Marpa Value v)
On success, increases the reference count by 1. Not needed by most applications.

Return value: On success, v. On hard failure, NULL.

[Destructor function]void marpa_v_unref (Marpa Value v)
Decreases the reference count by 1, destroying v once the reference count reaches
zero.

Chapter 22: Value methods 67

22.7 Stepping through the valuator

[Mutator function]Marpa_Step_Type marpa_v_step (Marpa Value v)
Steps through the tree in depth-first, left-to-right order. On success, does the follow-
ing:

• Takes the valuator to the next step in its life cycle.

• Sets and returns the step type, which is a non-negative integer. The C type for
a step type is Marpa_Step_Type.

The step type tells the application how it expected to act on the step. See Section 22.8
[Valuator step types], page 67. Steps are often referred to along with their step type
so that, for example, we say “a MARPA_STEP_RULE step” to refer to a step whose step
type is MARPA_STEP_RULE.

When the iteration through the steps is finished, the step type is MARPA_STEP_

INACTIVE. At this point, we say that the valuator is inactive. Once a valuator
becomes inactive, it stays inactive.

Return value: On success, a Marpa_Step_Type, which always be a non-negative in-
teger. On hard failure, −2.

22.8 Valuator step types

[Accessor macro]Marpa_Step_Type MARPA_STEP_RULE
MARPA STEP RULE is the step type for for a rule node. The application should
perform its equivalent of rule execution.

• The “child values” for this step will be in the stack locations from marpa_v_arg_

0(v) to marpa_v_arg_n(v).

• The rule for this step will be marpa_v_rule(v).

• The result of this step should be written to stack location marpa_v_result(v).
Typically, the result of this step is determined by executing the semantics for its
rule on its child values.

• The stack location of marpa_v_result(v) is guaranteed to be equal to marpa_

v_arg_0(v).

[Accessor macro]Marpa_Step_Type MARPA_STEP_TOKEN
MARPA STEP TOKEN is the step type for a token node. The application’s equiv-
alent of the evaluation of the semantics of a non-null token should be performed.

• The application’s value for the token whose ID is at stack location marpa_v_

token(v).

• Libmarpa will already have a“token value” for the token in this step, as was
set by the marpa_r_alternative() method. See [marpa r alternative], page 48.
Libmarpa’s “token value” will be in stack location marpa_v_token_value(v).

• The result of the applications’s evaluation of the semantics of this token should be
placed in stack location marpa_v_result(v). Often, an application will simply
copy Libmarpa’s “token value” to stack location marpa_v_result(v).

Chapter 22: Value methods 68

[Accessor macro]Marpa_Step_Type MARPA_STEP_NULLING_SYMBOL
MARPA STEP RULE is the step type for for a nulled node. The application’s equiv-
alent of the evaluation of the semantics of a nulling token should be performed.

• The ID of the nulling symbol is at stack location marpa_v_symbol(v).

• The application’s value for this nulling symbol instance should be placed in stack
location marpa_v_result(v). Often, an application will assign a fixed value
to each nullable symbol, and will simply copy this fixed value to stack location
marpa_v_result(v).

The use of the word "nulling" in the step type name MARPA_STEP_NULLING_SYMBOL

is problematic: While the node must be zero-length (nulled or nulling), the node’s
symbol need not be nulling: it may be nullable. See Section 28.1 [Nulling versus
nulled], page 96.

[Accessor macro]Marpa_Step_Type MARPA_STEP_INACTIVE
When this is the step type, the valuator has gone through all of its steps and is
now inactive. The value of the parse tree will be in stack location 0. Because of
optimizations, it is possible for valuator to immediately became inactive — MARPA_

STEP_INACTIVE could be both the first and last step. Once a valuator becomes
inactive, it stays inactive.

[Accessor macro]Marpa_Step_Type MARPA_STEP_INITIAL
The valuator is new and has yet to go through any steps.

[Accessor macro]Marpa_Step_Type MARPA_STEP_INTERNAL1
[Accessor macro]Marpa_Step_Type MARPA_STEP_INTERNAL2
[Accessor macro]Marpa_Step_Type MARPA_STEP_TRACE

These step types are reserved for internal purposes.

22.9 Basic step accessors

This section describes the accessors that are basic to stack manipulation.

[Accessor macro]int marpa_v_arg_0 (Marpa Value v)
Return value: For a MARPA_STEP_RULE step, the stack location where the value of
first child can be found. For other step types, an unspecified value. Always succeeds.

[Accessor macro]int marpa_v_arg_n (Marpa Value v)
Return value: For a MARPA_STEP_RULE step, the stack location where the value of the
last child can be found. For other step types, an unspecified value. Always succeeds.

[Accessor macro]int marpa_v_result (Marpa Value v)
Return value: For MARPA_STEP_RULE, MARPA_STEP_TOKEN, and MARPA_STEP_

NULLING_SYMBOL steps, the stack location where the result of the semantics should
be placed. For other step types, an unspecified value. Always succeeds.

[Accessor macro]Marpa_Rule_ID marpa_v_rule (Marpa Value v)
Return value: For the MARPA_STEP_RULE step, the ID of the rule. For other step
types, an unspecified value. Always succeeds.

Chapter 22: Value methods 69

[Accessor macro]Marpa_Step_Type marpa_v_step_type (Marpa Value v)
This macro is usually not needed since its return value is the same as the value that
marpa_v_step() returns on success.

Return value: The current step type: MARPA_STEP_TOKEN, MARPA_STEP_RULE, etc.
Always succeeds.

[Accessor macro]Marpa_Symbol_ID marpa_v_symbol (Marpa Value v)
Return value: For the MARPA_STEP_NULLING_SYMBOL step, the ID of the symbol. The
value returned is the same as that returned by the marpa_v_token() macro. For
other step types, an unspecified value. Always succeeds.

[Accessor macro]Marpa_Symbol_ID marpa_v_token (Marpa Value v)
Return value: For the MARPA_STEP_TOKEN step, the ID of the token. The value
returned is the same as that returned by the marpa_v_symbol() macro. For other
step types, an unspecified value. Always succeeds.

[Accessor macro]int marpa_v_token_value (Marpa Value v)
Return value: For the MARPA_STEP_TOKEN step, the “token value” that was assigned
to the token by the marpa_r_alternative() method. See [marpa r alternative],
page 48. For other step types, an unspecified value. Always succeeds.

22.10 Step location accessors

This section describes step accessors that are not basic to stack manipulation. They provide
Earley set location information about the parse tree.

A step’s location in terms of Earley sets is called its ES location. Every ES location is
the ID of an Earley set. ES location is only relevant for steps that correspond to tree nodes.

Every tree node has both a start ES location and an end ES location. The start ES
location is the first ES location of that parse node.

The end ES location of a leaf is the ES location where the next leaf symbol in the fringe
of the current parse tree would start. Typically, this is the location where a leaf node
actually starts but, toward the end of a parse, there may not be an actual next leaf node.

The start ES location of a MARPA RULE STEP is the start ES location of its first
child node in the current parse tree. The end ES location of a MARPA RULE STEP is
the end ES location of its last child node in the current parse tree.

[Accessor macro]Marpa_Earley_Set_ID marpa_v_es_id (Marpa Value v)
Return value: If the current step type is MARPA STEP RULE,
MARPA STEP TOKEN, or MARPA STEP NULLING SYMBOL, the re-
turn value is the end ES location of the parse node. If the current step type is
anything else, or if the valuator is inactive, the return value is unspecified.

[Accessor macro]Marpa_Earley_Set_ID marpa_v_rule_start_es_id
(Marpa Value v)

Return value: If the current step type is MARPA STEP RULE, the start ES location
of the rule node. If the current step type is anything else, or if the valuator is inactive,
the return value is unspecified.

70

[Accessor macro]Marpa_Earley_Set_ID marpa_v_token_start_es_id
(Marpa Value v)

Return value: If the current step type is MARPA STEP TOKEN or
MARPA STEP NULLING SYMBOL, the start ES location of the leaf node. If the
current step type is anything else, or if the valuator is inactive, the return value is
unspecified.

For every parse node of the current parse tree, the Earley set length (ES length) of the
node is the end ES location, less the start ES location. The ES length of a nulled node is
always 0.

If v is a valuator whose current step type is MARPA STEP NULLING SYMBOL, it is
always the case that

marpa_v_token_start_es_id(v) == marpa_v_es_id(v)

If v is a valuator whose current step type is MARPA STEP RULE or
MARPA STEP TOKEN, it is always the case that

marpa_v_token_start_es_id(v) <= marpa_v_es_id(v)

For the following examples,

• let Null be a nulling symbol,

• let Tok be a non-nullable symbol, and

• let the notation Sym@m-n indicate that the symbol Sym has ES start location m and ES
end location n.

Ordered from left to right, a possible fringe is

Null@0-0, Tok@0-1, Null@1-1, Tok@1-2, Null@2-2

Another example is

Null@0-0, Null@0-0, Tok@0-1, Null@1-1, Null@1-1, Tok@1-2,

Null@2-2, Null@2-2

In this second example note that when a nulled leaf immediately follows another nulled
leaf, both leaves has the same start ES location and the same end ES location. This makes
sense, because nulled symbol instances do not advance the current ES location, but it also
implies that the ES locations and LHS symbol cannot be used to uniquely identify a parse
node.

71

23 Events

23.1 Overview

This chapter discusses Libmarpa’s events. It contains descriptions of both grammar and
recognizer methods.

A method is event-generating iff it can add events to the event queue. The
event-generating methods are marpa_g_precompute(), marpa_r_earleme_complete(),
and marpa_r_start_input(). The event-generating methods always clear all previous
events so that, on return from an event-generating method, the only events in the event
queue will be the events generated by that method.

A Libmarpa method or macro is event-safe iff it does not change the events queue. All
Libmarpa accessors are event-safe.

Regardless of the event-safety of the methods calls between event generation and event
access, it is good practice to access events as soon as reasonable after the method that
generated them. Note that events are kept in the base grammar, so that multiple recognizers
using the same base grammar overwrite each other’s events.

To find out how many events are in the event queue, use the marpa_g_event_count()

method.

To access specific events, use the marpa_g_event() and marpa_g_event_value() meth-
ods.

23.2 Basic event accessors

[Accessor function]Marpa_Event_Type marpa_g_event (Marpa Grammar g,
Marpa Event* event, int ix)

On success,

• the type of the ix’th event is returned, and

• the data for the ix’th event is placed in the location pointed to by event.

Event indexes are in sequence. Valid events will be in the range from 0 to n, where
n is one less than the event count. The event count can be read using the marpa_g_

event_count() method.

Hard fails if there is no ix’th event, or if ix is negative. On failure, the locations
pointed to by event are not changed.

Return value: On success, the type of event ix, which is always non-negative. On
hard failure, −2.

[Accessor function]int marpa_g_event_count (Marpa Grammar g)
Return value: On success, the number of events, which is always non-negative. On
hard failure, −2.

[Accessor macro]int marpa_g_event_value (Marpa Event* event)
Returns the “value” of the event. The semantics of the value varies according to the
type of the event, and is described in the section on event codes. See Section 23.7
[Event codes], page 78.

Return value: The “value” of the event. Always succeeds.

Chapter 23: Events 72

23.3 Completion events

Libmarpa can be set up to generate a MARPA_EVENT_SYMBOL_COMPLETED event whenever the
symbol is completed. A symbol is said to be completed when a non-nulling rule with that
symbol on its LHS is completed.

For a completion event to be generated, the symbol must be marked, and the event must
be activated.

To mark a symbol as a completion event symbol use the marpa_g_symbol_is_

completion_event_set() method. The event will be activated by default.

To activate or deactivate a completion symbol event use the marpa_r_completion_

symbol_activate() method.

[Mutator function]int marpa_g_completion_symbol_activate (
Marpa Grammar g, Marpa Symbol ID sym_id, int reactivate)

Allows the user to deactivate and reactivate symbol completion events in the grammar.
On success, does the following:

• If reactivate is zero, deactivates the event in the grammar.

• If reactivate is one, activates the event in the grammar.

The activation status of a completion event in the grammar becomes the initial acti-
vation status of a completion event in all of its child recognizers.

This method is seldom needed. When a symbol is marked as a com-
pletion event symbol in the grammar, it is activated by default. See
[marpa g symbol is completion event set], page 73. And a completion event
can be deactivated and reactivated in the recognizer using the marpa_r_

completion_symbol_activate method. See [marpa r completion symbol activate],
page 72.

Hard fails if the sym id is not marked as a completion event symbol in the grammar,
or if the grammar has not been precomputed.

Return value: On success, the value of reactivate, which is a boolean. On hard failure,
−2.

[Mutator function]int marpa_r_completion_symbol_activate (
Marpa Recognizer r, Marpa Symbol ID sym_id, int reactivate)

Allows the user to deactivate and reactivate symbol completion events in the recog-
nizer. On success, does the following:

• If reactivate is zero, deactivates the event in the recognizer.

• If reactivate is one, activates the event in the recognizer.

When a recognizer is created, the activation status of its symbol completion event
for sym id is initialized to the activation status of the symbol completion event for
sym id in the base grammar.

Hard fails if sym id was not marked for completion events in the base grammar.

Return value: On success, the value of reactivate, which is a boolean. On hard failure,
−2.

Chapter 23: Events 73

[Accessor function]int marpa_g_symbol_is_completion_event (
Marpa Grammar g, Marpa Symbol ID sym_id)

On success, returns a boolean which is 1 iff sym id is marked as a
completion event symbol in g. For more about completion events, see
[marpa g symbol is completion event set], page 73.

On soft failure, sym id is well-formed, but there is no such symbol.

Hard fails if g is precomputed.

Return value: On success, a boolean . On soft failure, −1. On hard failure, −2.

[Mutator function]int marpa_g_symbol_is_completion_event_set (
Marpa Grammar g, Marpa Symbol ID sym_id, int value)

Libmarpa can be set up to generate an MARPA_EVENT_SYMBOL_COMPLETED event when-
ever the symbol is completed. A symbol is said to be completed when a non-nulling
rule with that symbol on its LHS is completed.

For completion events for sym id to occur, sym id must be marked as a completion
event symbol, and the completion event for sym id must be activated in the
recognizer. Event activation also occurs in the grammar, and the recognizer event
activation status for sym id is initialized from the grammar event activation
status for sym id. See [marpa g completion symbol activate], page 72, and see
[marpa r completion symbol activate], page 72.

On success, if value is 1,

• marks symbol sym id as a completion event symbol,

• activates the completion event for sym id in g, and

• returns 1.

On success, if value is 0,

• unmarks symbol sym id as a completion event symbol,

• deactivates the completion event for sym id in g, and

• returns 0.

Nulled rules and symbols will never cause completion events. Nullable symbols may
be marked as completion event symbols, but this will have an effect only when the
symbol is not nulled. Nulling symbols may be marked as completion event symbols,
but no completion events will ever be generated for a nulling symbol. Note that this
implies that no completion event will ever be generated at earleme 0, the start of
parsing.

If sym id is well-formed, but there is no such symbol, soft fails.

Hards fails if the grammar is precomputed.

Return value: On success, value, which is a boolean. On soft failure, −1. On hard
failure, −2.

Chapter 23: Events 74

23.4 Symbol nulled events

Libmarpa can set up to generate an MARPA_EVENT_SYMBOL_NULLED event whenever the sym-
bol is nulled. A symbol is said to be nulled when a zero length instance of that symbol is
recognized.

For a nulled event to be generated, the symbol must be marked, and the event must be
activated.

To mark a symbol as a nulled event symbol use the marpa_g_symbol_is_nulled_event_
set() method. The event will be activated by default.

To activate or deactivate a nulled symbol event use the marpa_r_nulled_symbol_

activate() method.

[Mutator function]int marpa_g_nulled_symbol_activate (Marpa Grammar
g, Marpa Symbol ID sym_id, int reactivate)

Allows the user to deactivate and reactivate symbol nulled events in the grammar.
On success, does the following:

• If reactivate is zero, deactivates the event in the grammar.

• If reactivate is one, activates the event in the grammar.

The activation status of a nulled event in the grammar becomes the initial activation
status of a nulled event in all of its child recognizers.

This method is seldom needed. When a symbol is marked as a nulled event symbol in
the grammar, it is activated by default. See [marpa g symbol is nulled event set],
page 75. And a nulled event can be deactivated and reactivated in the
recognizer using the marpa_r_nulled_symbol_activate method. See
[marpa r nulled symbol activate], page 74.

Hard fails if the sym id is not marked as a nulled event symbol in the grammar, or if
the grammar has not been precomputed.

Return value: On success, the value of reactivate, which is a boolean. On hard failure,
−2.

[Mutator function]int marpa_r_nulled_symbol_activate (Marpa Recognizer
r, Marpa Symbol ID sym_id, int boolean)

Allows the user to deactivate and reactivate symbol nulled events in the recognizer.
On success, does the following:

• If reactivate is zero, deactivates the event in the recognizer.

• If reactivate is one, activates the event in the recognizer.

When a recognizer is created, the activation status of its symbol nulled event for
sym id is initialized to the activation status of the symbol nulled event for sym id in
the base grammar.

Hard fails if sym id was not marked for nulled events in the base grammar.

Return value: On success, the value of reactivate, which is a boolean. On hard failure,
−2.

Chapter 23: Events 75

[Accessor function]int marpa_g_symbol_is_nulled_event (Marpa Grammar
g, Marpa Symbol ID sym_id)

On success, returns a boolean which is 1 iff sym id is marked as a nulled event
symbol in g. For more about nulled events, see [marpa g symbol is nulled event set],
page 75.

On soft failure, sym id is well-formed, but there is no such symbol.

Hard fails if g is precomputed.

Return value: On success, a boolean . On soft failure, −1. On hard failure, −2.

[Mutator function]int marpa_g_symbol_is_nulled_event_set (
Marpa Grammar g, Marpa Symbol ID sym_id, int value)

Libmarpa can set up to generate an MARPA_EVENT_SYMBOL_NULLED event whenever
the symbol is nulled. A symbol is said to be nulled when a zero length instance of
that symbol is recognized.

For nulled events for sym id to occur, sym id must be marked as a nulled
event symbol, and the nulled event for sym id must be activated in the
recognizer. Event activation also occurs in the grammar, and the recognizer event
activation status for sym id is initialized from the grammar event activation
status for sym id. See [marpa g nulled symbol activate], page 74, and see
[marpa r nulled symbol activate], page 74.

On success, if value is 1,

• marks symbol sym id as a nulled event symbol,

• activates the nulled event for sym id in g, and

• returns 1.

On success, if value is 0,

• unmarks symbol sym id as a nulled event symbol,

• deactivates the nulled event for sym id in g, and

• returns 0.

A symbol instance can never generate both a nulled and a prediction event at the same
location. Also, a symbol instance can never generate both a nulled and a completion
event at the same location. (As a reminder, a symbol instance is a symbol starting
at a specific location in the input, and with a specific length.) This is because the
symbol instance for a nulled event must be zero length, and the symbol instance for
prediction and completion events can never be zero length.

However, prediction and nulled events for the same symbol can trigger at the same
location. This is because The same location can be the location of a nulled instance
of a symbol, and the start of an non-nulled instance of the same symbol.

Also, completion and nulled events for the same symbol can trigger at the same
location. This is because the same location can be the location of a nulled instance
of a symbol, and the end of one or more non-nulled instances of the same symbol.

The marpa_g_symbol_is_nulled_event_set() method will mark a symbol as a
nulled event symbol, even if the symbol is non-nullable. This is convenient, for ex-
ample, for automatically generated grammars. Applications that wish to treat it as a

Chapter 23: Events 76

failure if there is an attempt to mark a non-nullable symbol as a nulled event symbol,
can check for this case using the marpa_g_symbol_is_nullable() method.

If sym id is well-formed, but there is no such symbol, soft fails.

Hards fails if the grammar is precomputed.

Return value: On success, value, which is a boolean. On soft failure, −1. On hard
failure, −2.

23.5 Prediction events

Libmarpa can be set up to generate a MARPA_EVENT_SYMBOL_PREDICTED event when a non-
nulled symbol is predicted. A non-nulled symbol is said to be predicted when a instance of
it is acceptable at the current earleme according to the grammar. Nulled symbols do not
generate predictions.

For a prediction event to be generated, the symbol must be marked, and the event must
be activated.

To mark a symbol as a prediction event symbol use the marpa_g_symbol_is_

prediction_event_set() method. The event will be activated by default.

To activate or deactivate a prediction symbol event use the marpa_r_prediction_

symbol_activate() method.

[Mutator function]int marpa_g_prediction_symbol_activate (
Marpa Grammar g, Marpa Symbol ID sym_id, int reactivate)

Allows the user to deactivate and reactivate symbol prediction events in the grammar.
On success, does the following:

• If reactivate is zero, deactivates the event in the grammar.

• If reactivate is one, activates the event in the grammar.

The activation status of a prediction event in the grammar becomes the initial acti-
vation status of a prediction event in all of its child recognizers.

This method is seldom needed. When a symbol is marked as a pre-
diction event symbol in the grammar, it is activated by default. See
[marpa g symbol is prediction event set], page 77. And a prediction event
can be deactivated and reactivated in the recognizer using the marpa_r_

prediction_symbol_activate method. See [marpa r prediction symbol activate],
page 76.

Hard fails if the sym id is not marked as a prediction event symbol in the grammar,
or if the grammar has not been precomputed.

Return value: On success, the value of reactivate, which is a boolean. On hard failure,
−2.

[Mutator function]int marpa_r_prediction_symbol_activate (
Marpa Recognizer r, Marpa Symbol ID sym_id, int boolean)

Allows the user to deactivate and reactivate symbol prediction events in the recog-
nizer. On success, does the following:

• If reactivate is zero, deactivates the event in the recognizer.

• If reactivate is one, activates the event in the recognizer.

Chapter 23: Events 77

When a recognizer is created, the activation status of its symbol prediction event for
sym id is initialized to the activation status of the symbol prediction event for sym id
in the base grammar.

Hard fails if sym id was not marked for prediction events in the base grammar.

Return value: On success, the value of reactivate, which is a boolean. On hard failure,
−2.

[Accessor function]int marpa_g_symbol_is_prediction_event (
Marpa Grammar g, Marpa Symbol ID sym_id)

On success, returns a boolean which is 1 iff sym id is marked as a
prediction event symbol in g. For more about prediction events, see
[marpa g symbol is prediction event set], page 77.

On soft failure, sym id is well-formed, but there is no such symbol.

Hard fails if g is precomputed.

Return value: On success, a boolean . On soft failure, −1. On hard failure, −2.

[Mutator function]int marpa_g_symbol_is_prediction_event_set (
Marpa Grammar g, Marpa Symbol ID sym_id, int value)

Libmarpa can be set up to generate a MARPA_EVENT_SYMBOL_PREDICTED event when
a non-nulled symbol is predicted. A non-nulled symbol is said to be predicted when a
instance of it is acceptable at the current earleme according to the grammar. Nulled
symbols do not generate predictions.

For prediction events for sym id to occur, sym id must be marked as a prediction
event symbol, and the prediction event for sym id must be activated in the
recognizer. Event activation also occurs in the grammar, and the recognizer event
activation status for sym id is initialized from the grammar event activation
status for sym id. See [marpa g prediction symbol activate], page 76, and see
[marpa r prediction symbol activate], page 76.

On success, if value is 1,

• marks symbol sym id as a prediction event symbol,

• activates the prediction event for sym id in g, and

• returns 1.

On success, if value is 0,

• unmarks symbol sym id as a prediction event symbol,

• deactivates the prediction event for sym id in g, and

• returns 0.

If sym id is well-formed, but there is no such symbol, soft fails.

Hards fails if the grammar is precomputed.

Return value: On success, value, which is a boolean. On soft failure, −1. On hard
failure, −2.

Chapter 23: Events 78

23.6 Symbol expected events

[Mutator function]int marpa_r_expected_symbol_event_set (
Marpa Recognizer r, Marpa Symbol ID symbol_id, int value)

Libmarpa can be set up to generate an expected symbol event (MARPA_EVENT_SYMBOL_
EXPECTED) when the symbol with ID symbol id is acceptable as a terminal at the
current earleme. Note that the symbol expected event is only generated if the symbol
with ID symbol id is acceptable as terminal. If the symbol with ID symbol id is
expected at the current earleme as a non-terminal, but is not acceptable as a terminal,
an expected symbol event will not be triggered at the current earleme.

On success, if value is 1,

• activates the symbol expected event for the symbol with ID symbol id in recog-
nizer r; and

• returns 1.

On success, if value is 0,

• deactivates the symbol expected event for the symbol with ID symbol id in rec-
ognizer r; and

• returns 0.

Hard fails if value is not a boolean. Hard fails if value is 1, and symbol id is the ID
of a nulling symbol, an inaccessible symbol, or an unproductive symbol. Hard fails if
symbol id is not the ID of a valid symbol.

Return value: On success, value, which will be a boolean. On hard failure, −2.

23.7 Event codes

[Accessor macro]int MARPA_EVENT_NONE
Applications should never see this event. Event value: Unspecified. Suggested mes-
sage: "No event".

[Accessor macro]int MARPA_EVENT_COUNTED_NULLABLE
A nullable symbol is either the separator for, or the right hand side of, a sequence.
Event value: The ID of the symbol. Suggested message: "This symbol is a counted
nullable".

[Accessor macro]int MARPA_EVENT_EARLEY_ITEM_THRESHOLD
This event indicates that an application-settable threshold on the number of Earley
items has been reached or exceeded. See [marpa r earley item warning threshold set],
page 53.

Event value: The current Earley item count. Suggested message: "Too many Earley
items".

[Accessor macro]int MARPA_EVENT_EXHAUSTED
The parse is exhausted. Event value: Unspecified. Suggested message: "Recognizer
is exhausted".

Chapter 23: Events 79

[Accessor macro]int MARPA_EVENT_LOOP_RULES
One or more rules are loop rules — rules that are part of a cycle. Cycles are patho-
logical cases of recursion, in which the same symbol string derives itself a potentially
infinite number of times. Nonetheless, Marpa parses in the presence of these, and it
is up to the application to treat these as fatal errors, something they almost always
will wish to do. Event value: The count of loop rules. Suggested message: "Grammar
contains a infinite loop".

[Accessor macro]int MARPA_EVENT_NULLING_TERMINAL
This event occurs only if LHS terminals feature is in use. The LHS terminals feature
is deprecated. See Section 29.1 [LHS terminals], page 99. Event value: The ID of the
symbol. Suggested message: "This symbol is a nulling terminal".

[Accessor macro]int MARPA_EVENT_SYMBOL_COMPLETED
The recognizer can be set to generate an event a symbol is completed using its marpa_
g_symbol_is_completion_event_set() method. (A symbol is “completed” if and
only if any rule with that symbol as its LHS is completed.) This event code indicates
that one of those events occurred. Event value: The ID of the completed symbol.
Suggested message: "Completed symbol".

[Accessor macro]int MARPA_EVENT_SYMBOL_EXPECTED
The recognizer can be set to generate an event when a symbol is expected as a
terminal, using its marpa_r_expected_symbol_event_set() method. Note that this
event only triggers if the symbol is expected as a terminal. Predicted symbols that
are not expected as terminals do not trigger this event. This event code indicates that
one of those events occurred. Event value: The ID of the expected symbol. Suggested
message: "Expecting symbol".

[Accessor macro]int MARPA_EVENT_SYMBOL_NULLED
The recognizer can be set to generate an event when a symbol is nulled – that is,
recognized as a zero-length symbol. To set an nulled symbol event, use the recognizer’s
marpa_r_nulled_symbol_event_set() method. This event code indicates that a
nulled symbol event occurred. Event value: The ID of the nulled symbol. Suggested
message: "Symbol was nulled".

[Accessor macro]int MARPA_EVENT_SYMBOL_PREDICTED
The recognizer can be set to generate an event when a symbol is predicted. To set
an predicted symbol event, use the recognizer’s marpa_g_symbol_is_prediction_

event_set() method. Unlike the MARPA_EVENT_SYMBOL_EXPECTED event, the MARPA_
EVENT_SYMBOL_PREDICTED event triggers for predictions of both non-terminals and
terminals. This event code indicates that a predicted symbol event occurred. Event
value: The ID of the predicted symbol. Suggested message: "Symbol was predicted".

80

24 Error methods, macros and codes

24.1 Error methods

[Accessor function]Marpa_Error_Code marpa_g_error (Marpa Grammar g,
const char** p_error_string)

Allows the application to read the error code. p error string is reserved for use by
the internals. Applications should set it to NULL.

Return value: The current error code. Always succeeds.

[Mutator function]Marpa_Error_Code marpa_g_error_clear (
Marpa Grammar g)

Sets the error code to MARPA_ERR_NONE. Not often used, but now and then it can be
useful to force the error code to a known state.

Return value: MARPA_ERR_NONE. Always succeeds.

24.2 Error Macros

[Accessor macro]int MARPA_ERRCODE_COUNT
The number of error codes. All error codes, whether internal or external, will be
integers, non-negative but strictly less than MARPA_ERRCODE_COUNT.

24.3 External error codes

This section lists the external error codes. These are the only error codes that users of the
Libmarpa external interface should ever see. Internal error codes are in their own section
(Section 24.4 [Internal error codes], page 88).

[Accessor macro]int MARPA_ERR_NONE
No error condition. The error code is initialized to this value. Methods that do not
result in failure sometimes reset the error code to MARPA_ERR_NONE. Numeric value:
0. Suggested message: "No error".

[Accessor macro]int MARPA_ERR_BAD_SEPARATOR
A separator was specified for a sequence rule, but its ID was not that of a valid
symbol. Numeric value: 6. Suggested message: "Separator has invalid symbol ID".

[Accessor macro]int MARPA_ERR_BEFORE_FIRST_TREE
A tree iterator is positioned before the first tree, and the tree iterator was specified
in a context where the tree iterator must be positioned at or after the first tree. A
newly created tree is positioned before the first tree. To position a newly created
tree iterator to the first tree use the marpa_t_next() method. Numeric value: 91.
Suggested message: "Tree iterator is before first tree".

[Accessor macro]int MARPA_ERR_COUNTED_NULLABLE
A “counted” symbol was found that is also a nullable symbol. A “counted” symbol is
one that appears on the RHS of a sequence rule. If a symbol is nullable, counting its

Chapter 24: Error methods, macros and codes 81

occurrences becomes difficult. Questions of definition and problems of implementation
arise. At a minimum, a sequence with counted nullables would be wildly ambigious.

Sequence rules are simply an optimized shorthand for rules that can also be written
in ordinary BNF. If the equivalent of a sequence of nullables is really what your
application needs, nothing in Libmarpa prevents you from specifying that sequence
with ordinary BNF rules.

Numeric value: 8. Suggested message: "Nullable symbol on RHS of a sequence rule".

[Accessor macro]int MARPA_ERR_DUPLICATE_RULE
This error indicates an attempt to add a BNF rule that is a duplicate of a BNF rule
already in the grammar. Two BNF rules are considered duplicates if

• Both rules have the same left hand symbol, and

• Both rules have the same right hand symbols in the same order.

Duplication of sequence rules, and duplication between BNF rules and sequence rules,
is dealt with by requiring that the LHS of a sequence rule not be the LHS of any other
rule.

Numeric value: 11. Suggested message: "Duplicate rule".

[Accessor macro]int MARPA_ERR_DUPLICATE_TOKEN
This error indicates an attempt to add a duplicate token. A token is a duplicate if
one already read at the same earleme has the same symbol ID and the same length.
Numeric value: 12. Suggested message: "Duplicate token".

[Accessor macro]int MARPA_ERR_YIM_COUNT
This error code indicates that an implementation-defined limit on the number of
Earley items per Earley set was exceedeed. This limit is different from the Earley
item warning threshold, an optional limit on the number of Earley items in an Earley
set, which can be set by the application.

The implementation defined-limit is very large, at least 500,000,000 earlemes. An
application is unlikely ever to see this error. Libmarpa’s use of memory would almost
certainly exceed the implementation’s limits before it occurred. Numeric value: 13.
Suggested message: "Maximum number of Earley items exceeded".

[Accessor macro]int MARPA_ERR_EVENT_IX_NEGATIVE
A negative event index was specified. That is not allowed. Numeric value: 15.
Suggested message: "Negative event index".

[Accessor macro]int MARPA_ERR_EVENT_IX_OOB
An non-negative event index was specified, but there is no event at that index. Since
the events are in sequence, this means it was too large. Numeric value: 16. Suggested
message: "No event at that index".

[Accessor macro]int MARPA_ERR_GRAMMAR_HAS_CYCLE
The grammar has a cycle — one or more loop rules. This is a recoverable error, al-
though most applications will want to treat it as fatal. For more see the description of
[marpa g precompute], page 45. Numeric value: 17. Suggested message: "Grammar
has cycle".

Chapter 24: Error methods, macros and codes 82

[Accessor macro]int MARPA_ERR_HEADERS_DO_NOT_MATCH
This is an internal error, and indicates that Libmarpa was wrongly built. Libmarpa
was compiled with headers that do not match the rest of the code. The solution is
to find a correctly built Libmarpa. Numeric value: 98. Suggested message: "Internal
error: Libmarpa was built incorrectly"

[Accessor macro]int MARPA_ERR_I_AM_NOT_OK
The Libmarpa base grammar is in a “not ok” state. Currently, the only way this can
happen is if Libmarpa memory is being overwritten. Numeric value: 29. Suggested
message: "Marpa is in a not OK state".

[Accessor macro]int MARPA_ERR_INACCESSIBLE_TOKEN
This error code indicates that the token symbol is an inaccessible symbol — one that
cannot be reached from the start symbol.

Since the inaccessibility of a symbol is a property of the grammar, this error code
typically indicates an application error. Nevertheless, a retry at this location, using
another token ID, may succeed. At this writing, the author knows of no uses of this
technique.

Numeric value: 18. Suggested message: "Token symbol is inaccessible".

[Accessor macro]int MARPA_ERR_INVALID_BOOLEAN
A function was called that takes a boolean argument, but the value of that argument
was not either 0 or 1. Numeric value: 22. Suggested message: "Argument is not
boolean".

[Accessor macro]int MARPA_ERR_INVALID_LOCATION
The location (Earley set ID) is not valid. It may be invalid for one of two reasons:

• It is negative, and it is being used as the argument to a method for which that
negative value does not have a special meaning.

• It is after the latest Earley set.

For users of input models other than the standard one, the term “location”, as used
in association with this error code, means Earley set ID or Earley set ordinal. In
the standard input model, this will always be identical with Libmarpa’s other idea of
location, the earleme.

Numeric value: 25. Suggested message: "Location is not valid".

[Accessor macro]int MARPA_ERR_INVALID_START_SYMBOL
A start symbol was specified, but its symbol ID is not that of a valid symbol. Numeric
value: 27. Suggested message: "Specified start symbol is not valid".

[Accessor macro]int MARPA_ERR_INVALID_ASSERTION_ID
A method was called with an invalid assertion ID. This is a assertion ID that not
only does not exist, but cannot exist. Currently that means its value is less than zero.
Numeric value: 96. Suggested message: "Assertion ID is malformed".

[Accessor macro]int MARPA_ERR_INVALID_RULE_ID
A method was called with an invalid rule ID. This is a rule ID that not only does not
exist, but cannot exist. Currently that means its value is less than zero. Numeric
value: 26. Suggested message: "Rule ID is malformed".

Chapter 24: Error methods, macros and codes 83

[Accessor macro]int MARPA_ERR_INVALID_SYMBOL_ID
A method was called with an invalid symbol ID. This is a symbol ID that not only
does not exist, but cannot exist. Currently that means its value is less than zero.
Numeric value: 28. Suggested message: "Symbol ID is malformed".

[Accessor macro]int MARPA_ERR_MAJOR_VERSION_MISMATCH
There was a mismatch in the major version number between the requested version
of libmarpa, and the actual one. Numeric value: 30. Suggested message: "Libmarpa
major version number is a mismatch".

[Accessor macro]int MARPA_ERR_MICRO_VERSION_MISMATCH
There was a mismatch in the micro version number between the requested version of
libmarpa, and the actual one. Numeric value: 31. Suggested message: "Libmarpa
micro version number is a mismatch".

[Accessor macro]int MARPA_ERR_MINOR_VERSION_MISMATCH
There was a mismatch in the minor version number between the requested version
of libmarpa, and the actual one. Numeric value: 32. Suggested message: "Libmarpa
minor version number is a mismatch".

[Accessor macro]int MARPA_ERR_NO_EARLEY_SET_AT_LOCATION
A non-negative Earley set ID (also called an Earley set ordinal) was specified, but
there is no corresponding Earley set. Since the Earley set ordinals are in sequence,
this means that the specified ID is greater than that of the latest Earley set. Numeric
value: 39. Suggested message: "Earley set ID is after latest Earley set".

[Accessor macro]int MARPA_ERR_NOT_PRECOMPUTED
The grammar is not precomputed, and attempt was made to do something with it
that is not allowed for unprecomputed grammars. For example, a recognizer cannot
be created from a grammar until it is precomputed. Numeric value: 34. Suggested
message: "This grammar is not precomputed".

[Accessor macro]int MARPA_ERR_NO_PARSE
The application attempted to create a bocage from a recognizer with no parse tree.
Applications will often want to treat this as a soft error. Numeric value: 41. Suggested
message: "No parse".

[Accessor macro]int MARPA_ERR_NO_RULES
A grammar that has no rules is being used in a way that is not allowed. Usually the
problem is that the user is trying to precompute the grammar. Numeric value: 42.
Suggested message: "This grammar does not have any rules".

[Accessor macro]int MARPA_ERR_NO_START_SYMBOL
The grammar has no start symbol, and an attempt was made to perform an operation
that requires one. Usually the problem is that the user is trying to precompute the
grammar. Numeric value: 43. Suggested message: "This grammar has no start
symbol".

[Accessor macro]int MARPA_ERR_NO_SUCH_ASSERTION_ID
A method was called with an assertion ID that is well-formed, but the assertion does
not exist. Numeric value: 97. Suggested message: "No assertion with this ID exists".

Chapter 24: Error methods, macros and codes 84

[Accessor macro]int MARPA_ERR_NO_SUCH_RULE_ID
A method was called with a rule ID that is well-formed, but the rule does not exist.
Numeric value: 89. Suggested message: "No rule with this ID exists".

[Accessor macro]int MARPA_ERR_NO_SUCH_SYMBOL_ID
A method was called with a symbol ID that is well-formed, but the symbol does not
exist. Numeric value: 90. Suggested message: "No symbol with this ID exists".

[Accessor macro]int MARPA_ERR_NO_TOKEN_EXPECTED_HERE
This error code indicates that no tokens at all were expected at this earleme location.
This can only happen in alternative input models.

Typically, this indicates an application programming error. Retrying input at this
location will always fail. But if the application is able to leave this earleme empty, a
retry at a later location, using this or another token, may succeed. At this writing,
the author knows of no uses of this technique.

Numeric value: 44. Suggested message: "No token is expected at this earleme loca-
tion".

[Accessor macro]int MARPA_ERR_NOT_A_SEQUENCE
This error occurs in situations where a rule is required to be a sequence, and indicates
that the rule of interest is, in fact, not a sequence.

Numeric value: 99. Suggested message: "Rule is not a sequence".

[Accessor macro]int MARPA_ERR_NULLING_TERMINAL
This error occurs only if LHS terminals feature is in use. The LHS terminals feature is
deprecated. See Section 29.1 [LHS terminals], page 99. Numeric value: 49. Suggested
message: "A symbol is both terminal and nulling".

[Accessor macro]int MARPA_ERR_ORDER_FROZEN
The Marpa order object has been frozen. If a Marpa order object is frozen, it cannot
be changed.

Multiple tree iterators can share a Marpa order object, but that order object is frozen
after the first tree iterator is created from it. Applications can order an bocage in
many ways, but they must do so by creating multiple order objects.

Numeric value: 50. Suggested message: "The ordering is frozen".

[Accessor macro]int MARPA_ERR_PARSE_EXHAUSTED
The parse is exhausted. Numeric value: 53. Suggested message: "The parse is
exhausted".

[Accessor macro]int MARPA_ERR_PARSE_TOO_LONG
The parse is too long. The limit on the length of a parse is implementation dependent,
but it is very large, at least 500,000,000 earlemes.

This error code is unlikely in the standard input model. Almost certainly memory
would be exceeded before it could occur. If an application sees this error, it almost
certainly using one of the non-standard input models.

Chapter 24: Error methods, macros and codes 85

Most often this message will occur because of a request to add a single extremely long
token, perhaps as a result of an application error. But it is also possible this error
condition will occur after the input of a large number of long tokens.

Numeric value: 54. Suggested message: "This input would make the parse too long".

[Accessor macro]int MARPA_ERR_POINTER_ARG_NULL
In a method that takes pointers as arguments, one of the pointer arguments is NULL,
in a case where that is not allowed. One such method is marpa_r_progress_item().
Numeric value: 56. Suggested message: "An argument is null when it should not be".

[Accessor macro]int MARPA_ERR_PRECOMPUTED
An attempt was made to use a precomputed grammar in a way that is not allowed.
Often this is an attempt to change the grammar. Nearly every change to a grammar
after precomputation invalidates the precomputation, and is therefore not allowed.
Numeric value: 57. Suggested message: "This grammar is precomputed".

[Accessor macro]int MARPA_ERR_PROGRESS_REPORT_NOT_STARTED
No recognizer progress report is currently active, and an action has been attempted
that requires the progress report to be active. One such action would be a marpa_r_

progress_item() call. Numeric value: 59. Suggested message: "No progress report
has been started".

[Accessor macro]int MARPA_ERR_PROGRESS_REPORT_EXHAUSTED
The progress report is “exhausted” — all its items have been iterated through. Nu-
meric value: 58. Suggested message: "The progress report is exhausted".

[Accessor macro]int MARPA_ERR_RANK_TOO_LOW
A symbol or rule rank was specified that was less than an implementation-defined
minimum. Implementations will always allow at least those ranks in the range between
−134,217,727 and 134,217,727. Numeric value: 85. Suggested message: "Rule or
symbol rank too low".

[Accessor macro]int MARPA_ERR_RANK_TOO_HIGH
A symbol or rule rank was specified that was greater than an implementation-defined
maximum. Implementations will always allow at least those ranks in the range be-
tween −134,217,727 and 134,217,727. Numeric value: 86. Suggested message: "Rule
or symbol rank too high".

[Accessor macro]int MARPA_ERR_RECCE_IS_INCONSISTENT
The recognizer is “inconsistent”, usually because the user has rejected one or more
rules or terminals, and has not yet called the marpa_r_consistent() method. Nu-
meric value: 95. Suggested message: "The recognizer is inconsistent.

[Accessor macro]int MARPA_ERR_RECCE_NOT_ACCEPTING_INPUT
The recognizer is not accepting input, and the application has attempted something
that is inconsistent with that fact. Numeric value: 60. Suggested message: "The
recognizer is not accepting input".

Chapter 24: Error methods, macros and codes 86

[Accessor macro]int MARPA_ERR_RECCE_NOT_STARTED
The recognizer has not been started. and the application has attempted something
that is inconsistent with that fact. Numeric value: 61. Suggested message: "The
recognizer has not been started".

[Accessor macro]int MARPA_ERR_RECCE_STARTED
The recognizer has been started. and the application has attempted something that is
inconsistent with that fact. Numeric value: 62. Suggested message: "The recognizer
has been started".

[Accessor macro]int MARPA_ERR_RHS_IX_NEGATIVE
The index of a RHS symbol was specified, and it was negative. That is not allowed.
Numeric value: 63. Suggested message: "RHS index cannot be negative".

[Accessor macro]int MARPA_ERR_RHS_IX_OOB
A non-negative index of RHS symbol was specified, but there is no symbol at that
index. Since the indexes are in sequence, this means the index was greater than or
equal to the rule length. Numeric value: 64. Suggested message: "RHS index must
be less than rule length".

[Accessor macro]int MARPA_ERR_RHS_TOO_LONG
An attempt was made to add a rule with too many right hand side symbols. The
limit on the RHS symbol count is implementation dependent, but it is very large,
at least 500,000,000 symbols. This is far beyond what is required in any current
practical grammar. An application with rules of this length is almost certain to run
into memory and other limits. Numeric value: 65. Suggested message: "The RHS is
too long".

[Accessor macro]int MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE
The LHS of a sequence rule cannot be the LHS of any other rule, whether a sequence
rule or a BNF rule. An attempt was made to violate this restriction. Numeric value:
66. Suggested message: "LHS of sequence rule would not be unique".

[Accessor macro]int MARPA_ERR_START_NOT_LHS
The start symbol is not on the LHS on any rule. That means it could never match
any possible input, not even the null string. Presumably, an error in writing the
grammar. Numeric value: 73. Suggested message: "Start symbol not on LHS of any
rule".

[Accessor macro]int MARPA_ERR_SYMBOL_IS_NOT_COMPLETION_EVENT
An attempt was made to use a symbol in a way that requires it to be set up for
completion events, but the symbol was not set set up for completion events. The
archetypal case is an attempt to activate completion events for the symbol in the
recognizer. The archetypal case is an attempt to activate a completion event in the
recognizer for a symbol that is not set up as a completion event. Numeric value: 92.
Suggested message: "Symbol is not set up for completion events".

[Accessor macro]int MARPA_ERR_SYMBOL_IS_NOT_NULLED_EVENT
An attempt was made to use a symbol in a way that requires it to be set up for nulled
events, but the symbol was not set set up for nulled events. The archetypal case is

Chapter 24: Error methods, macros and codes 87

an attempt to activate a nulled events in the recognizer for a symbol that is not set
up as a nulled event. Numeric value: 93. Suggested message: "Symbol is not set up
for nulled events".

[Accessor macro]int MARPA_ERR_SYMBOL_IS_NOT_PREDICTION_EVENT
An attempt was made to use a symbol in a way that requires it to be set up for
predictino events, but the symbol was not set set up for predictino events. The
archetypal case is an attempt to activate a prediction event in the recognizer for
a symbol that is not set up as a prediction event. Numeric value: 94. Suggested
message: "Symbol is not set up for prediction events".

[Accessor macro]int MARPA_ERR_SYMBOL_VALUED_CONFLICT
Unvalued symbols are a deprecated Marpa feature, which may be avoided with the
marpa_g_force_valued() method. An unvalued symbol may take on any value, and
therefore a symbol that is unvalued at some points cannot safely to be used to contain
a value at others. This error indicates that such an unsafe use is being attempted.
Numeric value: 74. Suggested message: "Symbol is treated both as valued and
unvalued".

[Accessor macro]int MARPA_ERR_TERMINAL_IS_LOCKED
An attempt was made to change the terminal status of a symbol to a different value
after it was locked. Numeric value: 75. Suggested message: "The terminal status of
the symbol is locked".

[Accessor macro]int MARPA_ERR_TOKEN_IS_NOT_TERMINAL
A token was specified whose symbol ID is not a terminal. Numeric value: 76. Sug-
gested message: "Token symbol must be a terminal".

[Accessor macro]int MARPA_ERR_TOKEN_LENGTH_LE_ZERO
A token length was specified that is less than or equal to zero. Zero-length tokens
are not allowed in Libmarpa. Numeric value: 77. Suggested message: "Token length
must greater than zero".

[Accessor macro]int MARPA_ERR_TOKEN_TOO_LONG
The token length is too long. The limit on the length of a token is implementation
dependent, but it is at least 500,000,000 earlemes. An application using a token that
long is almost certain to run into some other limit. Numeric value: 78. Suggested
message: "Token is too long".

[Accessor macro]int MARPA_ERR_TREE_EXHAUSTED
A Libmarpa parse tree iterator is “exhausted”, that is, it has no more parse trees.
Numeric value: 79. Suggested message: "Tree iterator is exhausted".

[Accessor macro]int MARPA_ERR_TREE_PAUSED
A Libmarpa tree is “paused” and an operation was attempted that is inconsistent
with that fact. Typically, this operation will be a call of the marpa_t_next() method.
Numeric value: 80. Suggested message: "Tree iterator is paused".

Chapter 24: Error methods, macros and codes 88

[Accessor macro]int MARPA_ERR_UNEXPECTED_TOKEN_ID
An attempt was made to read a token where a token with that symbol ID is not
expected. This message can also occur when an attempt is made to read a token
at a location where no token is expected. Numeric value: 81. Suggested message:
"Unexpected token".

[Accessor macro]int MARPA_ERR_UNPRODUCTIVE_START
The start symbol is unproductive. That means it could never match any possible
input, not even the null string. Presumably, an error in writing the grammar. Numeric
value: 82. Suggested message: "Unproductive start symbol".

[Accessor macro]int MARPA_ERR_VALUATOR_INACTIVE
The valuator is inactive in a context where that should not be the case. Numeric
value: 83. Suggested message: "Valuator inactive".

[Accessor macro]int MARPA_ERR_VALUED_IS_LOCKED
Unvalued symbols are a deprecated Marpa feature, which may be avoided with the
marpa_g_force_valued() method. This error code indicates that the valued status
of a symbol is locked, and an attempt was made to change it to a status different
from the current one. Numeric value: 84. Suggested message: "The valued status of
the symbol is locked".

[Accessor macro]int MARPA_ERR_SYMBOL_IS_NULLING
An attempt was made to do something with a nulling symbol that is not allowed. For
example, the ID of a nulling symbol cannot be an argument to marpa_r_expected_

symbol_event_set() — because it is not possible to create an “expected symbol”
event for a nulling symbol. Numeric value: 87. Suggested message: "Symbol is
nulling".

[Accessor macro]int MARPA_ERR_SYMBOL_IS_UNUSED
An attempt was made to do something with an unused symbol that is not allowed. An
“unused” symbol is a inaccessible or unproductive symbol. For example, the ID of a
unused symbol cannot be an argument to marpa_r_expected_symbol_event_set()

— because it is not possible to create an “expected symbol” event for an unused
symbol. Numeric value: 88. Suggested message: "Symbol is not used".

24.4 Internal error codes

An internal error code may be one of two things: First, it can be an error code that arises
from an internal Libmarpa programming issue (in other words, something happening in the
code that was not supposed to be able to happen.) Second, it can be an error code that only
occurs when a method from Libmarpa’s internal interface is used. Both kinds of internal
error message share one common trait — users of the Libmarpa’s external interface should
never see them.

Internal error messages require someone with knowledge of the Libmarpa internals to
follow up on them. They usually do not have descriptions or suggested messages.

[Accessor macro]int MARPA_ERR_AHFA_IX_NEGATIVE
Numeric value: 1.

Chapter 24: Error methods, macros and codes 89

[Accessor macro]int MARPA_ERR_AHFA_IX_OOB
Numeric value: 2.

[Accessor macro]int MARPA_ERR_ANDID_NEGATIVE
Numeric value: 3.

[Accessor macro]int MARPA_ERR_ANDID_NOT_IN_OR
Numeric value: 4.

[Accessor macro]int MARPA_ERR_ANDIX_NEGATIVE
Numeric value: 5.

[Accessor macro]int MARPA_ERR_BOCAGE_ITERATION_EXHAUSTED
Numeric value: 7.

[Accessor macro]int MARPA_ERR_DEVELOPMENT
“Development” errors were used heavily during Libmarpa’s development, when it was
not yet clear how precisely to classify every error condition. Unless they are using
a developer’s version, users of the external interface should never see development
errors.

Development errors have an error string associated with them. The error string is a
short 7-bit ASCII error string that describes the error. Numeric value: 9. Suggested
message: "Development error, see string".

[Accessor macro]int MARPA_ERR_DUPLICATE_AND_NODE
Numeric value: 10.

[Accessor macro]int MARPA_ERR_YIM_ID_INVALID
Numeric value: 14.

[Accessor macro]int MARPA_ERR_INTERNAL
A “catchall” internal error. Numeric value: 19.

[Accessor macro]int MARPA_ERR_INVALID_AHFA_ID
The AHFA ID was invalid. There are no AHFAs any more, so this message should
not occur. Numeric value: 20.

[Accessor macro]int MARPA_ERR_INVALID_AIMID
The AHM ID was invalid. The term “AIMID” is a legacy of earlier implementations
and must be kept for backward compatibility. Numeric value: 21.

[Accessor macro]int MARPA_ERR_INVALID_IRLID
Numeric value: 23.

[Accessor macro]int MARPA_ERR_INVALID_NSYID
Numeric value: 24.

[Accessor macro]int MARPA_ERR_NOOKID_NEGATIVE
Numeric value: 33.

[Accessor macro]int MARPA_ERR_NOT_TRACING_COMPLETION_LINKS
Numeric value: 35.

90

[Accessor macro]int MARPA_ERR_NOT_TRACING_LEO_LINKS
Numeric value: 36.

[Accessor macro]int MARPA_ERR_NOT_TRACING_TOKEN_LINKS
Numeric value: 37.

[Accessor macro]int MARPA_ERR_NO_AND_NODES
Numeric value: 38.

[Accessor macro]int MARPA_ERR_NO_OR_NODES
Numeric value: 40.

[Accessor macro]int MARPA_ERR_NO_TRACE_YS
Numeric value: 46.

[Accessor macro]int MARPA_ERR_NO_TRACE_PIM
Numeric value: 47.

[Accessor macro]int MARPA_ERR_NO_TRACE_YIM
Numeric value: 45.

[Accessor macro]int MARPA_ERR_NO_TRACE_SRCL
Numeric value: 48.

[Accessor macro]int MARPA_ERR_ORID_NEGATIVE
Numeric value: 51.

[Accessor macro]int MARPA_ERR_OR_ALREADY_ORDERED
Numeric value: 52.

[Accessor macro]int MARPA_ERR_PIM_IS_NOT_LIM
Numeric value: 55.

[Accessor macro]int MARPA_ERR_SOURCE_TYPE_IS_NONE
Numeric value: 70.

[Accessor macro]int MARPA_ERR_SOURCE_TYPE_IS_TOKEN
Numeric value: 71.

[Accessor macro]int MARPA_ERR_SOURCE_TYPE_IS_COMPLETION
Numeric value: 68.

[Accessor macro]int MARPA_ERR_SOURCE_TYPE_IS_LEO
Numeric value: 69.

[Accessor macro]int MARPA_ERR_SOURCE_TYPE_IS_AMBIGUOUS
Numeric value: 67.

[Accessor macro]int MARPA_ERR_SOURCE_TYPE_IS_UNKNOWN
Numeric value: 72.

91

25 Technical notes

This section contains technical notes that are not necessary for the main presentation, but
which may be helpful or interesting.

25.1 Elizabeth Scott’s SPPFs

One of our most important data structures is what we call a “bocage”. Prof. Scott’s work
preceded ours, and her SPPF structure is our bocage in all essential respects, so much so that
her excellent writeup serves perfectly as documentation for the bocage: Scott, Elizabeth.
“SPPF-style parsing from Earley recognisers.” Electronic Notes in Theoretical Computer
Science 203.2 (2008): 53-67, https://dinhe.net/~aredridel/.notmine/PDFs/Parsing/
SCOTT%2C%20Elizabeth%20-%20SPPF-Style%20Parsing%20From%20Earley%20Recognizers.

pdf.

25.2 Data types used by Libmarpa

Libmarpa does not use any floating point data or strings. All data are either integers or
pointers.

25.3 Why so many time objects?

Marpa is an aggressively multi-pass algorithm. Marpa achieves its efficiency, not in spite of
making multiple passes over the data, but because of it. Marpa regularly substitutes two
fast O(n) passes for a single O(n log n) pass. Marpa’s proliferation of time objects is in
keeping with its multi-pass approach.

Bocage objects come at no cost, even for unambiguous parses, because the same pass that
creates the bocage also deals with other issues that are of major significance for unambiguous
parses. It is the post-processing of the bocage pass that enables Marpa to do both left- and
right-recursion in linear time.

Of the various objects, the best case for elimination is of the ordering object. In many
cases, the ordering is trivial. Either the parse is unambiguous, or the application does not
care about the order in which parse trees are returned. But while it would be easy to add
an option to bypass creation of an ordering object, there is little to be gained from it. When
the ordering is trivial, its overhead is very small — essentially a handful of subroutine calls.
Many orderings accomplish nothing, but these cost next to nothing.

Tree objects come at minimal cost to unambiguous grammars, because the same pass
that allows iteration through multiple parse trees does the tree traversal. This eliminates
much of the work that otherwise would need to be done in the valuation time object. In the
current implementation, the valuation time object needs only to step through a sequence
already determined by the tree iterator.

25.4 Numbered objects

As the name suggests, the choice was made to implement numbered objects as integers,
and not as pointers. In standard-conformant C, integers can be safely checked for validity,
while pointers cannot.

https://dinhe.net/~aredridel/.notmine/PDFs/Parsing/SCOTT%2C%20Elizabeth%20-%20SPPF-Style%20Parsing%20From%20Earley%20Recognizers.pdf
https://dinhe.net/~aredridel/.notmine/PDFs/Parsing/SCOTT%2C%20Elizabeth%20-%20SPPF-Style%20Parsing%20From%20Earley%20Recognizers.pdf
https://dinhe.net/~aredridel/.notmine/PDFs/Parsing/SCOTT%2C%20Elizabeth%20-%20SPPF-Style%20Parsing%20From%20Earley%20Recognizers.pdf

Chapter 25: Technical notes 92

There are efficiency tradeoffs between pointers and integers but they are complicated,
and they go both ways. Pointers can be faster, but integers can be used as indexes into
more than one data structure. Which is actually faster depends on the design. Integers
allow for a more flexible design, so that once the choice is settled on, careful programming
can make them a win, possibly a very big one.

The approach taken in Libmarpa was to settle, from the outset, on integers as the
implementation for numbered objects, and to optimize on that basis. The author concedes
that it is possible that others redoing Libmarpa from scratch might find that pointers are
faster. But the author is confident that they will also discover, on modern architectures,
that the lack of safe validity checking is far too high a price to pay for the difference in
speed.

25.5 Trap representations

In order to be C89 conformant, an application must initialize all locations that might be
read. This is because C89 allows trap representations.

A trap representation is a byte pattern in memory that is not a valid value of some
object type. When read, the trap representation causes undefined behavior according to
the C89 standard, making the application that allowed the read non-conformant to the C89
standard. Trap representations are carefully defined and discussed in the C99 standard.

In real life, trap representations can occur when floating point values are used: Some
byte patterns that can occur in memory are not valid floating point values, and can cause
undefined behavior when read.

Pointers raise the same issue although, since it can be safely read as an integer, some
insist that an invalid pointer is not, strictly speaking, a trap representation. But there is
no portable c89-conformant way of testing the integer form of a pointer for validity, so that
the only way to guarantee C89 conformance is to initialize the pointer, either to a valid
pointer, or to a known and therefore testable value, such as NULL.

All this implies that, in order to claim c89-conformance, an application must initialize
all locations that might be read to non-trap values. For a stack implementation, this means
that, as a practical matter, all locations on the stack must be initialized.

93

26 Advanced input models

In an earlier chapter, we introduced Libmarpa’s concept of input, and described its basic
input models. See Chapter 6 [Input], page 15. In this chapter we describe Libmarpa’s
advanced models of input. These advanced input models have attracted considerable inter-
est. However, they have seen little actual use so far, and for that reason we delayed their
consideration until now.

A Libmarpa input model is advanced if it allows tokens of length other than 1. The
advanced input models are also called variable-length token models because they allow the
token length to vary from the “normal” length of 1.

26.1 The dense variable-length token model

In the dense variable-length model of input, one or more successful calls of
marpa_r_alternative() must be immediately previous to every call to marpa_r_

earleme_complete(). Note that, for a variable-length input model to be “dense”
according to this definition, at least one successful call of marpa_r_alternative() must
be immediately previous to each call to marpa_r_earleme_complete(). Recall that, in
this document, we say that a marpa_r_alternative() call is “immediately previous” to a
marpa_r_earleme_complete() call iff that marpa_r_earleme_complete() call is the first
marpa_r_earleme_complete() call after the marpa_r_alternative() call.

In the dense model of input, after a successful call of marpa_r_alternative(), the
earleme variables are as follows:

• The furthest earleme will be max(old_f, old_c+length),

• where old f is the furthest earleme before the call to marpa_r_alternative(),

• old c is the value of the current earleme before the call to marpa_r_

alternative(), and

• length is the length of the token read.

• marpa_r_alternative() never changes the latest or current earleme.

In the dense variable-length model of input, the effect of the marpa_r_earleme_

complete() mutator on the earleme variables is the same as for the basic models of input.
See Section 6.2.1 [The standard model of input], page 16.

In the dense model of input, the latest earleme is always the same as the current earleme.
In fact, the latest earleme and the current earleme are always the same, except in the fully
general model of input.

26.2 The fully general input model

In the sparse variable-length model of input, zero or more successful calls of
marpa_r_alternative() must be immediately previous to every call to marpa_r_

earleme_complete(). The sparse model is the dense variable-length model, with
its only restriction lifted — the sparse variable-length input model allows calls
to marpa_r_earleme_complete() that are not immediately preceded by calls to
marpa_r_alternative().

94

Since it is unrestricted, the sparse input model is Libmarpa’s fully general input model.
Because of this, it may be useful for us to state the effect of mutators on the earleme
variables in detail, even at the expense of some repetition.

In the sparse input model, empty earlemes are now possible. An empty earleme is
an earleme with no tokens and no Earley set. An empty earleme occurs iff marpa_r_

earleme_complete() is called when there is no immediately previous call to marpa_r_

alternative(). The sparse model takes its name from the fact that there may be earlemes
with no Earley set. In the sparse model, Earley sets are “sparsely” distributed among the
earlemes.

In the dense model of input, the effect on the earleme variables of a successful call of the
marpa_r_alternative() mutator is the same as for the sparse model of input:

• The furthest earleme will be max(old_f, old_c+length),

• where old f is the furthest earleme before the call to marpa_r_alternative(),

• old c is the value of the current earleme before the call to marpa_r_

alternative(), and

• length is the length of the token read.

• marpa_r_alternative() never changes the latest or current earleme.

In the sparse model, when the earleme is not empty, the effect of a call to marpa_r_

earleme_complete() on the earleme variables is the same as in the dense and the basic
models of input. Specifically, the following will be true:

• The current earleme will be advanced to old_c+1, where old c is the current earleme
before the call.

• The latest earleme will be old_c+1, and therefore will be equal to the current earleme.

• The value of the furthest earleme is never changed by a call to marpa_r_earleme_

complete().

Recall that, in the dense and basic input models, as a matter of definition, there are no
empty earlemes. For the sparse input model, in the case of an empty earleme, the effect of
the marpa_r_earleme_complete() mutator on the earleme variables is the following:

• The current earleme will be advanced to old_c+1, where old c is the current earleme
before the call.

• The latest earleme will remain at old l, where the latest earleme before the call is old l.
This implies that the latest earleme will be less than the current earleme.

• The furthest earleme is never changed by a call to marpa_r_earleme_complete().

After a call to marpa_r_earleme_complete() for an empty earleme, the lastest and
current earlemes will have different values. In a parse that never calls marpa_r_earleme_
complete() for an empty earleme, the lastest and current earlemes will always be the same.

95

27 Support

The “updates” (https: / / github . com / jeffreykegler / libmarpa / blob / updated /
UPDATES . md). document contains instructions for reporting bugs, getting answers to
questions, and other support.

https://github.com/jeffreykegler/libmarpa/blob/updated/UPDATES.md
https://github.com/jeffreykegler/libmarpa/blob/updated/UPDATES.md

96

28 Futures

This chapter is not about the current interface. Instead, it discusses changes or additions
that might be made to this document or to the external interface in the future.

28.1 Nulling versus nulled

Currently we call a zero-length instance (aka tree node) either a nulling instance or a nulled
instance. The use of “nulling” is for historic reasons and arguably is confusing. The symbol
of a nulling instance is not necessarily a nulling symbol — it might be a nullable symbol.
Usage of the term “nulled” is less confusing. At this time, we continue to allow zero-length
instances to be called nulling instances because that terminology is embedded in a lot of
code and documents.

28.2 Document pre-conditions more formally

A more formal approach to documenting preconditions of the methods is possible, and
may be helpful enough to repay any cost in verbosity or complexity. Dave Abrahams
recommended I look at https://www.boost.org/sgi/stl/ for one approach.

28.3 Simpler events interface

Some of the events interfaces are unnecessarily complex. Activation in the grammar is
unnecessary, as is the ability to “unmark” an event for a symbol before precomputation.
See Section 23.3 [Completion events], page 72, see Section 23.4 [Symbol nulled events],
page 74, and see Section 23.5 [Prediction events], page 76.

28.4 Better defined ambiguity metric

With experience, we are now in a position to define an ambiguity metric that can be cheaply
calculated, and that might be of real use. Preliminary notes are in the CWeb code.

28.5 Report item traverser should be a time object

Right now, a report item traverser is a kind of “subobject” of a recognizer. It should be
made into a full-fledged time object. This will allow multiple report item traversers to be
in use at once, allowing more aggressive use of this facility.

28.6 Orthogonal treatment of soft failures

The treatment of soft failure evolved along with this interface, leaving traces of that evo-
lution in the interface. For example, soft failures should not set the error code, but soft
failure in marpa_r_progress_item() sets the error code to MARPA_ERR_PROGRESS_REPORT_

EXHAUSTED. See [marpa r progress item], page 56. Similar, soft failure marpa_t_next()

sets the error code to MARPA_ERR_TREE_EXHAUSTED. These non-orthogonalities should be
fixed someday.

https://www.boost.org/sgi/stl/

Chapter 28: Futures 97

28.7 Orthogonal treatment of exhaustion

The treatment of parse exhaustion is very awkward. marpa_r_start_input() returns
success on exhaustion, while marpa_r_earleme_complete() either returns success or a
hard failure, depending on circumstances. See [marpa r earleme complete], page 49, and
[marpa r start input], page 47.

Ideally the treatment should be simpler, more intuitive and more orthogonal. Better,
perhaps, would be to always treat parse exhaustion as a soft failure.

28.8 Furthest earleme values

marpa_r_furthest_earleme returns unsigned int, which is non-orthogonal with marpa_

r_current_earleme. This leaves no room for an failure return value, which we deal with by
not checking for failures. The only important potential failure is calling marpa_r_furthest_
earleme when the furthest earleme is an indeterminate value. We eliminate this potential
cause of failure by regarding furthest earleme as having been initialized when the recognizer
was created, which is another non-orthogonality with marpa_r_current_earleme.

All this might be fine, if something were gained, but in fact in the furthest earleme, unless
there is a problem, always becomes the current earleme, and no use cases for extremely long
variable-length tokens are envisioned, so that the two should never be far apart. Addition-
ally, the additional values for the furthest earleme only come into play if the parse is to large
for the computer memories as of this writing. Summarizing, marpa_r_furthest_earleme,
should return an int, like marpa_r_current_earleme, and the non-orthogonalities should
be eliminated.

28.9 Additional recoverable failures in marpa r alternative()

Among the hard failures that marpa r alternative() returns are the error codes MARPA_ERR_
DUPLICATE_TOKEN, MARPA_ERR_NO_TOKEN_EXPECTED_HERE and MARPA_ERR_INACCESSIBLE_

TOKEN. These are currently irrecoverable. They may in fact be fully recoverable, but are
not documented as such because this has not been tested.

At this writing, we know of no applications that attempt to recover from these errors.
It is possible that these error codes may also be useable for the techniques similar to the
Ruby Slippers, as of this writing, we know of no proposals to use them in this way.

28.10 Untested methods

The methods of this section are not in the external interface, because they have not been
adequately tested. Their fate is uncertain. Users should regard these methods as unsup-
ported.

28.10.1 Zero-width assertion methods

[Function]Marpa_Assertion_ID marpa_g_zwa_new (Marpa Grammar g, int
default_value)

[Function]int marpa_g_zwa_place (Marpa Grammar g, Marpa Assertion ID
zwaid, Marpa Rule ID xrl_id, int rhs_ix)

Chapter 28: Futures 98

[Function]int marpa_r_zwa_default (Marpa Recognizer r,
Marpa Assertion ID zwaid)

On success, returns previous default value of the assertion.

[Function]int marpa_r_zwa_default_set (Marpa Recognizer r,
Marpa Assertion ID zwaid, int default_value)

Changes default value to default value. On success, returns previous default value of
the assertion.

[Function]Marpa_Assertion_ID marpa_g_highest_zwa_id (Marpa Grammar
g)

28.10.2 Methods for revising parses

Marpa allows an application to “change its mind” about a parse, rejecting rules previously
recognized or predicted, and terminals previously scanned. The methods in this section
provide that capability.

[Function]Marpa_Earleme marpa_r_clean (Marpa Recognizer r)

99

29 Deprecated techniques and methods

29.1 LHS terminals

29.1.1 Overview of LHS terminals

The user creates LHS terminals with the marpa_g_symbol_is_terminal_set() method.
See [marpa g symbol is terminal set], page 99. If the marpa_g_symbol_is_terminal_

set() method is never called for a grammar, then LHS terminals are not in use for any
time object with that grammar as its base grammar.

29.1.2 Motivation of LHS terminals

Recall that a terminal symbol is a symbol that may appear in the input. Traditionally,
all LHS symbols, as well as the start symbol, must be non-terminals. By default, this is
Marpa’s behavior.

In a departure from tradition, Marpa had a feature that allowed the user to eliminate
the distinction between terminals and non-terminals. This feature is now deprecated.

When LHS terminals are in use, a terminal can appear on the LHS of one or more rules,
and can be be the start symbol. Note however, that terminals can never be zero length.

The basis of the LHS terminals feature was that, while sharp division between terminals
and non-terminals was a useful simplification for proving theorems, it was not essential in
practice. In the UNIX “toolkit” tradition, the practice has been to include even awkward,
dangerous tools with no known use, in the toolkit. The philosophy was that empowering the
user who discovers new techniques is more important than playing nanny to the toolkit’s
users.

LHS symbols could be used to bypass, or “short circuit”, the rules on whose LHS they
occur. Short circuiting rules, it was thought, might prove helpful in debugging, or have
other applications.

But, a decade after the release of Libmarpa, no uses for LHS symbols have emerged.
And they do introduce many new corner cases into the code and complicate the API doc-
umentation.

29.1.3 LHS terminal methods

The terminal status of a symbol is a boolean, which is true iff the symbol is a terminal.
The terminal status of a symbol is locked iff the terminal status of that symbol cannot be
changed.

[Mutator function]int marpa_g_symbol_is_terminal_set (Marpa Grammar
g, Marpa Symbol ID sym_id, int value)

On success, does the following:

• Sets the terminal status of the symbol in grammar g with symbol ID sym id to
value. To be used as an input symbol in the marpa_r_alternative() method,
a symbol must be a terminal.

• Locks the terminal status of symbol sym id.

• Returns value.

Chapter 29: Deprecated techniques and methods 100

Hard fails with error code MARPA_ERR_TERMINAL_IS_LOCKED if the symbol with
sym id is locked, and the terminal status of the symbol with sym id is not equal to
value. Also hard fails if value is not a boolean or if g is precomputed.

Return value: On success, value, which will be 1 or 0. On soft failure, −1. On hard
failure, −2.

29.1.4 Precomputation and LHS terminals

On success, marpa_g_precompute() will sets and locks the terminal status of every sym-
bol. More precisely, let the symbol be x, let the terminal status of x when marpa_g_

precompute() was called be v before, and let the terminal status of x when marpa_g_

precompute() returns success be v after. The effect of the successful call of marpa_g_
precompute() will be as follows:

• If terminal status of x is locked when marpa_g_precompute() was called, then v_after

= v_before.

• If terminal status of x is not locked, and x appears on the LHS of some rule then
v after is false.

• If terminal status of x is not locked, and x does not appear on the LHS of any rule
then v after is true.

The terminal status of all symbols is locked after a successful call to marpa_g_

precompute(). See [marpa g precompute], page 45.

29.1.5 Nulling terminals

When LHS terminals are not in use, nulling terminals cannot occur, and applications need
not take them in account. This is because, in order to be nullable, a symbol must appear
on the LHS of a nullable rule. Without LHS terminals, therefore, no terminals can ever be
either nullable or nulling.

Things become more complicated if LHS terminals are allowed. In that case nulling
terminals can be created, and Libmarpa must take measures to prevent a recognizer from
being created for a grammar with nulling terminals. Libmarpa will not allow a recognizer to
be created from a grammar with nulling terminals because they are a logical contradiction.
A terminal is (by definition) a symbol which can appear in the input, and a nulling symbol,
by definition, cannot appear in the input.

Libmarpa’s marpa_g_precomputemethod fails with the error code MARPA_ERR_NULLING_
TERMINAL if it detects nulling terminals during precomputation. The error code MARPA_ERR_
NULLING_TERMINAL is library-recoverable. See [marpa g precompute], page 45.

Libmarpa’s marpa_g_precompute method also triggers one MARPA_EVENT_NULLING_

TERMINAL event for every nulling terminal in the grammar. This implies that one or more
MARPA_EVENT_NULLING_TERMINAL events occur iff marpa_g_precompute fails with error
code MARPA_ERR_NULLING_TERMINAL.

29.2 Valued and unvalued symbols

29.2.1 What unvalued symbols were

Libmarpa symbols can have values, which is the traditional way of doing semantics. Lib-
marpa also allows symbols to be unvalued. An unvalued symbol is one whose value is

Chapter 29: Deprecated techniques and methods 101

unpredictable from instance to instance. If a symbol is unvalued, we sometimes say that it
has “whatever” semantics.

Situations where the semantics can tolerate unvalued symbols are surprisingly frequent.
For example, the top-level of many languages is a series of major units, all of whose semantics
are typically accomplished via side effects. The compiler is typically indifferent to the actual
value produced by these major units, and tracking them is a waste of time. Similarly, the
value of the separators in a list is typically ignored.

Rules are unvalued if and only if their LHS symbols are unvalued. When rules and
symbols are unvalued, Libmarpa optimizes their evaluation.

It is in principle unsafe to check the value of a symbol if it can be unvalued. For this
reason, once a symbol has been treated as valued, Libmarpa marks it as valued. Similarly,
once a symbol has been treated as unvalued, Libmarpa marks it as unvalued. Once marked,
a symbol’s valued status is locked and cannot be changed later.

The valued status of terminals is marked the first time they are read.

Unvalued symbols may be used in combination with another deprecated feature, LHS
terminals. See Section 29.1 [LHS terminals], page 99. The valued status of LHS sym-
bols must be explicitly marked by the application when initializing the valuator — this is
Libmarpa’s equivalent of registering a callback.

The valued status of a LHS terminal will be locked in the recognizer if it is used as a
terminal, and the symbol’s use as a rule LHS in the valuator must be consistent with the
recognizer’s valued marking. LHS terminals are disabled by default.

Marpa reports an error when a symbol’s use conflicts with its locked valued status. Doing
so usually saves the Libmarpa user some tricky debugging further down the road.

29.2.2 Grammar methods dealing with unvalued symbols

[Function]int marpa_g_symbol_is_valued_set (Marpa Grammar g,
Marpa Symbol ID symbol_id, int value)

[Function]int marpa_g_symbol_is_valued (Marpa Grammar g,
Marpa Symbol ID symbol_id)

These methods, respectively, set and query the “valued status” of a symbol. Once set
to a value with the marpa_g_symbol_is_valued_set() method, the valued status of
a symbol is “locked” at that value. It cannot thereafter be changed. Subsequent calls
to marpa_g_symbol_is_valued_set() for the same sym id will fail, leaving sym id’s
valued status unchanged, unless value is the same as the locked-in value.

Return value: On success, 1 if the symbol symbol id is valued after the call, 0 if not.
If the valued status is locked and value is different from the current status, −2. If
value is not 0 or 1; or on other failure, −2.

29.2.3 Registering semantics in the valuator

By default, Libmarpa’s valuator objects assume that non-terminal symbols have no seman-
tics. The archetypal application will need to register symbols that contain semantics. The
primary method for doing this is marpa_v_symbol_is_valued(). Applications will typically
register semantics by rule, and these applications will find the marpa_v_rule_is_valued()
method more convenient.

102

[Function]int marpa_v_symbol_is_valued_set (Marpa Value v,
Marpa Symbol ID sym_id, int status)

[Function]int marpa_v_symbol_is_valued (Marpa Value v,
Marpa Symbol ID sym_id)

These methods, respectively, set and query the valued status of symbol sym id.
marpa_v_symbol_is_valued_set() will set the valued status to the value of its sta-
tus argument. A valued status of 1 indicates that the symbol is valued. A valued
status of 0 indicates that the symbol is unvalued. If the valued status is locked, an
attempt to change to a status different from the current one will fail (error code
MARPA_ERR_VALUED_IS_LOCKED).

Return value: On success, the valued status after the call. If value is not either 0 or
1, or on other failure, −2.

[Function]int marpa_v_rule_is_valued_set (Marpa Value v,
Marpa Rule ID rule_id, int status)

[Function]int marpa_v_rule_is_valued (Marpa Value v, Marpa Rule ID
rule_id)

These methods, respectively, set and query the valued status for the LHS symbol of
rule rule id. marpa_v_rule_is_valued_set() sets the valued status to the value of
its status argument.

A valued status of 1 indicates that the symbol is valued. A valued status of 0 indicates
that the symbol is unvalued. If the valued status is locked, an attempt to change to
a status different from the current one will fail (error code MARPA_ERR_VALUED_IS_

LOCKED).

Rules have no valued status of their own. The valued status of a rule is always that
of its LHS symbol. These methods are conveniences — they save the application the
trouble of looking up the rule’s LHS.

Return value: On success, the valued status of the rule rule id’s LHS symbol after
the call. If value is not either 0 or 1, or on other failure, −2.

[Function]int marpa_v_valued_force (Marpa Value v)
This methods locks the valued status of all symbols to 1, indicated that the symbol
is valued. If this is not possible, for example because one of the grammar’s symbols
already is locked at a valued status of 0, failure is returned.

Return value: On success, a non-negative number. On failure, returns −2, and sets
the error code to an appropriate value, which will never be MARPA_ERR_NONE.

103

30 History of the Marpa algorithm

This chapter is a quick summary of the most important events in Marpa’s development.
My “timeline” of the major events in parsing theory has a much broader scope, and also
includes more detail about Marpa’s development. See Section 31.8 [Timeline], page 105.

• 1970: Jay Earley invents the algorithm that now bears his name See [Bibliography-
Earley-1970], page 104.

• 1991: Joop Leo describes a way to modify Earley’s algorithm so that it runs in O(n)
time for all LR-regular grammars. See [Bibliography-Leo-1991], page 105. LR-regular
is a vast class of grammars, including all the LR(k) grammars, all grammars parseable
with recursive descent, and regular expressions. LR-regular can safely be thought of as
including all grammars in practical use today, and then some.

• 2002: Aycock and Horspool describe a way to do LR(0) precomputation See
[Bibliography-Aycock-and-Horspool-2002], page 104. for Earley’s algorithm. Their
method makes Earley’s faster in most practical situations, but not all. In particular,
right-recursion remains quadratic in the Aycock and Horspool algorithm. Worst case
is no better than Earley’s. Leo is unaware of Aycock and Horspool’s work and Aycock
and Horspool seem unaware of Leo.

• 2010: Marpa combines the Leo and Aycock-Horspool algorithms in the process making
significant changes to both of them. See [Bibliography-Kegler-2022], page 105. The
result preserves the best features of both. Marpa also tackles the many remaining
implementation issues.

104

31 Annotated bibliography

31.1 Aho and Ullman 1972

The Theory of Parsing, Translation and Compiling, Volume I: Parsing by Alfred Aho and
Jeffrey Ullman (Prentice-Hall: Englewood Cliffs, New Jersey, 1972). I think this was the
standard source for Earley’s algorithm for decades. It certainly was my standard source.
The account of Earley’s algorithm is on pages 320-330.

31.2 Aycock and Horspool 2002

Marpa is based on ideas from John Aycock and R. Nigel Horspool’s “Practical Earley
Parsing”, The Computer Journal, Vol. 45, No. 6, 2002, pp. 620-630. The idea of doing
LR(0) precomputation for Earley’s general parsing algorithm (see [Bibliography-Earley-
1970], page 104), and Marpa’s approach to handling nullable symbols and rules, both came
from this article.

The Aycock and Horspool paper summarizes Earley’s very nicely and is available on
the web: http://www.cs.uvic.ca/~nigelh/Publications/PracticalEarleyParsing.

pdf. Unlike Earley’s 1970 paper (see [Bibliography-Earley-1970], page 104), Aycock and
Horspool 2002 is not easy reading. I have been following this particular topic on and off for
years and nonetheless found this paper very heavy going.

31.3 Dominus 2005

Although my approach to parsing is not influenced by Mark Jason Dominus’s Higher Order
Perl, Mark’s treatment of parsing is an excellent introduction to parsing, especially in a
Perl context. His focus on just about every other technique except general BNF parsing
is pretty much standard, and will help a beginner understand how unconventional Marpa’s
approach is.

Both Mark’s Perl and his English are examples of good writing, and the book is dense
with insights. Mark’s discussion on memoization in Chapter 3 is the best I’ve seen. I wish
I’d bought his book earlier in my coding.

Mark’s book is available on-line. You can download chapter-by-chapter or the whole
thing at once, and you can take your pick of his original sources or PDF, at http://hop.
perl.plover.com/book/. A PDF of the parsing chapter is at http://hop.perl.plover.
com/book/pdf/08Parsing.pdf.

31.4 Earley 1970

Of Jay Earley’s papers on his general parsing algorithm, the most readily available is “An
efficient context-free parsing algorithm”, Communications of the Association for Computing
Machinery, 13:2:94-102, 1970.

Ordinarily, I’d not bother pointing out 35-year old nits in a brilliant and historically
important article. But more than a few people treat this article as not just the first word
in Earley parsing, but the last as well. Many implementations of Earley’s algorithm come,
directly and unaltered, from his paper. These implementers and their users need to be
aware of two issues.

http://www.cs.uvic.ca/~nigelh/Publications/PracticalEarleyParsing.pdf
http://www.cs.uvic.ca/~nigelh/Publications/PracticalEarleyParsing.pdf
http://hop.perl.plover.com/book/
http://hop.perl.plover.com/book/
http://hop.perl.plover.com/book/pdf/08Parsing.pdf
http://hop.perl.plover.com/book/pdf/08Parsing.pdf

Chapter 31: Annotated bibliography 105

First, the recognition engine itself, as described, has a serious bug. There’s an easy
fix, but one that greatly slows down an algorithm whose main problem, in its original
form, was speed. This issue is well laid out by Aycock and Horspool in their article. See
[Bibliography-Aycock-and-Horspool-2002], page 104.

Second, according to Tomita there is a mistake in the parse tree representation. See page
153 of [Bibliography-Grune-and-Jacobs-1990], page 105, page 210 of [Bibliography-Grune-
and-Jacobs-2008], page 105, and the bibliography entry for Earley 1970 in [Bibliography-
Grune-and-Jacobs-2008], page 105. In the printed edition of the 2008 bibliography, the entry
is on page 578, and on the web (ftp://ftp.cs.vu.nl/pub/dick/PTAPG_2nd_Edition/
CompleteList.pdf), it’s on pp. 583-584. My methods for producing parse results from
Earley sets do not come from Earley 1970, so I am taking Tomita’s word on this one.

31.5 Grune and Jacobs 1990

Parsing Techniques: A Practical Guide, by Dick Grune and Ceriel Jacobs, (Ellis Horwood
Limited: Chichester, West Sussex, England, 1990). This book is available on the Web:
http://dickgrune.com/Books/PTAPG_1st_Edition/

31.6 Grune and Jacobs 2008

Parsing Techniques: A Practical Guide, by Dick Grune and Ceriel Jacobs, 2nd Edition.
(Springer: New York NY, 2008). This is the most authoritative and comprehensive intro-
duction to parsing I know of. In theory it requires no mathematics, only a programming
background, but even so it is moderately difficult reading.

This is [Bibliography-Grune-and-Jacobs-1990], page 105, updated. The bibliography for
this book is available in enlarged form on the web: ftp://ftp.cs.vu.nl/pub/dick/

PTAPG_2nd_Edition/CompleteList.pdf.

31.7 Kegler 2022

My writeup of the theory behind Marpa, with proofs of correctness and of my complexity
claims, was first made public in 2013. It was updated in 2022, and can be found on
arxiv.org (https://arxiv.org/abs/1910.08129).

31.8 Timeline

Far more popular than my Marpa theory paper is my Parsing: a timeline. This is a detailed
history of parsing theory, and is available online: https://jeffreykegler.github.io/

personal/timeline_v3.

31.9 Leo 1991

Marpa’s handling of right-recursion uses the ideas in Joop M.I.M. Leo’s “A General Context-
Free Parsing Algorithm Running in Linear Time on Every LR(k) Grammar Without Using
Lookahead”, Theoretical Computer Science, Vol. 82, No. 1, 1991, pp 165-176. This is
a difficult paper. It is available online at http://www.sciencedirect.com/science/

article/pii/030439759190180A, click the PDF icon at the top left.

ftp://ftp.cs.vu.nl/pub/dick/PTAPG_2nd_Edition/CompleteList.pdf
ftp://ftp.cs.vu.nl/pub/dick/PTAPG_2nd_Edition/CompleteList.pdf
http://dickgrune.com/Books/PTAPG_1st_Edition/
ftp://ftp.cs.vu.nl/pub/dick/PTAPG_2nd_Edition/CompleteList.pdf
ftp://ftp.cs.vu.nl/pub/dick/PTAPG_2nd_Edition/CompleteList.pdf
https://arxiv.org/abs/1910.08129
https://jeffreykegler.github.io/personal/timeline_v3
https://jeffreykegler.github.io/personal/timeline_v3
http://www.sciencedirect.com/science/article/pii/030439759190180A
http://www.sciencedirect.com/science/article/pii/030439759190180A

Chapter 31: Annotated bibliography 106

31.10 Wikipedia

Wikipedia’s article on Backus-Naur form is http: / / en . wikipedia . org / wiki /

Backus-Naur_form. It’s a great place to start if you don’t know the basics of grammars
and parsing. As Wikipedia points out, BNF might better be called Panini-Backus Form.
The grammarian Panini gave a precise description of Sanskrit more than 23 centuries
earlier in India using a similar notation.

http://en.wikipedia.org/wiki/Backus-Naur_form
http://en.wikipedia.org/wiki/Backus-Naur_form

107

Index of terms

This index is of terms that are used in a special sense in this document. Not every use of
these terms is indexed — only those uses that are in some way defining.

A
accessible . 7
accessible rule . 39
accessible symbol . 37
activate (a completion symbol event) 72
activate (a nulled symbol event) 74
activate (a prediction symbol event) 76
active (valuator) . 66
active parse . 18
advanced input model . 93
advanced models of input . 16
ambiguous . 10
ancestor . 9
ancestor (object) . 12
ancestor, proper . 9
ancestor, trivial . 9
ancestry-recoverable hard failure 29
application . 4
application behavior . 11
applications, exhaustion-hating 18
applications, exhaustion-loving 18
archetypal Libmarpa application 31
at (a location, wrt a symbol) . 9

B
base (object) . 13
base grammar (of a time object) 13
basic models of input . 16
behavior, application . 11
behavior, diagnostic . 11
BNF . 5
BNF node . 9
boolean . 4
boolean value . 4

C
child (of a node) . 9
child object (of a time object) 12
children (of a node) . 8
context-free grammar . 6
counted symbol . 43
current vertex (of a progress report traverser) . . 56
cycle . 8
cycle-free . 8

D
dense variable-length input model 93
derivation . 6
derivation step . 6
derives . 6
derives, directly . 6
descendant . 10
descendant (object) . 12
descendant, proper . 10
descendant, trivial . 10
diagnostic behavior . 11
directly derives . 6

E
earleme . 15
earleme, current . 15
earleme, empty . 94
earleme, furthest . 16
earleme, latest . 15
Earley item warning threshold 53
Earley set, end of parse . 58
Earley set, latest . 15
empty earleme . 94
empty rule . 6
empty sentence . 7
empty string . 7
End of parse Earley set . 58
Evaluating (a tree) . 11
event, expected symbol . 78
event-generating (method) . 71
event-safe (method) . 71
exhausted parse . 18
exhaustion-hating applications 18
exhaustion-loving applications 18
expected symbol event . 78

F
failure . 26
failure, ancestry-recoverable hard 29
failure, fully recoverable hard 30
failure, hard . 27
failure, irrecoverable hard . 28
failure, Libmarpa application programming 26
failure, library-recoverable hard 28
failure, memory allocation . 27
failure, partially recoverable hard 28
failure, soft . 27, 30
failure, undetected . 27
forest . 10

Index of terms 108

frozen ordering . 60
fully recoverable hard failure 30

G
grammar . 5

H
hard failure . 27
hard failure, ancestry-recoverable 29
hard failure, fully recoverable 30
hard failure, irrecoverable . 28
hard failure, library-recoverable 28
hard failure, partially recoverable 28

I
ID (of an Earley set) . 15
iff . 4
immediately previous (to a
marpa_r_earleme_complete() call) 16

in use (LHS terminals) . 99
inaccessible . 7
inactive (valuator) . 67
indeterminate value . 4
indirect . 6
infinitely ambiguous . 8
input . 5
input model, advanced . 93
input model, dense variable-length 93
input model, sparse variable-length 93
input model, variable-length token 93
input sentence . 5
input text . 5
input, advanced models of . 16
input, basic models of . 16
instance . 8
instance (of a symbol) . 8
irrecoverable hard failure . 28
iterator, parse tree . 62

L
labeled ordered tree . 8
labeled ordered tree node. 8
language . 5, 7
leaf (node) . 9
leaf node . 9
left hand side . 6
left-recursive . 8
length . 5, 6
length (of a node) . 8
lexer . 5
lexical analysis . 5
lexical analyzer . 5
lexing . 5
LHS . 6

LHS (of a rule node) . 9
LHS terminals in use . 99
Libmarpa application programming failure 26
Libmarpa application programming success 26
Libmarpa application, archetypal 31
library-recoverable hard failure 28
locked terminal status . 99
locked value status (of a symbol) 101

M
mark (as a completion event symbol) 72
mark (as a nulled event symbol) 74
mark (as a prediction event symbol) 76
matches . 7
max(x,y) . 4
memory allocation failur . 27
method . 4
models of input, advanced . 16
models of input, basic . 16

N
next vertex (of a progress report traverser) 56
node (of a tree) . 8
node length . 8
node, labeled ordered tree . 8
non-empty . 7
non-nullable . 7
non-nulling . 7
non-trivial . 6
null derivation . 7
null parse . 7
null vertex . 55
nullable rule . 7, 39
nullable symbol . 7, 37
nulled (of a symbol) . 9
nulled node . 9
nulled symbol instance . 9
nulling node . 9
nulling rule . 7, 39
nulling symbol . 7, 37

O
ordering, frozen . 60
ordinal (of an Earley set) . 15
our . 4

Index of terms 109

P
parent (wrt a node) . 9
parent object (of a time object) 12
parse (forest) . 10
parse (output of a parser) . 10
parse forest . 10
parse tree . 62
parse tree iterator . 62
parse, active . 18
parse, exhausted . 18
parser . 5
parsing . 5
Parsing in the loose sense . 5
parsing in the strict sense . 5
partially recoverable hard failure 28
pause (a parent tree iterator) 66
previous (to a marpa_r_earleme_

complete() call), immediately 16
produces . 7
productive . 7
productive rule . 40
productive symbol . 38
progress report item . 55
progress report traverser . 55
proper ancestor . 9
proper descendant . 10

R
raw input . 5
reachable . 7
recognizer . 5
recursive . 7
report item . 55
RHS . 6
RHS (of a rule node) . 9
right hand side . 6
right-recursive . 8
root node . 10
Ruby Slippers . 49
rule . 5
rule node . 9
rule, accessible . 39
rule, nullable . 7, 39
rule, nulling . 7, 39
rule, productive . 40

S
scanner . 5
scanning . 5
semantics . 5, 11
sentence . 5
sentential form . 5
sequence node . 9
sequence rule . 6
soft failure . 27, 30
sparse variable-length input model 93

start node . 10
step . 6
step (of a valuator) . 67
step type . 67
step type, valuator . 67
string . 5
success . 26
success, Libmarpa application programming 26
successful . 7
symbol . 5
symbol instance, nulled . 9
symbol string . 5
symbol string input . 5
symbol, accessible . 37
symbol, counted . 43
symbol, nullable . 37
symbol, nulling . 37
symbol, productive . 38
symbol, unvalued . 100

T
terminal node . 9
terminal status (of a symbol) 99
token node . 9
token stream . 5
tokens . 5
trap representations . 92
trap value . 4
traverser, progress report . 55
tree . 8, 62
tree node . 8
tree node, labeled ordered . 8
tree, labeled ordered . 8
trivial ancestor . 9
trivial derivation . 6
trivial descendant . 10

U
undefined behavior . 4
undetected failure . 27
unproductive . 7
unreachable . 7
unspecified behavior . 4
unspecified value . 4
unvalued symbol . 100
us . 4
useless . 7
user . 4

Index of terms 110

V
valuator . 64
valuator step . 67
valuator step type . 67
value . 5, 11
value status, locked (of a symbol) 101
value, boolean . 4
variable-length input model, dense 93
variable-length input model, sparse 93

variable-length token input model 93
vertex, current (of a progress

report traverser) . 56
vertex, next (of a progress report traverser) 56
vertex, null . 55

W
we . 4

	No warranty
	Updates

	About this document
	How to read this document
	Prerequisites

	Overview of Libmarpa
	Terms, definitions and notation
	Miscellaneous definitions
	Parsing theory preliminaries
	Stages of parsing
	Rules
	Derivations
	Nulling
	Useless rules
	Recursion and cycles
	Trees
	Traversal
	Ambiguity
	Evaluating a parse
	Semantics terms
	Application and diagnostic behavior

	Architecture
	Major objects
	Time objects
	Reference counting
	Numbered objects

	Input
	Earlemes
	The traditional input model
	The latest earleme
	The current earleme
	The furthest earleme

	The basic models of input
	The standard model of input
	Ambiguous input

	Terminals

	Exhaustion
	Semantics
	Threads
	Sequence rules
	Nullability
	Nullability in the valuator
	Assigning semantics to nulled symbols
	Evaluating nulled symbols
	Example of nulled symbol

	Failure
	Libmarpa's approach to failure
	User non-conformity to specified behavior
	Classifying failure
	Memory allocation failure
	Undetected failure
	Irrecoverable hard failure
	Partially recoverable hard failure
	Library-recoverable hard failure
	Ancestry-recoverable hard failure
	Fully recoverable hard failure
	Soft failure
	Error codes

	Introduction to the method descriptions
	About the overviews
	Naming conventions
	Return values
	How to read the method descriptions

	Static methods
	Configuration methods
	Grammar methods
	Overview
	Creating a new grammar
	Tracking the reference count of the grammar
	Symbol methods
	Rule methods
	Sequence methods
	Rank methods
	Precomputing the Grammar

	Recognizer methods
	Recognizer overview
	Creating a new recognizer
	Keeping the reference count of a recognizer
	Life cycle mutators
	Location accessors
	Other parse status methods

	Progress reports
	Bocage methods
	Overview
	Bocage data structure
	Creating a new bocage
	Reference counting
	Accessors

	Ordering methods
	Overview
	Freezing the ordering
	Creating an ordering
	Reference counting
	Accessors
	Non-default ordering

	Tree methods
	Overview
	Creating a new tree iterator
	Reference counting
	Iterating through the trees

	Value methods
	Overview
	How to use the valuator
	Advantages of step-driven valuation
	Maintaining the stack
	Sizing the stack

	Creating a new valuator
	Reference counting
	Stepping through the valuator
	Valuator step types
	Basic step accessors
	Step location accessors

	Events
	Overview
	Basic event accessors
	Completion events
	Symbol nulled events
	Prediction events
	Symbol expected events
	Event codes

	Error methods, macros and codes
	Error methods
	Error Macros
	External error codes
	Internal error codes

	Technical notes
	Elizabeth Scott's SPPFs
	Data types used by Libmarpa
	Why so many time objects?
	Numbered objects
	Trap representations

	Advanced input models
	The dense variable-length token model
	The fully general input model

	Support
	Futures
	Nulling versus nulled
	Document pre-conditions more formally
	Simpler events interface
	Better defined ambiguity metric
	Report item traverser should be a time object
	Orthogonal treatment of soft failures
	Orthogonal treatment of exhaustion
	Furthest earleme values
	Additional recoverable failures in marpa_r_alternative()
	Untested methods
	Zero-width assertion methods
	Methods for revising parses

	Deprecated techniques and methods
	LHS terminals
	Overview of LHS terminals
	Motivation of LHS terminals
	LHS terminal methods
	Precomputation and LHS terminals
	Nulling terminals

	Valued and unvalued symbols
	What unvalued symbols were
	Grammar methods dealing with unvalued symbols
	Registering semantics in the valuator

	History of the Marpa algorithm
	Annotated bibliography
	Aho and Ullman 1972
	Aycock and Horspool 2002
	Dominus 2005
	Earley 1970
	Grune and Jacobs 1990
	Grune and Jacobs 2008
	Kegler 2022
	Timeline
	Leo 1991
	Wikipedia

	Index of terms

