Package 'rsparse'

June 28, 2024
Type Package
Title Statistical Learning on Sparse Matrices
Version 0.5.2
Maintainer Dmitriy Selivanov selivanov.dmitriy@gmail.com
Description Implements many algorithms for statistical learning on sparse matrices - matrix factorizations, matrix completion, elastic net regressions, factorization machines.
Also 'rsparse' enhances 'Matrix' package by providing methods for multithreaded <sparse, dense> matrix products and native slicing of the sparse matrices in Compressed Sparse Row (CSR) format.
List of the algorithms for regression problems:

1) Elastic Net regression via Follow The Proximally-Regularized Leader (FTRL) Stochastic Gradient Descent (SGD), as per McMahan et al(, doi:10.1145/2487575.2488200)
2) Factorization Machines via SGD, as per Rendle (2010, doi:10.1109/ICDM.2010.127)

List of algorithms for matrix factorization and matrix completion:

1) Weighted Regularized Matrix Factorization (WRMF) via Alternating Least

Squares (ALS) - paper by Hu, Koren, Volinsky (2008, doi:10.1109/ICDM.2008.22)
2) Maximum-Margin Matrix Factorization via ALS, paper by Rennie, Srebro
(2005, doi:10.1145/1102351.1102441)
3) Fast Truncated Singular Value Decomposition (SVD), Soft-Thresholded SVD, Soft-Impute matrix completion via ALS - paper by Hastie, Mazumder et al. (2014, doi:10.48550/arXiv.1410.2596)
4) Linear-Flow matrix factorization, from 'Practical linear models for large-scale one-class collaborative filtering' by Sedhain, Bui, Kawale et al (2016, ISBN:978-1-57735-770-4)
5) GlobalVectors (GloVe) matrix factorization via SGD, paper by Pennington, Socher, Manning (2014, https://aclanthology.org/D14-1162/) Package is reasonably fast and memory efficient - it allows to work with large datasets - millions of rows and millions of columns. This is particularly useful for practitioners working on recommender systems.
License GPL (>= 2)
Encoding UTF-8
LazyData true
ByteCompile true
Depends R (>= 3.6.0), methods, Matrix ($>=1.3$)
Imports MatrixExtra ($>=0.1 .7$), Rcpp ($>=0.11$), data.table ($>=$1.10.0), float ($>=0.2-2$), RhpcBLASctl, $\operatorname{lgr}(>=0.2)$
LinkingTo Rcpp, RcppArmadillo (>= 0.9.100.5.0)
Suggests testhat, covr
StagedInstall TRUE
URL https://github.com/dselivanov/rsparse
BugReports https://github.com/dselivanov/rsparse/issues
RoxygenNote 7.3.1
NeedsCompilation yes
Author Dmitriy Selivanov [aut, cre, cph]
(https://orcid.org/0000-0001-5413-1506),
David Cortes [ctb],Drew Schmidt [ctb] (configure script for BLAS, LAPACK detection),Wei-Chen Chen [ctb] (configure script and work on linking to floatpackage)
Repository CRAN
Date/Publication 2024-06-28 09:30:02 UTC
Contents
detect_number_omp_threads 2
FactorizationMachine 3
FTRL 5
GloVe 7
LinearFlow 9
metrics 11
movielens100k 12
PureSVD 13
ScaleNormalize 15
soft_impute 16
WRMF 18
Index 21

```
detect_number_omp_threads
```

Detects number of OpenMP threads in the system

Description

Detects number of OpenMP threads in the system respecting environment variables such as OMP_NUM_THREADS and OMP_THREAD_LIMIT

Usage

detect_number_omp_threads()

FactorizationMachine Second order Factorization Machines

Description

Creates second order Factorization Machines model

Methods

Public methods:

- FactorizationMachine\$new()
- FactorizationMachine\$partial_fit()
- FactorizationMachine\$fit()
- FactorizationMachine\$predict()
- FactorizationMachine\$clone()

Method new(): creates Creates second order Factorization Machines model
Usage:
FactorizationMachine\$new(
learning_rate_w = 0.2,
rank = 4,
lambda_w = 0,
lambda_v = 0,
family = c("binomial", "gaussian"), intercept = TRUE, learning_rate_v = learning_rate_w
)
Arguments:
learning_rate_w learning rate for features intercations
rank dimension of the latent dimensions which models features interactions
lambda_w regularization for features interactions
lambda_v regularization for features
family one of "binomial", "gaussian"
intercept logical, indicates whether or not include intecept to the model
learning_rate_v learning rate for features
Method partial_fit(): fits/updates model
Usage:
FactorizationMachine\$partial_fit(x, y, weights = rep(1, length(y)), ...)
Arguments:

```
x input sparse matrix. Native format is Matrix::RsparseMatrix. If x is in different format, model will try to convert it to RsparseMatrix with as(x, "RsparseMatrix"). Dimensions should be (n_samples, n_features)
\(y\) vector of targets
weights numeric vector of length 'n_samples'. Defines how to amplify SGD updates for each sample. May be useful for highly unbalanced problems.
. . . not used at the moment
```

Method fit(): shorthand for applying 'partial_fit' 'n_iter' times
Usage:
FactorizationMachine\$fit(x, y, weights = rep(1, length(y)), n_iter = 1L, ...)
Arguments:
x input sparse matrix. Native format is Matrix: :RsparseMatrix. If x is in different format, model will try to convert it to RsparseMatrix with as (x, "RsparseMatrix"). Dimensions should be ($n _$samples, $\left.n _f e a t u r e s\right)$
y vector of targets
weights numeric vector of length 'n_samples'. Defines how to amplify SGD updates for each sample. May be useful for highly unbalanced problems.
n_iter number of SGD epochs
. . . not used at the moment
Method predict(): makes predictions based on fitted model

```
Usage:
FactorizationMachine$predict(x, ...)
Arguments:
x input sparse matrix of shape (n_samples, n_featires)
. . . not used at the moment
```

Method clone(): The objects of this class are cloneable with this method.
Usage:
FactorizationMachine\$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

```
# Factorization Machines can fit XOR function!
x = rbind(
    c(0, 0),
    c(0, 1),
    c(1, 0),
    c(1, 1)
)
y = c(0, 1, 1, 0)
x = as(x, "RsparseMatrix")
```

```
fm = FactorizationMachine$new(learning_rate_w = 10, rank = 2, lambda_w = 0,
    lambda_v = 0, family = 'binomial', intercept = TRUE)
res = fm$fit(x, y, n_iter = 100)
preds = fm$predict(x)
all(preds[c(1, 4)] < 0.01)
all(preds[c(2, 3)] > 0.99)
```

FTRL

Logistic regression model with FTRL proximal SGD solver.

Description

Creates 'Follow the Regularized Leader' model. Only logistic regression implemented at the moment.

Methods

Public methods:

- FTRL\$new()
- FTRL\$partial_fit()
- FTRL\$fit()
- FTRL\$predict()
- FTRL\$coef()
- FTRL\$clone()

Method new(): creates a model
Usage:
FTRL\$new(
learning_rate $=0.1$, learning_rate_decay $=0.5$, lambda $=0$, l1_ratio $=1$, dropout $=0$, family = c("binomial")
)
Arguments:
learning_rate learning rate
learning_rate_decay learning rate which controls decay. Please refer to FTRL proximal paper for details. Usually convergense does not heavily depend on this parameter, so default value 0.5 is safe.
lambda regularization parameter
l1_ratio controls L1 vs L2 penalty mixing. $1=$ Lasso regression, $0=$ Ridge regression. Elastic net is in between
dropout dropout - percentage of random features to exclude from each sample. Acts as regularization.
family a description of the error distribution and link function to be used in the model. Only binomial (logistic regression) is implemented at the moment.

Method partial_fit(): fits model to the data
Usage:
FTRL\$partial_fit(x, y, weights = rep(1, length(y)), ...)

Arguments:

x input sparse matrix. Native format is Matrix: :RsparseMatrix. If x is in different format, model will try to convert it to RsparseMatrix with as (x, "RsparseMatrix"). Dimensions should be (n _samples, n _features)
y vector of targets
weights numeric vector of length 'n_samples'. Defines how to amplify SGD updates for each sample. May be useful for highly unbalanced problems.
. . . not used at the moment
Method fit(): shorthand for applying 'partial_fit' 'n_iter' times
Usage:
FTRL\$fit(x, y, weights = rep(1, length(y)), n_iter = 1L, ...)
Arguments:
x input sparse matrix. Native format is Matrix: :RsparseMatrix. If x is in different format, model will try to convert it to RsparseMatrix with as (x, "RsparseMatrix"). Dimensions should be ($n _$samples, $\left.n _f e a t u r e s\right)$
y vector of targets
weights numeric vector of length 'n_samples'. Defines how to amplify SGD updates for each sample. May be useful for highly unbalanced problems.
n_iter number of SGD epochs
. . . not used at the moment
Method predict(): makes predictions based on fitted model
Usage:
FTRL\$predict(x, ...)
Arguments:
x input matrix
. . . not used at the moment
Method coef(): returns coefficients of the regression model
Usage:
FTRL\$coef()
Method clone(): The objects of this class are cloneable with this method.
Usage:
FTRL\$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

```
library(rsparse)
library(Matrix)
i = sample(1000, 1000 * 100, TRUE)
\(j=\operatorname{sample}(1000,1000 * 100\), TRUE)
y \(=\) sample(c(0, 1), 1000, TRUE)
\(x=\operatorname{sample}(c(-1,1), 1000 * 100\), TRUE \()\)
odd \(=\operatorname{seq}(1,99,2)\)
\(x[i \quad \% i n \%\) which \((y==1) \& j \% i n \%\) odd] \(=1\)
\(x=\operatorname{sparseMatrix}(i=i, j=j, x=x, \operatorname{dims}=c(1000,1000)\), repr="R")
ftrl = FTRL\$new(learning_rate \(=0.01\), learning_rate_decay \(=0.1\),
lambda \(=10\), l1_ratio \(=1\), dropout \(=0\) )
ftrl\$partial_fit(x, y)
\(w=f t r l \$ c o e f()\)
head(w)
sum(w != 0)
p = ftrl\$predict(x)
```


GloVe

Global Vectors

Description

Creates Global Vectors matrix factorization model

Public fields

components represents context embeddings
bias_i bias term i as per paper
bias_j bias term j as per paper
shuffle logical = FALSE by default. Whether to perform shuffling before each SGD iteration. Generally shuffling is a good practice for SGD.

Methods

Public methods:

- GloVe\$new()
- GloVe\$fit_transform()
- GloVe\$get_history()
- GloVe\$clone()

Method new(): Creates GloVe model object
Usage:

```
GloVe$new(
    rank,
    x_max,
    learning_rate = 0.15,
    alpha = 0.75,
    lambda = 0,
    shuffle = FALSE,
    init = list(w_i = NULL, b_i = NULL, w_j = NULL, b_j = NULL)
)
Arguments:
rank desired dimension for the latent vectors
x_max integer maximum number of co-occurrences to use in the weighting function
learning_rate numeric learning rate for SGD. I do not recommend that you modify this parameter, since AdaGrad will quickly adjust it to optimal
alpha numeric \(=0.75\) the alpha in weighting function formula: \(f(x)=1\) if \(x>x_{m} a x ;\) else \(\left(x / x_{m} a x\right)^{a} l p h a\)
lambda numeric \(=0.0\) regularization parameter
shuffle see shuffle field
init list( \(\left.w_{-} i=N U L L, b_{-} i=N U L L, w_{-} j=N U L L, b_{-} j=N U L L\right)\) initialization for embeddings ( \(\left.w_{-} i, w_{-} j\right)\) and biases ( \(b_{-} i, b_{-} j\) ). \(w_{-} i, w_{-} j-\) numeric matrices, should have \#rows = rank, \#columns = expected number of rows \(\left(w_{-} \_\right) / \operatorname{columns}\left(w_{-} j\right)\) in the input matrix. \(b_{-} i, b_{-} j\) = numeric vectors, should have length of \#expected number of rows(b_i) / columns(b_j) in input matrix
```


Method fit_transform(): fits model and returns embeddings

Usage:

```
GloVe$fit_transform(
    x,
    n_iter = 10L,
    convergence_tol = -1,
    n_threads = getOption("rsparse_omp_threads", 1L),
)
```

Arguments:
x An input term co-occurence matrix. Preferably in dgTMatrix format
n_iter integer number of SGD iterations
convergence_tol numeric $=-1$ defines early stopping strategy. Stop fitting when one of two following conditions will be satisfied: (a) passed all iterations (b) cost_previous_iter / cost_current_iter - 1 < convergence_tol.
n_{-}threads number of threads to use
. . . not used at the moment
Method get_history (): returns value of the loss function for each epoch
Usage:
GloVe\$get_history()
Method clone(): The objects of this class are cloneable with this method.

Usage:

GloVe\$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

References

http://nlp.stanford.edu/projects/glove/

Examples

```
data('movielens100k')
co_occurence = crossprod(movielens100k)
glove_model = GloVe$new(rank = 4, x_max = 10, learning_rate = .25)
embeddings = glove_model$fit_transform(co_occurence, n_iter = 2, n_threads = 1)
embeddings = embeddings + t(glove_model$components) # embeddings + context embedings
identical(dim(embeddings), c(ncol(movielens100k), 10L))
```

```
LinearFlow Linear-FLow model for one-class collaborative filtering
```


Description

Creates Linear-FLow model described in Practical Linear Models for Large-Scale One-Class Collaborative Filtering. The goal is to find item-item (or user-user) similarity matrix which is low-rank and has small Frobenius norm. Such double regularization allows to better control the generalization error of the model. Idea of the method is somewhat similar to Sparse Linear Methods(SLIM) but scales to large datasets much better.

Super class

rsparse: :MatrixFactorizationRecommender -> LinearFlow

Public fields

v right singular vector of the user-item matrix. Size is n_{-}items * rank. In the paper this matrix is called \mathbf{v}

Methods

Public methods:

- LinearFlow\$new()
- LinearFlow\$fit_transform()
- LinearFlow\$transform()
- LinearFlow\$cross_validate_lambda()
- LinearFlow\$clone()

```
Method new(): creates Linear-FLow model with rank latent factors.
    Usage:
LinearFlow$new(
    rank = 8L,
    lambda = 0,
    init = NULL,
    preprocess = identity,
    solve_right_singular_vectors = c("soft_impute", "svd")
)
Arguments:
rank size of the latent dimension
lambda regularization parameter
init initialization of the orthogonal basis.
preprocess identity () by default. User spectified function which will be applied to useritem interaction matrix before running matrix factorization (also applied during inference time before making predictions). For example we may want to normalize each row of useritem matrix to have 1 norm. Or apply \(\log 1 \mathrm{p}()\) to discount large counts.
solve_right_singular_vectors type of the solver for initialization of the orthogonal basis. Original paper uses SVD. See paper for details.
```

Method fit_transform(): performs matrix factorization
Usage:
LinearFlow\$fit_transform(x, ...)
Arguments:
x input matrix
. . . not used at the moment
Method transform(): calculates user embeddings for the new input
Usage:
LinearFlow\$transform(x, ...)
Arguments:
x input matrix
. . . not used at the moment
Method cross_validate_lambda(): performs fast tuning of the parameter 'lambda' with warm re-starts

```
Usage:
LinearFlow$cross_validate_lambda(
    x,
    x_train,
    x_test,
    lambda = "auto@10",
    metric = "map@10",
    not_recommend = x_train,
    ...
)
```


Arguments:

x input user-item interactions matrix. Model performs matrix facrtorization based only on this matrix
x_train user-item interactions matrix. Model recommends items based on this matrix. Usually should be different from ' x ' to avoid overfitting
x_test target user-item interactions. Model will evaluate predictions against this matrix, 'x_test' should be treated as future interactions.
lambda numeric vector - sequaence of regularization parameters. Supports special value like ‘auto@ 10 '. This will automatically fine a sequence of lambda of length 10 . This is recommended way to check for 'lambda'.
metric a metric against which model will be evaluated for top-k recommendations. Currently only map@k and ndcg@k are supported (k can be any integer)
not_recommend matrix same shape as 'x_train'. Specifies which items to not recommend for each user.
. . . not used at the moment
Method clone(): The objects of this class are cloneable with this method.
Usage:
LinearFlow\$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

References

- http://www.bkveton.com/docs/ijcai2016.pdf
- https://www-users.cse.umn.edu/~ningx005/slides/ICDM2011_slides.pdf

Examples

```
data("movielens100k")
train = movielens100k[1:900, ]
cv = movielens100k[901:nrow(movielens100k), ]
model = LinearFlow$new(
    rank = 10, lambda = 0,
    solve_right_singular_vectors = "svd"
)
user_emb = model$fit_transform(train)
preds = model$predict(cv, k = 10)
```

metrics Ranking Metrics for Top-K Items

Description

ap_k calculates Average Precision at K (ap@k). Please refer to Information retrieval wikipedia article
ndcg_k() calculates Normalized Discounted Cumulative Gain at K (ndcg@k). Please refer to Discounted cumulative gain

Usage

```
ap_k(predictions, actual, ...)
ndcg_k(predictions, actual, ...)
```


Arguments

predictions matrix of predictions. Predctions can be defined 2 ways:

1. predictions = integer matrix with item indices (correspond to column numbers in actual)
2. predictions = character matrix with item identifiers (characters which correspond to colnames(actual)) which has attribute "indices" (integer matrix with item indices which correspond to column numbers in actual).
actual sparse Matrix of relevant items. Each non-zero entry considered as relevant item. Value of the each non-zero entry considered as relevance for calculation of ndcg@k. It should inherit from Matrix::sparseMatrix. Internally Matrix: :RsparseMatrix is used.
... other arguments (not used at the moment)

Examples

```
    predictions = matrix(
        c(5L, 7L, 9L, 2L),
        nrow = 1
    )
    actual = matrix(
    c(0, 0, 0, 0, 1, 0, 1, 0, 1, 0),
    nrow = 1
)
actual = as(actual, "RsparseMatrix")
identical(rsparse::ap_k(predictions, actual), 1)
```

```
movielens100k MovieLens 100K Dataset
```


Description

This data set consists of:

1. 100,000 ratings (1-5) from 943 users on 1682 movies.
2. Each user has rated at least 20 movies.

MovieLens data sets were collected by the GroupLens Research Project at the University of Minnesota.

Usage

data("movielens100k")

Format

A sparse column-compressed matrix (Matrix: :dgCMatrix) with 943 rows and 1682 columns.

1. rows are users
2. columns are movies
3. values are ratings

Source

https://en.wikipedia.org/wiki/MovieLens\#Datasets

```
PureSVD PureSVD recommender model decompomposition
```


Description

Creates PureSVD recommender model. Solver is based on Soft-SVD which is very similar to truncated SVD but optionally adds regularization based on nuclear norm.

Super class

rsparse::MatrixFactorizationRecommender -> PureSVD

Methods

Public methods:

- PureSVD\$new()
- PureSVD\$fit_transform()
- PureSVD\$transform()
- PureSVD\$clone()

Method new(): create PureSVD model

Usage:
PureSVD\$new(
rank = 10L
lambda = 0,
init = NULL,
preprocess = identity,

$$
\text { method }=c(" s v d ", \text { impute" })
$$

)
Arguments:
rank size of the latent dimension
lambda regularization parameter
init initialization of item embeddings
preprocess identity() by default. User spectified function which will be applied to useritem interaction matrix before running matrix factorization (also applied during inference time before making predictions). For example we may want to normalize each row of useritem matrix to have 1 norm. Or apply $\log 1 p()$ to discount large counts.
method type of the solver for initialization of the orthogonal basis. Original paper uses SVD. See paper for details.
. . . not used at the moment

Method fit_transform(): performs matrix factorization

Usage:
PureSVD\$fit_transform(x, n_iter = 100L, convergence_tol = 0.001, ...)

Arguments:

x input sparse user-item matrix (of class dgCMatrix)
n_iter maximum number of iterations
convergence_tol numeric = -Inf defines early stopping strategy. Stops fitting when one of two following conditions will be satisfied: (a) passed all iterations (b) relative change of Frobenious norm of the two consequent solution is less then provided convergence_tol.
. . . not used at the moment
Method transform(): calculates user embeddings for the new input
Usage:
PureSVD\$transform(x, ...)

Arguments:

x input matrix
. . . not used at the moment
Method clone(): The objects of this class are cloneable with this method.
Usage:
PureSVD\$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

```
data('movielens100k')
i_train = sample(nrow(movielens100k), 900)
i_test = setdiff(seq_len(nrow(movielens100k)), i_train)
train = movielens100k[i_train, ]
test = movielens100k[i_test, ]
rank = 32
lambda = 0
model = PureSVD$new(rank = rank, lambda = lambda)
user_emb = model$fit_transform(sign(test), n_iter = 100, convergence_tol = 0.00001)
item_emb = model$components
preds = model$predict(sign(test), k = 1500, not_recommend = NULL)
mean(ap_k(preds, actual = test))
```


Description

scales input user-item interaction matrix as per eq (16) from the paper. Usage of such rescaled matrix with [PureSVD] model will be equal to running PureSVD on the scaled cosine-based interitem similarity matrix.

Public fields

norm which norm model should make equal to one
scale how to rescale norm vector

Methods

Public methods:

- ScaleNormalize\$new()
- ScaleNormalize\$fit()
- ScaleNormalize\$transform()
- ScaleNormalize\$fit_transform()
- ScaleNormalize\$clone()

Method new(): creates model
Usage:
ScaleNormalize\$new(scale = 0.5, norm = 2, target = c("rows", "columns"))
Arguments:
scale numeric, how to rescale norm vector
norm numeric, which norm model should make equal to one
target character, defines whether rows or columns should be rescaled
Method fit(): fits the modes
Usage:
ScaleNormalize\$fit(x)
Arguments:
x input sparse matrix
Method transform(): transforms new matrix
Usage:
ScaleNormalize\$transform(x)
Arguments:
x input sparse matrix

Method fit_transform(): fits the model and transforms input
Usage:
ScaleNormalize\$fit_transform(x)
Arguments:
x input sparse matrix
Method clone(): The objects of this class are cloneable with this method.
Usage:
ScaleNormalize\$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

References

See EigenRec: Generalizing PureSVD for Effective and Efficient Top-N Recommendations for details.

```
soft_impute SoftImpute/SoftSVD matrix factorization
```


Description

Fit SoftImpute/SoftSVD via fast alternating least squares. Based on the paper by Trevor Hastie, Rahul Mazumder, Jason D. Lee, Reza Zadeh by "Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares" - http://arxiv.org/pdf/1410. 2596

Usage

soft_impute(
x ,
rank = 10L,
lambda = 0,
n_iter = 100L,
convergence_tol = 0.001,
init = NULL,
final_svd = TRUE
)
soft_svd(
x ,
rank = 10L,
lambda = 0,
n_iter = 100L,
convergence_tol = 0.001,
init = NULL,
final_svd = TRUE
)

Arguments

x
sparse matrix. Both CSR dgRMatrix and CSC dgCMatrix are supported. CSR matrix is preffered because in this case algorithm will benefit from multithreaded CSR * dense matrix products (if OpenMP is supported on your platform). On many-cores machines this reduces fitting time significantly.
rank maximum rank of the low-rank solution.
lambda regularization parameter for the nuclear norm
n_iter maximum number of iterations of the algorithms
convergence_tol
convergence tolerance. Internally functions keeps track of the relative change of the Frobenious norm of the two consequent iterations. If the change is less than convergence_tol then the process is considered as converged and function returns result.
init svd like object with u, v, d components to initialize algorithm. Algorithm benefit from warm starts. init could be rank up rank of the maximum allowed rank. If init has rank less than max rank it will be padded automatically.
final_svd logical whether need to make final preprocessing with SVD. This is not necessary but cleans up rank nicely - hithly recommnded to leave it TRUE.

Value

svd-like object - list (u, v, d). u, v, d components represent left, right singular vectors and singular values.

Examples

```
set.seed(42)
data('movielens100k')
k = 10
seq_k = seq_len(k)
m = movielens100k[1:100, 1:200]
svd_ground_true = svd(m)
svd_soft_svd = soft_svd(m, rank = k, n_iter = 100, convergence_tol = 1e-6)
m_restored_svd = svd_ground_true$u[, seq_k] %*%
    diag(x = svd_ground_true$d[seq_k]) %*%
    t(svd_ground_true$v[, seq_k])
m_restored_soft_svd = svd_soft_svd$u %*%
    diag(x = svd_soft_svd$d) %*%
    t(svd_soft_svd$v)
all.equal(m_restored_svd, m_restored_soft_svd, tolerance = 1e-1)
```


Description

Creates a matrix factorization model which is solved through Alternating Least Squares (Weighted
ALS for implicit feedback). For implicit feedback see "Collaborative Filtering for Implicit Feedback Datasets" (Hu, Koren, Volinsky). For explicit feedback it corresponds to the classic model for rating matrix decomposition with MSE error. These two algorithms are proven to work well in recommender systems.

Super class

rsparse: :MatrixFactorizationRecommender -> WRMF

Methods

Public methods:

- WRMF\$new()
- WRMF\$fit_transform()
- WRMF\$transform()
- WRMF\$clone()

Method new(): creates WRMF model
Usage:
WRMF\$new(
rank = 10L,
lambda $=0$, dynamic_lambda $=$ TRUE, init = NULL,
preprocess = identity, feedback = c("implicit", "explicit"),
solver = c("conjugate_gradient", "cholesky", "nnls"),
with_user_item_bias = FALSE,
with_global_bias = FALSE,
cg_steps = 3L,
precision = c("double", "float"),
)

Arguments:
rank size of the latent dimension
lambda regularization parameter
dynamic_lambda whether 'lambda' is to be scaled according to the number
init initialization of item embeddings
preprocess identity() by default. User spectified function which will be applied to useritem interaction matrix before running matrix factorization (also applied during inference time before making predictions). For example we may want to normalize each row of useritem matrix to have 1 norm. Or apply $\log 1 p()$ to discount large counts. This corresponds to the "confidence" function from "Collaborative Filtering for Implicit Feedback Datasets" paper. Note that it will not automatically add +1 to the weights of the positive entries.
feedback character - feedback type - one of c("implicit", "explicit")
solver character - solver name. One of c("conjugate_gradient", "cholesky", "nnls"). Usually approximate "conjugate_gradient" is significantly faster and solution is on par with "cholesky". "nnls" performs non-negative matrix factorization (NNMF) - restricts user and item embeddings to be non-negative.
with_user_item_bias bool controls if model should calculate user and item biases. At the moment only implemented for "explicit" feedback.
with_global_bias bool controls if model should calculate global biases (mean). At the moment only implemented for "explicit" feedback.
cg_steps integer >0-max number of internal steps in conjugate gradient (if "conjugate_gradient" solver used). cg_steps $=3$ by default. Controls precision of linear equation solution at the each ALS step. Usually no need to tune this parameter
precision one of c("double", "float"). Should embedding matrices be numeric or float (from float package). The latter is usually $2 x$ faster and consumes less RAM. BUT float matrices are not "base" objects. Use carefully.
. . . not used at the moment
Method fit_transform(): fits the model
Usage:
WRMF\$fit_transform(
x,
n_iter = 10L,
convergence_tol = ifelse(private\$feedback == "implicit", 0.005, 0.001),
\qquad
)
Arguments:
x input matrix (preferably matrix in CSC format - 'CsparseMatrix‘
n_iter max number of ALS iterations
convergence_tol convergence tolerance checked between iterations
. . . not used at the moment
Method transform(): create user embeddings for new input
Usage:
WRMF\$transform(x, ...)
Arguments:
x user-item iteraction matrix (preferrably as 'dgRMatrix')
. . . not used at the moment
Method clone(): The objects of this class are cloneable with this method.

Usage:
WRMF\$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

References

- Hu, Yifan, Yehuda Koren, and Chris Volinsky. "Collaborative filtering for implicit feedback datasets." 2008 Eighth IEEE International Conference on Data Mining. Ieee, 2008.
- https://math.stackexchange.com/questions/1072451/analytic-solution-for-matrix-factorization-us 1073170\#1073170
- http://activisiongamescience.github.io/2016/01/11/Implicit-Recommender-Systems-Biased-Matrix-F
- https://jessesw.com/Rec-System/
- http://www.benfrederickson.com/matrix-factorization/
- http://www.benfrederickson.com/fast-implicit-matrix-factorization/
- Franc, Vojtech, Vaclav Hlavac, and Mirko Navara. "Sequential coordinate-wise algorithm for the non-negative least squares problem." International Conference on Computer Analysis of Images and Patterns. Springer, Berlin, Heidelberg, 2005.
- Zhou, Yunhong, et al. "Large-scale parallel collaborative filtering for the netflix prize." International conference on algorithmic applications in management. Springer, Berlin, Heidelberg, 2008.

Examples

```
data('movielens100k')
train = movielens100k[1:900, ]
cv = movielens100k[901:nrow(movielens100k), ]
model = WRMF$new(rank = 5, lambda = 0, feedback = 'implicit')
user_emb = model$fit_transform(train, n_iter = 5, convergence_tol = -1)
item_emb = model$components
preds = model$predict(cv, k = 10, not_recommend = cv)
```


Index

```
* datasets
    movielens100k, 12
ap_k (metrics), 11
detect_number_omp_threads, 2
FactorizationMachine, 3
FTRL, 5
GloVe, }
LinearFlow, }
metrics,11
movielens100k, 12
ndcg_k (metrics), 11
PureSVD,13
rsparse::MatrixFactorizationRecommender,
    9,13,18
ScaleNormalize, 15
soft_impute, 16
soft_svd(soft_impute), 16
svd, 17
WRMF,18
```

