
Package ‘rsparse’
June 28, 2024

Type Package

Title Statistical Learning on Sparse Matrices

Version 0.5.2

Maintainer Dmitriy Selivanov <selivanov.dmitriy@gmail.com>

Description Implements many algorithms for statistical learning on
sparse matrices - matrix factorizations, matrix completion,
elastic net regressions, factorization machines.
Also 'rsparse' enhances 'Matrix' package by providing methods for
multithreaded <sparse, dense> matrix products and native slicing of
the sparse matrices in Compressed Sparse Row (CSR) format.
List of the algorithms for regression problems:
1) Elastic Net regression via Follow The Proximally-Regularized Leader (FTRL)
Stochastic Gradient Descent (SGD), as per McMahan et al(, <doi:10.1145/2487575.2488200>)
2) Factorization Machines via SGD, as per Rendle (2010, <doi:10.1109/ICDM.2010.127>)
List of algorithms for matrix factorization and matrix completion:
1) Weighted Regularized Matrix Factorization (WRMF) via Alternating Least
Squares (ALS) - paper by Hu, Koren, Volinsky (2008, <doi:10.1109/ICDM.2008.22>)
2) Maximum-Margin Matrix Factorization via ALS, paper by Rennie, Srebro
(2005, <doi:10.1145/1102351.1102441>)
3) Fast Truncated Singular Value Decomposition (SVD), Soft-Thresholded SVD,
Soft-Impute matrix completion via ALS - paper by Hastie, Mazumder
et al. (2014, <doi:10.48550/arXiv.1410.2596>)
4) Linear-Flow matrix factorization, from 'Practical linear models for
large-scale one-class collaborative filtering' by Sedhain, Bui, Kawale et al
(2016, ISBN:978-1-57735-770-4)
5) GlobalVectors (GloVe) matrix factorization via SGD, paper by Pennington,
Socher, Manning (2014, <https://aclanthology.org/D14-1162/>)
Package is reasonably fast and memory efficient - it allows to work with large
datasets - millions of rows and millions of columns. This is particularly useful
for practitioners working on recommender systems.

License GPL (>= 2)

Encoding UTF-8

LazyData true

ByteCompile true

1

https://doi.org/10.1145/2487575.2488200
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1145/1102351.1102441
https://doi.org/10.48550/arXiv.1410.2596
https://aclanthology.org/D14-1162/

2 detect_number_omp_threads

Depends R (>= 3.6.0), methods, Matrix (>= 1.3)

Imports MatrixExtra (>= 0.1.7), Rcpp (>= 0.11), data.table (>=
1.10.0), float (>= 0.2-2), RhpcBLASctl, lgr (>= 0.2)

LinkingTo Rcpp, RcppArmadillo (>= 0.9.100.5.0)

Suggests testthat, covr

StagedInstall TRUE

URL https://github.com/dselivanov/rsparse

BugReports https://github.com/dselivanov/rsparse/issues

RoxygenNote 7.3.1

NeedsCompilation yes

Author Dmitriy Selivanov [aut, cre, cph]
(<https://orcid.org/0000-0001-5413-1506>),

David Cortes [ctb],
Drew Schmidt [ctb] (configure script for BLAS, LAPACK detection),
Wei-Chen Chen [ctb] (configure script and work on linking to float

package)

Repository CRAN

Date/Publication 2024-06-28 09:30:02 UTC

Contents
detect_number_omp_threads . 2
FactorizationMachine . 3
FTRL . 5
GloVe . 7
LinearFlow . 9
metrics . 11
movielens100k . 12
PureSVD . 13
ScaleNormalize . 15
soft_impute . 16
WRMF . 18

Index 21

detect_number_omp_threads

Detects number of OpenMP threads in the system

Description

Detects number of OpenMP threads in the system respecting environment variables such as OMP_NUM_THREADS
and OMP_THREAD_LIMIT

https://github.com/dselivanov/rsparse
https://github.com/dselivanov/rsparse/issues
https://orcid.org/0000-0001-5413-1506

FactorizationMachine 3

Usage

detect_number_omp_threads()

FactorizationMachine Second order Factorization Machines

Description

Creates second order Factorization Machines model

Methods

Public methods:
• FactorizationMachine$new()

• FactorizationMachine$partial_fit()

• FactorizationMachine$fit()

• FactorizationMachine$predict()

• FactorizationMachine$clone()

Method new(): creates Creates second order Factorization Machines model

Usage:
FactorizationMachine$new(
learning_rate_w = 0.2,
rank = 4,
lambda_w = 0,
lambda_v = 0,
family = c("binomial", "gaussian"),
intercept = TRUE,
learning_rate_v = learning_rate_w

)

Arguments:

learning_rate_w learning rate for features intercations
rank dimension of the latent dimensions which models features interactions
lambda_w regularization for features interactions
lambda_v regularization for features
family one of "binomial", "gaussian"
intercept logical, indicates whether or not include intecept to the model
learning_rate_v learning rate for features

Method partial_fit(): fits/updates model

Usage:
FactorizationMachine$partial_fit(x, y, weights = rep(1, length(y)), ...)

Arguments:

4 FactorizationMachine

x input sparse matrix. Native format is Matrix::RsparseMatrix. If x is in different format,
model will try to convert it to RsparseMatrix with as(x, "RsparseMatrix"). Dimensions
should be (n_samples, n_features)

y vector of targets
weights numeric vector of length ‘n_samples‘. Defines how to amplify SGD updates for each

sample. May be useful for highly unbalanced problems.
... not used at the moment

Method fit(): shorthand for applying ‘partial_fit‘ ‘n_iter‘ times

Usage:
FactorizationMachine$fit(x, y, weights = rep(1, length(y)), n_iter = 1L, ...)

Arguments:
x input sparse matrix. Native format is Matrix::RsparseMatrix. If x is in different format,

model will try to convert it to RsparseMatrix with as(x, "RsparseMatrix"). Dimensions
should be (n_samples, n_features)

y vector of targets
weights numeric vector of length ‘n_samples‘. Defines how to amplify SGD updates for each

sample. May be useful for highly unbalanced problems.
n_iter number of SGD epochs
... not used at the moment

Method predict(): makes predictions based on fitted model

Usage:
FactorizationMachine$predict(x, ...)

Arguments:
x input sparse matrix of shape (n_samples, n_featires)
... not used at the moment

Method clone(): The objects of this class are cloneable with this method.

Usage:
FactorizationMachine$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Factorization Machines can fit XOR function!
x = rbind(
c(0, 0),
c(0, 1),
c(1, 0),
c(1, 1)

)
y = c(0, 1, 1, 0)

x = as(x, "RsparseMatrix")

FTRL 5

fm = FactorizationMachine$new(learning_rate_w = 10, rank = 2, lambda_w = 0,
lambda_v = 0, family = 'binomial', intercept = TRUE)

res = fm$fit(x, y, n_iter = 100)
preds = fm$predict(x)
all(preds[c(1, 4)] < 0.01)
all(preds[c(2, 3)] > 0.99)

FTRL Logistic regression model with FTRL proximal SGD solver.

Description

Creates ’Follow the Regularized Leader’ model. Only logistic regression implemented at the mo-
ment.

Methods

Public methods:
• FTRL$new()

• FTRL$partial_fit()

• FTRL$fit()

• FTRL$predict()

• FTRL$coef()

• FTRL$clone()

Method new(): creates a model

Usage:
FTRL$new(
learning_rate = 0.1,
learning_rate_decay = 0.5,
lambda = 0,
l1_ratio = 1,
dropout = 0,
family = c("binomial")

)

Arguments:
learning_rate learning rate
learning_rate_decay learning rate which controls decay. Please refer to FTRL proximal

paper for details. Usually convergense does not heavily depend on this parameter, so default
value 0.5 is safe.

lambda regularization parameter
l1_ratio controls L1 vs L2 penalty mixing. 1 = Lasso regression, 0 = Ridge regression. Elastic

net is in between
dropout dropout - percentage of random features to exclude from each sample. Acts as regu-

larization.

6 FTRL

family a description of the error distribution and link function to be used in the model. Only
binomial (logistic regression) is implemented at the moment.

Method partial_fit(): fits model to the data

Usage:
FTRL$partial_fit(x, y, weights = rep(1, length(y)), ...)

Arguments:
x input sparse matrix. Native format is Matrix::RsparseMatrix. If x is in different format,

model will try to convert it to RsparseMatrix with as(x, "RsparseMatrix"). Dimensions
should be (n_samples, n_features)

y vector of targets
weights numeric vector of length ‘n_samples‘. Defines how to amplify SGD updates for each

sample. May be useful for highly unbalanced problems.
... not used at the moment

Method fit(): shorthand for applying ‘partial_fit‘ ‘n_iter‘ times

Usage:
FTRL$fit(x, y, weights = rep(1, length(y)), n_iter = 1L, ...)

Arguments:
x input sparse matrix. Native format is Matrix::RsparseMatrix. If x is in different format,

model will try to convert it to RsparseMatrix with as(x, "RsparseMatrix"). Dimensions
should be (n_samples, n_features)

y vector of targets
weights numeric vector of length ‘n_samples‘. Defines how to amplify SGD updates for each

sample. May be useful for highly unbalanced problems.
n_iter number of SGD epochs
... not used at the moment

Method predict(): makes predictions based on fitted model

Usage:
FTRL$predict(x, ...)

Arguments:
x input matrix
... not used at the moment

Method coef(): returns coefficients of the regression model

Usage:
FTRL$coef()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FTRL$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

GloVe 7

Examples

library(rsparse)
library(Matrix)
i = sample(1000, 1000 * 100, TRUE)
j = sample(1000, 1000 * 100, TRUE)
y = sample(c(0, 1), 1000, TRUE)
x = sample(c(-1, 1), 1000 * 100, TRUE)
odd = seq(1, 99, 2)
x[i %in% which(y == 1) & j %in% odd] = 1
x = sparseMatrix(i = i, j = j, x = x, dims = c(1000, 1000), repr="R")

ftrl = FTRL$new(learning_rate = 0.01, learning_rate_decay = 0.1,
lambda = 10, l1_ratio = 1, dropout = 0)
ftrl$partial_fit(x, y)

w = ftrl$coef()
head(w)
sum(w != 0)
p = ftrl$predict(x)

GloVe Global Vectors

Description

Creates Global Vectors matrix factorization model

Public fields

components represents context embeddings

bias_i bias term i as per paper

bias_j bias term j as per paper

shuffle logical = FALSE by default. Whether to perform shuffling before each SGD iteration.
Generally shuffling is a good practice for SGD.

Methods

Public methods:

• GloVe$new()

• GloVe$fit_transform()

• GloVe$get_history()

• GloVe$clone()

Method new(): Creates GloVe model object

Usage:

8 GloVe

GloVe$new(
rank,
x_max,
learning_rate = 0.15,
alpha = 0.75,
lambda = 0,
shuffle = FALSE,
init = list(w_i = NULL, b_i = NULL, w_j = NULL, b_j = NULL)

)

Arguments:
rank desired dimension for the latent vectors
x_max integer maximum number of co-occurrences to use in the weighting function
learning_rate numeric learning rate for SGD. I do not recommend that you modify this

parameter, since AdaGrad will quickly adjust it to optimal
alpha numeric = 0.75 the alpha in weighting function formula : f(x) = 1ifx > xmax; else(x/xmax)alpha

lambda numeric = 0.0 regularization parameter
shuffle see shuffle field
init list(w_i = NULL, b_i = NULL, w_j = NULL, b_j = NULL) initialization for embeddings

(w_i, w_j) and biases (b_i, b_j). w_i, w_j - numeric matrices, should have #rows = rank,
#columns = expected number of rows (w_i) / columns(w_j) in the input matrix. b_i, b_j
= numeric vectors, should have length of #expected number of rows(b_i) / columns(b_j) in
input matrix

Method fit_transform(): fits model and returns embeddings

Usage:
GloVe$fit_transform(
x,
n_iter = 10L,
convergence_tol = -1,
n_threads = getOption("rsparse_omp_threads", 1L),
...

)

Arguments:
x An input term co-occurence matrix. Preferably in dgTMatrix format
n_iter integer number of SGD iterations
convergence_tol numeric = -1 defines early stopping strategy. Stop fitting when one of two

following conditions will be satisfied: (a) passed all iterations (b) cost_previous_iter /
cost_current_iter - 1 < convergence_tol.

n_threads number of threads to use
... not used at the moment

Method get_history(): returns value of the loss function for each epoch

Usage:
GloVe$get_history()

Method clone(): The objects of this class are cloneable with this method.

LinearFlow 9

Usage:
GloVe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

http://nlp.stanford.edu/projects/glove/

Examples

data('movielens100k')
co_occurence = crossprod(movielens100k)
glove_model = GloVe$new(rank = 4, x_max = 10, learning_rate = .25)
embeddings = glove_model$fit_transform(co_occurence, n_iter = 2, n_threads = 1)
embeddings = embeddings + t(glove_model$components) # embeddings + context embedings
identical(dim(embeddings), c(ncol(movielens100k), 10L))

LinearFlow Linear-FLow model for one-class collaborative filtering

Description

Creates Linear-FLow model described in Practical Linear Models for Large-Scale One-Class Col-
laborative Filtering. The goal is to find item-item (or user-user) similarity matrix which is low-rank
and has small Frobenius norm. Such double regularization allows to better control the generaliza-
tion error of the model. Idea of the method is somewhat similar to Sparse Linear Methods(SLIM)
but scales to large datasets much better.

Super class

rsparse::MatrixFactorizationRecommender -> LinearFlow

Public fields

v right singular vector of the user-item matrix. Size is n_items * rank. In the paper this matrix is
called v

Methods

Public methods:
• LinearFlow$new()

• LinearFlow$fit_transform()

• LinearFlow$transform()

• LinearFlow$cross_validate_lambda()

• LinearFlow$clone()

http://nlp.stanford.edu/projects/glove/
http://www.bkveton.com/docs/ijcai2016.pdf
http://www.bkveton.com/docs/ijcai2016.pdf

10 LinearFlow

Method new(): creates Linear-FLow model with rank latent factors.
Usage:
LinearFlow$new(
rank = 8L,
lambda = 0,
init = NULL,
preprocess = identity,
solve_right_singular_vectors = c("soft_impute", "svd")

)

Arguments:
rank size of the latent dimension
lambda regularization parameter
init initialization of the orthogonal basis.
preprocess identity() by default. User spectified function which will be applied to user-

item interaction matrix before running matrix factorization (also applied during inference
time before making predictions). For example we may want to normalize each row of user-
item matrix to have 1 norm. Or apply log1p() to discount large counts.

solve_right_singular_vectors type of the solver for initialization of the orthogonal basis.
Original paper uses SVD. See paper for details.

Method fit_transform(): performs matrix factorization
Usage:
LinearFlow$fit_transform(x, ...)

Arguments:
x input matrix
... not used at the moment

Method transform(): calculates user embeddings for the new input
Usage:
LinearFlow$transform(x, ...)

Arguments:
x input matrix
... not used at the moment

Method cross_validate_lambda(): performs fast tuning of the parameter ‘lambda‘ with warm
re-starts

Usage:
LinearFlow$cross_validate_lambda(
x,
x_train,
x_test,
lambda = "auto@10",
metric = "map@10",
not_recommend = x_train,
...

)

metrics 11

Arguments:
x input user-item interactions matrix. Model performs matrix facrtorization based only on this

matrix
x_train user-item interactions matrix. Model recommends items based on this matrix. Usually

should be different from ‘x‘ to avoid overfitting
x_test target user-item interactions. Model will evaluate predictions against this matrix, ‘x_test‘

should be treated as future interactions.
lambda numeric vector - sequaence of regularization parameters. Supports special value like

‘auto@10‘. This will automatically fine a sequence of lambda of length 10. This is recom-
mended way to check for ‘lambda‘.

metric a metric against which model will be evaluated for top-k recommendations. Currently
only map@k and ndcg@k are supported (k can be any integer)

not_recommend matrix same shape as ‘x_train‘. Specifies which items to not recommend for
each user.

... not used at the moment

Method clone(): The objects of this class are cloneable with this method.
Usage:
LinearFlow$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

• http://www.bkveton.com/docs/ijcai2016.pdf

• https://www-users.cse.umn.edu/~ningx005/slides/ICDM2011_slides.pdf

Examples

data("movielens100k")
train = movielens100k[1:900,]
cv = movielens100k[901:nrow(movielens100k),]
model = LinearFlow$new(
rank = 10, lambda = 0,
solve_right_singular_vectors = "svd"

)
user_emb = model$fit_transform(train)
preds = model$predict(cv, k = 10)

metrics Ranking Metrics for Top-K Items

Description

ap_k calculates Average Precision at K (ap@k). Please refer to Information retrieval wikipedia
article

ndcg_k() calculates Normalized Discounted Cumulative Gain at K (ndcg@k). Please refer to
Discounted cumulative gain

http://www.bkveton.com/docs/ijcai2016.pdf
https://www-users.cse.umn.edu/~ningx005/slides/ICDM2011_slides.pdf
https://en.wikipedia.org/wiki/Information_retrieval#Average_precision
https://en.wikipedia.org/wiki/Information_retrieval#Average_precision
https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG

12 movielens100k

Usage

ap_k(predictions, actual, ...)

ndcg_k(predictions, actual, ...)

Arguments

predictions matrix of predictions. Predctions can be defined 2 ways:

1. predictions = integer matrix with item indices (correspond to column
numbers in actual)

2. predictions = character matrix with item identifiers (characters which
correspond to colnames(actual)) which has attribute "indices" (integer
matrix with item indices which correspond to column numbers in actual).

actual sparse Matrix of relevant items. Each non-zero entry considered as relevant
item. Value of the each non-zero entry considered as relevance for calcula-
tion of ndcg@k. It should inherit from Matrix::sparseMatrix. Internally
Matrix::RsparseMatrix is used.

... other arguments (not used at the moment)

Examples

predictions = matrix(
c(5L, 7L, 9L, 2L),
nrow = 1

)
actual = matrix(

c(0, 0, 0, 0, 1, 0, 1, 0, 1, 0),
nrow = 1

)
actual = as(actual, "RsparseMatrix")
identical(rsparse::ap_k(predictions, actual), 1)

movielens100k MovieLens 100K Dataset

Description

This data set consists of:

1. 100,000 ratings (1-5) from 943 users on 1682 movies.

2. Each user has rated at least 20 movies.

MovieLens data sets were collected by the GroupLens Research Project at the University of Min-
nesota.

Usage

data("movielens100k")

PureSVD 13

Format

A sparse column-compressed matrix (Matrix::dgCMatrix) with 943 rows and 1682 columns.

1. rows are users

2. columns are movies

3. values are ratings

Source

https://en.wikipedia.org/wiki/MovieLens#Datasets

PureSVD PureSVD recommender model decompomposition

Description

Creates PureSVD recommender model. Solver is based on Soft-SVD which is very similar to
truncated SVD but optionally adds regularization based on nuclear norm.

Super class

rsparse::MatrixFactorizationRecommender -> PureSVD

Methods

Public methods:
• PureSVD$new()

• PureSVD$fit_transform()

• PureSVD$transform()

• PureSVD$clone()

Method new(): create PureSVD model

Usage:
PureSVD$new(
rank = 10L,
lambda = 0,
init = NULL,
preprocess = identity,
method = c("svd", "impute"),
...

)

Arguments:
rank size of the latent dimension
lambda regularization parameter
init initialization of item embeddings

https://en.wikipedia.org/wiki/MovieLens#Datasets

14 PureSVD

preprocess identity() by default. User spectified function which will be applied to user-
item interaction matrix before running matrix factorization (also applied during inference
time before making predictions). For example we may want to normalize each row of user-
item matrix to have 1 norm. Or apply log1p() to discount large counts.

method type of the solver for initialization of the orthogonal basis. Original paper uses SVD.
See paper for details.

... not used at the moment

Method fit_transform(): performs matrix factorization

Usage:
PureSVD$fit_transform(x, n_iter = 100L, convergence_tol = 0.001, ...)

Arguments:
x input sparse user-item matrix(of class dgCMatrix)
n_iter maximum number of iterations
convergence_tol numeric = -Inf defines early stopping strategy. Stops fitting when one of

two following conditions will be satisfied: (a) passed all iterations (b) relative change of
Frobenious norm of the two consequent solution is less then provided convergence_tol.

... not used at the moment

Method transform(): calculates user embeddings for the new input

Usage:
PureSVD$transform(x, ...)

Arguments:
x input matrix
... not used at the moment

Method clone(): The objects of this class are cloneable with this method.

Usage:
PureSVD$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

data('movielens100k')
i_train = sample(nrow(movielens100k), 900)
i_test = setdiff(seq_len(nrow(movielens100k)), i_train)
train = movielens100k[i_train,]
test = movielens100k[i_test,]
rank = 32
lambda = 0
model = PureSVD$new(rank = rank, lambda = lambda)
user_emb = model$fit_transform(sign(test), n_iter = 100, convergence_tol = 0.00001)
item_emb = model$components
preds = model$predict(sign(test), k = 1500, not_recommend = NULL)
mean(ap_k(preds, actual = test))

ScaleNormalize 15

ScaleNormalize Re-scales input matrix proportinally to item popularity

Description

scales input user-item interaction matrix as per eq (16) from the paper. Usage of such rescaled
matrix with [PureSVD] model will be equal to running PureSVD on the scaled cosine-based inter-
item similarity matrix.

Public fields

norm which norm model should make equal to one

scale how to rescale norm vector

Methods

Public methods:
• ScaleNormalize$new()

• ScaleNormalize$fit()

• ScaleNormalize$transform()

• ScaleNormalize$fit_transform()

• ScaleNormalize$clone()

Method new(): creates model

Usage:
ScaleNormalize$new(scale = 0.5, norm = 2, target = c("rows", "columns"))

Arguments:

scale numeric, how to rescale norm vector
norm numeric, which norm model should make equal to one
target character, defines whether rows or columns should be rescaled

Method fit(): fits the modes

Usage:
ScaleNormalize$fit(x)

Arguments:

x input sparse matrix

Method transform(): transforms new matrix

Usage:
ScaleNormalize$transform(x)

Arguments:

x input sparse matrix

16 soft_impute

Method fit_transform(): fits the model and transforms input
Usage:
ScaleNormalize$fit_transform(x)

Arguments:
x input sparse matrix

Method clone(): The objects of this class are cloneable with this method.
Usage:
ScaleNormalize$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

See EigenRec: Generalizing PureSVD for Effective and Efficient Top-N Recommendations for
details.

soft_impute SoftImpute/SoftSVD matrix factorization

Description

Fit SoftImpute/SoftSVD via fast alternating least squares. Based on the paper by Trevor Hastie,
Rahul Mazumder, Jason D. Lee, Reza Zadeh by "Matrix Completion and Low-Rank SVD via Fast
Alternating Least Squares" - http://arxiv.org/pdf/1410.2596

Usage

soft_impute(
x,
rank = 10L,
lambda = 0,
n_iter = 100L,
convergence_tol = 0.001,
init = NULL,
final_svd = TRUE

)

soft_svd(
x,
rank = 10L,
lambda = 0,
n_iter = 100L,
convergence_tol = 0.001,
init = NULL,
final_svd = TRUE

)

http://arxiv.org/pdf/1511.06033
http://arxiv.org/pdf/1410.2596

soft_impute 17

Arguments

x sparse matrix. Both CSR dgRMatrix and CSC dgCMatrix are supported. CSR
matrix is preffered because in this case algorithm will benefit from multithreaded
CSR * dense matrix products (if OpenMP is supported on your platform). On
many-cores machines this reduces fitting time significantly.

rank maximum rank of the low-rank solution.

lambda regularization parameter for the nuclear norm

n_iter maximum number of iterations of the algorithms

convergence_tol

convergence tolerance. Internally functions keeps track of the relative change
of the Frobenious norm of the two consequent iterations. If the change is less
than convergence_tol then the process is considered as converged and function
returns result.

init svd like object with u, v, d components to initialize algorithm. Algorithm ben-
efit from warm starts. init could be rank up rank of the maximum allowed
rank. If init has rank less than max rank it will be padded automatically.

final_svd logical whether need to make final preprocessing with SVD. This is not nec-
essary but cleans up rank nicely - hithly recommnded to leave it TRUE.

Value

svd-like object - list(u, v, d). u, v, d components represent left, right singular vectors and
singular values.

Examples

set.seed(42)
data('movielens100k')
k = 10
seq_k = seq_len(k)
m = movielens100k[1:100, 1:200]
svd_ground_true = svd(m)
svd_soft_svd = soft_svd(m, rank = k, n_iter = 100, convergence_tol = 1e-6)
m_restored_svd = svd_ground_true$u[, seq_k] %*%

diag(x = svd_ground_true$d[seq_k]) %*%
t(svd_ground_true$v[, seq_k])

m_restored_soft_svd = svd_soft_svd$u %*%
diag(x = svd_soft_svd$d) %*%
t(svd_soft_svd$v)

all.equal(m_restored_svd, m_restored_soft_svd, tolerance = 1e-1)

18 WRMF

WRMF Weighted Regularized Matrix Factorization for collaborative filtering

Description

Creates a matrix factorization model which is solved through Alternating Least Squares (Weighted
ALS for implicit feedback). For implicit feedback see "Collaborative Filtering for Implicit Feed-
back Datasets" (Hu, Koren, Volinsky). For explicit feedback it corresponds to the classic model
for rating matrix decomposition with MSE error. These two algorithms are proven to work well in
recommender systems.

Super class

rsparse::MatrixFactorizationRecommender -> WRMF

Methods

Public methods:

• WRMF$new()

• WRMF$fit_transform()

• WRMF$transform()

• WRMF$clone()

Method new(): creates WRMF model

Usage:
WRMF$new(
rank = 10L,
lambda = 0,
dynamic_lambda = TRUE,
init = NULL,
preprocess = identity,
feedback = c("implicit", "explicit"),
solver = c("conjugate_gradient", "cholesky", "nnls"),
with_user_item_bias = FALSE,
with_global_bias = FALSE,
cg_steps = 3L,
precision = c("double", "float"),
...

)

Arguments:

rank size of the latent dimension
lambda regularization parameter
dynamic_lambda whether ‘lambda‘ is to be scaled according to the number
init initialization of item embeddings

WRMF 19

preprocess identity() by default. User spectified function which will be applied to user-
item interaction matrix before running matrix factorization (also applied during inference
time before making predictions). For example we may want to normalize each row of user-
item matrix to have 1 norm. Or apply log1p() to discount large counts. This corresponds
to the "confidence" function from "Collaborative Filtering for Implicit Feedback Datasets"
paper. Note that it will not automatically add +1 to the weights of the positive entries.

feedback character - feedback type - one of c("implicit", "explicit")

solver character - solver name. One of c("conjugate_gradient", "cholesky", "nnls").
Usually approximate "conjugate_gradient" is significantly faster and solution is on par
with "cholesky". "nnls" performs non-negative matrix factorization (NNMF) - restricts
user and item embeddings to be non-negative.

with_user_item_bias bool controls if model should calculate user and item biases. At the
moment only implemented for "explicit" feedback.

with_global_bias bool controls if model should calculate global biases (mean). At the mo-
ment only implemented for "explicit" feedback.

cg_steps integer > 0 - max number of internal steps in conjugate gradient (if "conjugate_gradient"
solver used). cg_steps = 3 by default. Controls precision of linear equation solution at the
each ALS step. Usually no need to tune this parameter

precision one of c("double", "float"). Should embedding matrices be numeric or float
(from float package). The latter is usually 2x faster and consumes less RAM. BUT float
matrices are not "base" objects. Use carefully.

... not used at the moment

Method fit_transform(): fits the model

Usage:
WRMF$fit_transform(
x,
n_iter = 10L,
convergence_tol = ifelse(private$feedback == "implicit", 0.005, 0.001),
...

)

Arguments:

x input matrix (preferably matrix in CSC format -‘CsparseMatrix‘
n_iter max number of ALS iterations
convergence_tol convergence tolerance checked between iterations
... not used at the moment

Method transform(): create user embeddings for new input

Usage:
WRMF$transform(x, ...)

Arguments:

x user-item iteraction matrix (preferrably as ‘dgRMatrix‘)
... not used at the moment

Method clone(): The objects of this class are cloneable with this method.

20 WRMF

Usage:
WRMF$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

• Hu, Yifan, Yehuda Koren, and Chris Volinsky. "Collaborative filtering for implicit feedback
datasets." 2008 Eighth IEEE International Conference on Data Mining. Ieee, 2008.

• https://math.stackexchange.com/questions/1072451/analytic-solution-for-matrix-factorization-using-alternating-least-squares/
1073170#1073170

• http://activisiongamescience.github.io/2016/01/11/Implicit-Recommender-Systems-Biased-Matrix-Factorization/

• https://jessesw.com/Rec-System/

• http://www.benfrederickson.com/matrix-factorization/

• http://www.benfrederickson.com/fast-implicit-matrix-factorization/

• Franc, Vojtech, Vaclav Hlavac, and Mirko Navara. "Sequential coordinate-wise algorithm for
the non-negative least squares problem." International Conference on Computer Analysis of
Images and Patterns. Springer, Berlin, Heidelberg, 2005.

• Zhou, Yunhong, et al. "Large-scale parallel collaborative filtering for the netflix prize." Inter-
national conference on algorithmic applications in management. Springer, Berlin, Heidelberg,
2008.

Examples

data('movielens100k')
train = movielens100k[1:900,]
cv = movielens100k[901:nrow(movielens100k),]
model = WRMF$new(rank = 5, lambda = 0, feedback = 'implicit')
user_emb = model$fit_transform(train, n_iter = 5, convergence_tol = -1)
item_emb = model$components
preds = model$predict(cv, k = 10, not_recommend = cv)

https://math.stackexchange.com/questions/1072451/analytic-solution-for-matrix-factorization-using-alternating-least-squares/1073170#1073170
https://math.stackexchange.com/questions/1072451/analytic-solution-for-matrix-factorization-using-alternating-least-squares/1073170#1073170
http://activisiongamescience.github.io/2016/01/11/Implicit-Recommender-Systems-Biased-Matrix-Factorization/
https://jessesw.com/Rec-System/
http://www.benfrederickson.com/matrix-factorization/
http://www.benfrederickson.com/fast-implicit-matrix-factorization/

Index

∗ datasets
movielens100k, 12

ap_k (metrics), 11

detect_number_omp_threads, 2

FactorizationMachine, 3
FTRL, 5

GloVe, 7

LinearFlow, 9

metrics, 11
movielens100k, 12

ndcg_k (metrics), 11

PureSVD, 13

rsparse::MatrixFactorizationRecommender,
9, 13, 18

ScaleNormalize, 15
soft_impute, 16
soft_svd (soft_impute), 16
svd, 17

WRMF, 18

21

	detect_number_omp_threads
	FactorizationMachine
	FTRL
	GloVe
	LinearFlow
	metrics
	movielens100k
	PureSVD
	ScaleNormalize
	soft_impute
	WRMF
	Index

