Package 'Compositional'

July 8, 2024
Type Package
Title Compositional Data Analysis
Version 6.9
Date 2024-07-08
Author Michail Tsagris [aut, cre],
Giorgos Athineou [aut],
Abdulaziz Alenazi [ctb], Christos Adam [ctb]

Maintainer Michail Tsagris mtsagris@uoc.gr
Depends R (>= 4.0)
Imports cluster, doParallel, emplik, energy, foreach, glmnet, graphics, grDevices, quantreg, MASS, Matrix, mda, minpack.lm, mixture, mvhtests, nnet, quadprog, regda, Rfast, Rfast2,
Rnanoflann, sn, stats
Suggests codalm, FlexDir
Description Regression, classification, contour plots, hypothesis testing and fitting of distributions for compositional data are some of the functions included. We further include functions for percentages (or proportions).
The standard textbook for such data is John Aitchison's (1986) ``The statistical analysis of compositional data". Relevant papers include:
a) Tsagris M.T., Preston S. and Wood A.T.A. (2011). ' `A data-based power transformation for compositional data". Fourth International International Workshop on Compositional Data Analysis. <doi:10.48550/arXiv.1106.1451> b) Tsagris M. (2014). '`The k-NN algorithm for compositional data: a revised approach with and without zero values present". Journal of Data Science, 12(3): 519-534. doi:10.6339/JDS.201407_12(3).0008.
c) Tsagris M. (2015). ' `A novel, divergence based, regression for compositional data". Proceedings of the 28th Panhellenic Statistics Conference, 1518 April 2015, Athens, Greece, 430--444. <doi:10.48550/arXiv.1511.07600>. d) Tsagris M. (2015). ` ' Regression analysis with compositional data containing zero values". Chilean Journal of Statistics, 6(2): 47--
57. https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf.
e) Tsagris M., Preston S. and Wood A.T.A. (2016). ' `Improved supervised classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>. f) Tsagris M., Preston S. and Wood A.T.A. (2017). ' ` Nonparametric hypothesis testing for equality of means on the simplex". Journal of Statistical Computation and Simulation, 87(2): 406--422. doi:10.1080/00949655.2016.1216554.
g) Tsagris M. and Stewart C. (2018). ' ' A Dirichlet regression model for compositional data with zeros". Lobachevskii Journal of Mathematics, 39(3): 398-412. doi:10.1134/S1995080218030198.
h) Alenazi A. (2019). '`Regression for compositional data with compositional data as predictor variables with or without zero values". Journal of Data Science, 17(1): 219--238. <doi:10.6339/JDS.201901_17(1).0010>. i) Tsagris M. and Stewart C. (2020). '`A folded model for compositional data analysis". Australian and New Zealand Journal of Statistics, 62(2): 249--
277. doi:10.1111/anzs.12289.
j) Alenazi A. (2021). Alenazi, A. (2023). '`A review of compositional data analysis and recent advances". Communications in Statistics--Theory and Methods, 52(16): 5535-5567. doi:10.1080/03610926.2021.2014890.
k) Alenazi A.A. (2022). ' f -divergence regression models for compositional data". Pakistan Journal of Statistics and Operation Research, 18(4): 867-882. doi:10.18187/pjsor.v18i4.3969.

1) Tsagris M. and Stewart C. (2022). ``A Review of Flexible Transformations for Modeling Compositional Data". In Advances and Innovations in Statistics and Data Science, pp. 225-234. <doi:10.1007/978-3-031-08329-7_10>. m) Tsagris M., Alenazi A. and Stewart C. (2023). ``Flexible non-parametric regression models for compositional response data with zeros". Statistics and Computing, 33(106). doi:10.1007/s11222-023-10277-5.
n) Tsagris. M. (2024). '` Constrained least squares simplicialsimplicial regression". doi:10.48550/arXiv.2403.19835.
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2024-07-08 16:30:02 UTC

Contents

Compositional-package 7
Aitchison's test for two mean vectors and/or covariance matrices 8
All pairwise additive log-ratio transformations 9
Alpha-generalised correlations between two compositional datasets 10
ANOVA for the log-contrast GLM versus the uncostrained GLM 12
ANOVA for the log-contrast regression versus the uncostrained linear regression 13
Beta regression 14
Column-wise MLE of some univariate distributions 15
Contour plot of mixtures of Dirichlet distributions in $\mathrm{S}^{\wedge} 2$ 16
Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2$ 17
Contour plot of the alpha-folded model in $\mathrm{S}^{\wedge} 2$ 18
Contour plot of the Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ 20
Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ 21
Contour plot of the Gaussian mixture model in $\mathrm{S}^{\wedge} 2$ 22
Contour plot of the generalised Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ 23
Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2$ 24
Contour plot of the normal distribution in $S^{\wedge} 2$ 26
Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2$ 27
Contour plot of the t distribution in $\mathrm{S}^{\wedge} 2$ 28
Cross validation for some compositional regression models 29
Cross validation for the alpha-k-NN regression with compositional predictor variables 30
Cross validation for the alpha-k-NN regression with compositional response data 32
Cross validation for the alpha-kernel regression with compositional response data 33
Cross validation for the kernel regression with Euclidean response data 35
Cross validation for the regularised and flexible discriminant analysis with composi- tional data using the alpha-transformation 36
Cross validation for the ridge regression 38
Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation 40
Cross validation for the TFLR model 42
Cross-validation for LASSO with compositional predictors using the alpha-transformation 43Cross-validation for the alpha-SCLS model45
Cross-validation for the alpha-TFLR model 46
Cross-validation for the Dirichlet discriminant analysis 47
Cross-validation for the LASSO Kullback-Leibler divergence based regression 48
Cross-validation for the LASSO log-ratio regression with compositional response 50
Cross-validation for the naive Bayes classifiers for compositional data 51
Cross-validation for the naive Bayes classifiers for compositional data using the alpha- transformation 52
Cross-validation for the SCLS model 54
Density of compositional data from Gaussian mixture models 55
Density of the Flexible Dirichlet distribution 56
Density of the folded normal distribution 57
Density values of a Dirichlet distribution 59
Density values of a generalised Dirichlet distribution 60
Density values of a mixture of Dirichlet distributions 61
Dirichlet discriminant analysis 62
Dirichlet random values simulation 63
Dirichlet regression 64
Distance based regression models for proportions 66
Divergence based regression for compositional data 67
Divergence based regression for compositional data with compositional data in the co- variates side using the alpha-transformation 69
Divergence matrix of compositional data 71
Energy test of equality of distributions using the alpha-transformation 72
Estimating location and scatter parameters for compositional data 74
Estimation of the probability left outside the simplex when using the alpha-transformation 75
Estimation of the value of alpha in the folded model 76
Estimation of the value of alpha via the profile log-likelihood 78
Fast estimation of the value of alpha 79
Gaussian mixture models for compositional data 80
Gaussian mixture models for compositional data using the alpha-transformation 82
Generalised Dirichlet random values simulation 84
Generate random folds for cross-validation 85
Greenacre's power transformation 86
Helper Frechet mean for compositional data 87
Helper functions for the Kullback-Leibler regression 89
Hypothesis testing for two or more compositional mean vectors 90
ICE plot for projection pursuit regression with compositional predictor variables 92
ICE plot for the alpha-k-NN regression 93
ICE plot for the alpha-kernel regression 95
ICE plot for univariate kernel regression 96
Inverse of the alpha-transformation 97
Kernel regression with a numerical response vector or matrix 98
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distri- butions 99
LASSO Kullback-Leibler divergence based regression 100
LASSO log-ratio regression with compositional response 102
LASSO with compositional predictors using the alpha-transformation 103
Log-contrast GLMs with compositional predictor variables 105
Log-contrast logistic or Poisson regression with with multiple compositional predictors 106
Log-contrast quantile regression with compositional predictor variables 108
Log-contrast quantile regression with with multiple compositional predictors 109
Log-contrast regression with compositional predictor variables 111
Log-contrast regression with multiple compositional predictors 112
Log-likelihood ratio test for a Dirichlet mean vector 114
Log-likelihood ratio test for a symmetric Dirichlet distribution 115
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal 116
Mixture model selection via BIC 117
Mixture model selection with the alpha-transformation using BIC 118
MLE for the multivariate t distribution 120
MLE of distributions defined in the $(0,1)$ interval 121
MLE of the Dirichlet distribution 123
MLE of the Dirichlet distribution via Newton-Rapshon 124
MLE of the folded model for a given value of alpha 125
MLE of the zero adjusted Dirichlet distribution 127
Multivariate kernel density estimation 128
Multivariate kernel density estimation for compositional data 129
Multivariate linear regression 130
Multivariate normal random values simulation on the simplex 131
Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation 133
Multivariate regression with compositional data 134
Multivariate skew normal random values simulation on the simplex 136
Multivariate t random values simulation on the simplex 137
Naive Bayes classifiers for compositional data 138
Naive Bayes classifiers for compositional data using the alpha-transformation 140
Non linear least squares regression for compositional data 141
Non-parametric zero replacement strategies 142
Permutation linear independence test in the SCLS model 144
Permutation linear independence test in the TFLR model 145
Permutation test for the matrix of coefficients in the SCLS model 146
Permutation test for the matrix of coefficients in the TFLR model 147
Perturbation operation 148
Plot of the LASSO coefficients 149
Power operation 151
Principal component analysis 152
Principal component analysis using the alpha-transformation 153
Principal component generalised linear models 154
Principal coordinate analysis using the alpha-distance 155
Principal coordinate analysis using the Jensen-Shannon divergence 157
Projection pursuit regression for compositional data 158
Projection pursuit regression with compositional predictor variables 159
Projection pursuit regression with compositional predictor variables using the alpha- transformation 160
Projections based test for distributional equality of two groups 162
Proportionality correlation coefficient matrix 163
Quasi binomial regression for proportions 164
Random values generation from some univariate distributions defined on the $(0,1)$ interval 165
Regression with compositional data using the alpha-transformation 166
Regularised and flexible discriminant analysis for compositional data using the alpha- transformation 168
Ridge regression 170
Ridge regression plot 171
Ridge regression with compositional data in the covariates side using the alpha-transformation 172Ridge regression with the alpha-transformation plot174
Simplicial constrained median regression for compositional responses and predictors model 175
Simulation of compositional data from Gaussian mixture models 176
Simulation of compositional data from mixtures of Dirichlet distributions 177
Simulation of compositional data from the Flexible Dirichlet distribution 178
Simulation of compositional data from the folded normal distribution 180
Spatial median regression 181
Ternary diagram 182
Ternary diagram of regression models 183
Ternary diagram with confidence region for the matrix of coefficients of the SCLS or the TFLR model 185
Ternary diagram with confidence region for the mean 186
Ternary diagram with the coefficients of the simplicial-simplicial regression models 187
The additive log-ratio transformation and its inverse 188
The alpha-distance 189
The alpha-IT transformation 190
The alpha-IT-distance 192
The alpha-k-NN regression for compositional response data 193
The alpha-k-NN regression with compositional predictor variables 194
The alpha-kernel regression with compositional response data 196
The alpha-SCLS model 197
The alpha-TFLR model 198
The alpha-transformation 199
The Box-Cox transformation applied to ratios of components 201
The ESOV-distance 202
The folded power transformation 203
The Frechet mean for compositional data 204
The Helmert sub-matrix 205
The k-nearest neighbours using the alpha-distance 206
The k-NN algorithm for compositional data 208
The multiplicative log-ratio transformation and its inverse 210
The pivot coordinate transformation and its inverse 211
The SCLS model 212
The SCLS model with multiple compositional predictors 213
The TFLR model with multiple compositional predictors 214
The transformation-free linear regression (TFLR) for compositional responses and pre- dictors 216
Total variability 217
Tuning of the alpha-generalised correlations between two compositional datasets 218
Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation 219
Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation 221
Tuning of the $\mathrm{k}-\mathrm{NN}$ algorithm for compositional data 222
Tuning of the projection pursuit regression for compositional data 225
Tuning of the projection pursuit regression with compositional predictor variables 226
Tuning of the projection pursuit regression with compositional predictor variables using the alpha-transformation 227
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation 229 229
Tuning the principal components with GLMs 231
Tuning the value of alpha in the alpha-regression 232
Two-sample test of high-dimensional means for compositional data 234
Unconstrained GLMs with compositional predictor variables 235
Unconstrained linear regression with compositional predictor variables 236
Unconstrained linear regression with multiple compositional predictors 238
Unconstrained logistic or Poisson regression with multiple compositional predictors 239
Unconstrained quantile regression with compositional predictor variables 241
Unconstrained quantile regression with multiple compositional predictors 242
Unit-Weibull regression models for proportions 244
Zero adjusted Dirichlet regression 245
Index 247

Description

A Collection of Functions for Compositional Data Analysis.

Details

Package: Compositional
Type: Package
Version: 6.9
Date: 2024-07-08
License: GPL-2

Maintainers

Michail Tsagris mtsagris@uoc.gr

Note

Acknowledgments:
Michail Tsagris would like to express his acknowledgments to Professor Andy Wood and Professor Simon Preston from the university of Nottingham for being his supervisors during his PhD in compositional data analysis.
We would also like to express our acknowledgments to Profesor Kurt Hornik (and also the rest of the R core team) for his help with this package.
Manos Papadakis, undergraduate student in the department of computer science, university of Crete, is also acknowledged for his programming tips.
Ermanno Affuso from the university of South Alabama suggested that I have a default value in the function mkde.
Van Thang Hoang from Hasselt university spotted a bug in the function js. compreg.
Claudia Wehrhahn Cortes spotted a bug in the function diri.reg.
Philipp Kynast from Bruker Daltonik GmbH found a mistake in the function mkde which is now fixed.
Jasmine Heyse from the university of Ghent spotted a bug in the function kl . compreg which is now fixed.
Magne Neby suggested to add names in the covariance matrix of the divergence based regression models.

John Barry from the Centre for Environment, Fisheries, and Aquaculture Science (UK) suggested that I should add more explanation in the function diri.est. I hope it is clearer now.
Charlotte Fabri and Laura Byrne spotted a possible problem in the function zadr.
Levi Bankston found a bug in the bootstrap version of the function kl. compreg.
Sucharitha Dodamgodage suggested to add an extra case in the function dirimean.test.
Loic Mangnier found a bug in the function lc.glm which is now fixed and also became faster.

Author(s)

Michail Tsagris mtsagris@uoc.gr, Giorgos Athineou gioathineou@gmail.com, Abdulaziz Alenazi a.alenazi@nbu.edu.sa and Christos Adam pada4m4@gmail.com.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

```
Aitchison's test for two mean vectors and/or covariance matrices
    Aitchison's test for two mean vectors and/or covariance matrices
```


Description

Aitchison's test for two mean vectors and/or covariance matrices.

Usage

ait.test(x1, x2, type $=1$, alpha $=0.05)$

Arguments

$x 1$ A matrix containing the compositional data of the first sample. Zeros are not allowed.
$x 2$ A matrix containing the compositional data of the second sample. Zeros are not allowed.
type \quad The type of hypothesis test to perform. Type=1 refers to testing the equality of the mean vectors and the covariance matrices. Type $=2$ refers to testing the equality of the covariance matrices. Type $=2$ refers to testing the equality of the mean vectors.
alpha The significance level, set to 0.05 by default.

Details

The test is described in Aitchison (2003). See the references for more information.

Value

A vector with the test statistic, the p-value, the critical value and the degrees of freedom of the chi-square distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

John Aitchison (2003). The Statistical Analysis of Compositional Data, p. 153-157. Blackburn Press.

See Also

comp.test

Examples

```
x1 <- as.matrix(iris[1:50, 1:4])
x1 <- x1 / rowSums(x1)
x2 <- as.matrix(iris[51:100, 1:4])
x2 <- x2 / rowSums(x2)
ait.test(x1, x2, type = 1)
ait.test(x1, x2, type = 2)
ait.test(x1, x2, type = 3)
```

All pairwise additive log-ratio transformations
All pairwise additive log-ratio transformations

Description

All pairwise additive log-ratio transformations.

Usage

alr.all(x)

Arguments

x
A numerical matrix with the compositional data.

Details

The additive log-ratio transformation with the first component being the commn divisor is applied. Then all the other pairwise log-ratios are computed and added next to each column. For example, divide by the first component, then divide by the second component and so on. This means that no zeros are allowed.

Value

A matrix with all pairwise alr transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

alr, alfa

Examples

```
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
y <- alr.all(x)
```

Alpha-generalised correlations between two compositional datasets
人-generalised correlations between two compositional datasets

Description

α-generalised correlations between two compositional datasets.

Usage

$\operatorname{acor}(\mathrm{y}, \mathrm{x}, \mathrm{a}$, type $=$ "dcor")

Arguments

$y \quad$ A matrix with the compositional data.
$x \quad$ A matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied. If more than one valuesare supplied the distance or canonical correlation are computed for all values.
type The type of correlation to compute, the distance correlation ("edist"), the canonical correlation ("cancor") or "both".

Details

The α-transformation is applied to each composition and then the distance correlation or the canonical correlation is computed. If one value of α is supplied the type="cancor" will return all eigenvalues. If more than one values of α are provided then the first eigenvalue only will be returned.

Value

A vector or a matrix depending on the length of the values of α and the type of the correlation to be computed.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by Correlation of Distances. Annals of Statistics, 35(6): 2769-2794.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

acor.tune, aeqdist.etest, alfa, alfa.profile

Examples

```
y <- rdiri(30, runif(3) )
x <- rdiri(30, runif(4) )
acor(y, x, a = 0.4)
```

ANOVA for the log-contrast GLM versus the uncostrained GLM ANOVA for the log-contrast GLM versus the uncostrained GLM

Description

ANOVA for the log-contrast GLM versus the uncostrained GLM.

Usage

lcglm.aov(mod0, mod1)

Arguments

mod0 The log-contrast GLM. The object returned by lc.glm.
mod1 The unconstrained GLM. The object returned by ulc.glm.

Details

A chi-square test is performed to test the zero-to-sum constraints of the regression coefficients.

Value

A vector with two values, the chi-square test statistic and its associated p-value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

lc.glm, ulc.glm

Examples

```
y <- rbinom(150, 1, 0.5)
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
mod0 <- lc.glm(y, x)
mod1 <- ulc.glm(y, x)
lcglm.aov(mod0, mod1)
```

ANOVA for the log-contrast regression versus the uncostrained linear regression

ANOVA for the log-contrast regression versus the uncostrained linear regression

Description

ANOVA for the log-contrast regression versus the uncostrained linear regression.

Usage

lcreg.aov(mod0, mod1)

Arguments

mod0 The log-contrast regression model. The object returned by lc.reg.
mod1 The unconstrained linear regression model. The object returned by ulc.reg.

Details

An F-test is performed to test the zero-to-sum constraints of the regression coefficients.

Value

A vector with two values, the F test statistic and its associated p -value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

lc.reg, ulc.reg, alfa.pcr, alfa.knn.reg

Examples

```
y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
mod0 <- lc.reg(y, x)
mod1 <- ulc.reg(y, x)
lcreg.aov(mod0, mod1)
```


Description

Beta regression.

Usage

beta.reg(y, x, xnew = NULL)

Arguments

$y \quad$ The response variable. It must be a numerical vector with proportions excluding 0 and 1.
$x \quad$ The indendent variable(s). It can be a vector, a matrix or a dataframe with continuous only variables, a data frame with mixed or only categorical variables.
xnew If you have new values for the predictor variables (dataset) whose response values you want to predict insert them here.

Details

Beta regression is fitted.

Value

A list including:

phi	The estimated precision parameter.
info	A matrix with the estimated regression parameters, their standard errors, Wald statistics and associated p-values.
loglik	The log-likelihood of the regression model. est
	The estimated values if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ferrari S.L.P. and Cribari-Neto F. (2004). Beta Regression for Modelling Rates and Proportions. Journal of Applied Statistics, 31(7): 799-815.

See Also

```
    beta.est, propreg, diri.reg
```


Examples

```
y <- rbeta(300, 3, 5)
x <- matrix( rnorm(300 * 2), ncol = 2)
beta.reg(y, x)
```

Column-wise MLE of some univariate distributions
Column-wise MLE of some univariate distributions

Description

Column-wise MLE of some univariate distributions.

Usage

colbeta.est (x, tol = 1e-07, maxiters = 100, parallel = FALSE)
collogitnorm.est(x)
colunitweibull.est(x, tol = 1e-07, maxiters $=100$, parallel = FALSE)
colzilogitnorm.est(x)

Arguments

x
A numerical matrix with data. Each column refers to a different vector of observations of the same distribution. The values must by percentages, exluding 0 and 1 ,
tol The tolerance value to terminate the Newton-Fisher algorithm.
maxiters The maximum number of iterations to implement.
parallel Do you want to calculations to take place in parallel? The default value is FALSE

Details

For each column, the same distribution is fitted and its parameters and log-likelihood are computed.

Value

A matrix with two, three or four columns. The first one, two or three columns contain the parameter(s) of the distribution, while the last column contains the relevant log-likelihood.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

N.L. Johnson, S. Kotz \& N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).
N.L. Johnson, S. Kotz \& N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2.
J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. de Oliveira \& M. E. Ghitany (2020). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics, DOI:10.1080/02664763.2019.1657813.

See Also

```
beta.est
```


Examples

```
x <- matrix( rbeta(200, 3, 4), ncol = 4 )
a <- colbeta.est(x)
```

Contour plot of mixtures of Dirichlet distributions in $\mathrm{S}^{\wedge} 2$
Contour plot of mixtures of Dirichlet distributions in $S^{\wedge} 2$

Description

Contour plot of mixtures of Dirichlet distributions in S^{2}.

Usage

mixdiri.contour(a, prob, $n=100, x=$ NULL, cont.line $=$ FALSE)

Arguments

a
prob
n
x
cont.line

A matrix where each row contains the parameters of each Dirichlet disctribution.
A vector with the mixing probabilities.
The number of grid points to consider over which the density is calculated.
This is either NULL (no data) or contains a 3 column matrix with compositional data.
Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should he/she wish to.

Value
A ternary diagram with the points and the Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

diri.contour, gendiri.contour, compnorm.contour, comp.kerncontour, mix.compnorm.contour,diri.nr, dda

Examples

```
a <- matrix( c(12, 30, 45, 32, 50, 16), byrow = TRUE,ncol = 3)
prob <- c(0.5, 0.5)
mixdiri.contour(a, prob)
```

Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2$
Contour plot of the α multivariate normal in $S^{\wedge} 2$

Description

Contour plot of the α multivariate normal in S^{2}.

Usage

alfa.contour (m, s, a, $n=100, x=$ NULL, cont.line = FALSE)

Arguments

m
s
a
n
x

The mean vector of the α multivariate normal model.
The covariance matrix of the α multivariate normal model.
The value of a for the α-transformation.
The number of grid points to consider over which the density is calculated.
This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The α-transformation is applied to the compositional data and then for a grid of points within the 2-dimensional simplex, the density of the α multivariate normal is calculated and the contours are plotted.

Value

The contour plot of the α multivariate normal appears.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Tsagris M. and Stewart C. (2022). A Review of Flexible Transformations for Modeling Compositional Data. In Advances and Innovations in Statistics and Data Science, pp. 225-234. https://link.springer.com/chapter/10.10 3-031-08329-7_10
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

folded. contour, compnorm. contour, diri.contour, mix.compnorm.contour, bivt.contour, skewnorm. contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
a <- a.est(x)$best
m <- colMeans(alfa(x, a)$aff)
s <- cov(alfa(x, a)$aff)
alfa.contour(m, s, a)
```

```
Contour plot of the alpha-folded model in S^2
                Contour plot of the \alpha-folded model in S^2
```


Description

Contour plot of the α-folded model in S^{2}.

Usage

folded.contour(mu, su, $\mathrm{p}, \mathrm{a}, \mathrm{n}=100, \mathrm{x}=$ NULL, cont.line $=$ FALSE)

Arguments

mu The mean vector of the folded model.
su The covariance matrix of the folded model.
$\mathrm{p} \quad$ The probability inside the simplex of the folded model.
a The value of a for the α-transformation.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
x
This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The α-transformation is applied to the compositional data and then for a grid of points within the 2-dimensional simplex the folded model's density is calculated and the contours are plotted.

Value

The contour plot of the folded model appears.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Tsagris M. and Stewart C. (2022). A Review of Flexible Transformations for Modeling Compositional Data. In Advances and Innovations in Statistics and Data Science, pp. 225-234. https://link.springer.com/chapter/10.10 3-031-08329-7_10
Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

See Also

alfa.contour, compnorm. contour, diri.contour, mix.compnorm.contour, bivt.contour, skewnorm.contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
a <- a.est(x)$best
mod <- alpha.mle(x, a)
folded.contour(mod$mu, mod$su, mod$p, a)
```

Contour plot of the Dirichlet distribution in $\mathrm{S}^{\wedge} 2$ Contour plot of the Dirichlet distribution in $S^{\wedge} 2$

Description

Contour plot of the Dirichlet distribution in S^{2}.

Usage

diri.contour ($\mathrm{a}, \mathrm{n}=100, \mathrm{x}=$ NULL, cont.line $=$ FALSE)

Arguments

a A vector with three elements corresponding to the 3 (estimated) parameters.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
$x \quad$ This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should he/she wish to.

Value

A ternary diagram with the points and the Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
    mixdiri.contour, gendiri.contour, compnorm.contour,comp.kerncontour, mix.compnorm.contour
```


Examples

```
x <- as.matrix( iris[, 1:3] )
x <- x / rowSums(x)
diri.contour( a = c(3, 4, 2) )
```

Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the Flexible Dirichlet distribution in $S^{\wedge} 2$

Description

Contour plot of the Flexible Dirichlet distribution in S^{2}.

Usage

fd.contour(alpha, prob, tau, $\mathrm{n}=100$, $\mathrm{x}=\mathrm{NULL}$, cont.line $=$ FALSE)

Arguments

alpha A vector of the non-negative α parameters.
prob A vector of the clusters' probabilities. It must sum to one.
tau The non-negative scalar tau parameter.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
$x \quad$ This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should they wish to.

Value

A ternary diagram with the points and the Flexible Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ongaro A. and Migliorati S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.
Migliorati S., Ongaro A. and Monti G. S. (2017). A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 27, 963-983.

See Also

```
compnorm.contour, folded.contour, bivt.contour,comp.kerncontour, mix.compnorm.contour
```


Examples

```
fd.contour(alpha =c(10, 11, 12), prob = c(0.25, 0.25, 0.5), tau = 4)
```

```
Contour plot of the Gaussian mixture model in S^2
```

 Contour plot of the Gaussian mixture model in \(S^{\wedge} 2\)

Description

Contour plot of the Gaussian mixture model in S^{2}.

Usage

mix.compnorm.contour(mod, type = "alr", $n=100, x=$ NULL, cont.line $=$ FALSE)

Arguments

mod	An object containing the output of a mix.compnorm model.
type	The type of trasformation used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
n	The number of grid points to consider over which the density is calculated.
x	A matrix with the compositional data.
cont.line	Do you want the contour lines to appear? If yes, set this TRUE.

Details

The contour plot of a Gaussian mixture model is plotted. For this you need the (fitted) model.

Value

A ternary plot with the data and the contour lines of the fitted Gaussian mixture model.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

mix.compnorm, bic.mixcompnorm, diri.contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
mod <- mix.compnorm(x, 3, model = "EII")
mix.compnorm.contour(mod, "alr")
```

Contour plot of the generalised Dirichlet distribution in S^2 Contour plot of the generalised Dirichlet distribution in $S^{\wedge} 2$

Description

Contour plot of the generalised Dirichlet distribution in S^{2}.

Usage

gendiri.contour(a, b, $\mathrm{n}=100$, $\mathrm{x}=\mathrm{NULL}$, cont.line $=$ FALSE)

Arguments

a A vector with three elements corresponding to the 3 (estimated) shape parameter values.
b A vector with three elements corresponding to the 3 (estimated) scale parameter values.
n
The number of grid points to consider over which the density is calculated.
x
This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The user can plot only the contour lines of a Dirichlet with a given vector of parameters, or can also add the relevant data should he/she wish to.

Value

A ternary diagram with the points and the Dirichlet contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
diri.contour, mixdiri.contour, compnorm.contour,comp.kerncontour, mix.compnorm.contour
```


Examples

```
x <- as.matrix( iris[, 1:3] )
x <- x / rowSums(x)
gendiri.contour( a = c(3, 4, 2), b = c(1, 2, 3) )
```

Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2$

Description

Contour plot of the kernel density estimate in S^{2}.

Usage

comp.kerncontour (x, type $=$ "alr", $n=50$, cont.line $=$ FALSE)

Arguments

X
type
n
cont.line

A matrix with the compositional data. It has to be a 3 column matrix.
This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.
The number of grid points to consider, over which the density is calculated.
Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation are applied to the compositional data. Then, the optimal bandwidth using maximum likelihood cross-validation is chosen. The multivariate normal kernel density is calculated for a grid of points. Those points are the points on the 2-dimensional simplex. Finally the contours are plotted.

Value

A ternary diagram with the points and the kernel contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

M.P. Wand and M.C. Jones (1995). Kernel smoothing, CrC Press.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
diri.contour, mix.compnorm.contour, bivt.contour, compnorm.contour
```


Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
comp.kerncontour(x, type = "alr", n = 20)
comp.kerncontour(x, type = "ilr", n = 20)
```

Contour plot of the normal distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the normal distribution in $S^{\wedge} 2$

Description

Contour plot of the normal distribution in S^{2}.

Usage

compnorm.contour(m, s, type = "alr", $\mathrm{n}=100, \mathrm{x}=$ NULL, cont.line = FALSE)

Arguments

m
s The covariance matrix.
type The type of trasformation used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
$x \quad$ This is either NULL (no data) or contains a 3 column matrix with compositional data.
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation is applied to the compositional data at first. Then for a grid of points within the 2-dimensional simplex the bivariate normal density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear $=$ TRUE $)$ and the bivariate normal contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

See Also

diri.contour, mix.compnorm.contour, bivt.contour, skewnorm.contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
y <- Compositional::alr(x)
m <- colMeans(y)
s <- cov(y)
compnorm.contour(m, s)
```

Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2$
Contour plot of the skew skew-normal distribution in $S^{\wedge} 2$

Description

Contour plot of the skew skew-normal distribution in S^{2}.

Usage

skewnorm. contour (x, type = "alr", $\mathrm{n}=100$, appear = TRUE, cont.line = FALSE)

Arguments

$x \quad$ A matrix with the compositional data. It has to be a 3 column matrix.
type \quad This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
appear \quad Should the available data appear on the ternary plot (TRUE) or not (FALSE)?
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation is applied to the compositional data at first. Then for a grid of points within the 2-dimensional simplex the bivariate skew skew-normal density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear $=$ TRUE) and the bivariate skew skew-normal contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam <pada4m4@gmail. com>.

References

Azzalini A. and Valle A. D. (1996). The multivariate skew-skewnormal distribution. Biometrika 83(4):715-726.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
diri.contour, mix.compnorm.contour, bivt.contour, compnorm.contour
```


Examples

```
x <- as.matrix(iris[51:100, 1:3])
x <- x / rowSums(x)
skewnorm.contour(x)
```

```
Contour plot of the t distribution in S^2
    Contour plot of the t distribution in S^2
```


Description

Contour plot of the t distribution in S^{2}.

Usage

bivt.contour(x, type = "alr", n = 100, appear = TRUE, cont.line = FALSE)

Arguments

$x \quad$ A matrix with compositional data. It has to be a 3 column matrix.
type This is either "alr" or "ilr", corresponding to the additive and the isometric logratio transformation respectively.
$\mathrm{n} \quad$ The number of grid points to consider over which the density is calculated.
appear \quad Should the available data appear on the ternary plot (TRUE) or not (FALSE)?
cont.line Do you want the contour lines to appear? If yes, set this TRUE.

Details

The alr or the ilr transformation is applied to the compositional data at first and the location, scatter and degrees of freedom of the bivariate t distribution are computed. Then for a grid of points within the 2-dimensional simplex the bivariate t density is calculated and the contours are plotted along with the points.

Value

A ternary diagram with the points (if appear $=$ TRUE) and the bivariate t contour lines.

Author(s)

Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
diri.contour, mix.compnorm.contour, compnorm.contour, skewnorm.contour
```


Examples

```
x <- as.matrix( iris[, 1:3] )
x <- x / rowSums(x)
bivt.contour(x)
bivt.contour(x, type = "ilr")
```

```
Cross validation for some compositional regression models
```

 Cross validation for some compositional regression models

Description

Cross validation for some compositional regression models.

Usage

cv.comp.reg(y, x, type $=$ "comp.reg", nfolds $=10$, folds $=$ NULL, seed $=$ NULL)

Arguments

y
x

type

nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.

Details

A k-fold cross validation for a compositional regression model is performed.

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergences for all runs.
js The Jensen-Shannon divergences for all runs.
perf The average Kullback-Leibler divergence and average Jensen-Shannon divergence.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

comp.reg, kl.compreg, compppr.tune, aknnreg.tune

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- cv.comp.reg(y, x)
```

```
Cross validation for the alpha-k-NN regression with compositional
predictor variables
Cross validation for the \(\alpha-k-N N\) regression with compositional predictor variables
```


Description

Cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression with compositional predictor variables.

Usage

alfaknnreg.tune $(y, x, a=\operatorname{seq}(-1,1, b y=0.1), k=2: 10, n f o l d s=10$, apostasi $=$ "euclidean", method = "average", folds = NULL, seed $=$ NULL, graph $=$ FALSE)

Arguments

$y \quad$ The response variable, a numerical vector.
$x \quad$ A matrix with the available compositional data. Zeros are allowed.
A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
k
The number of nearest neighbours to consider. It can be a single number or a vector.
nfolds The number of folds. Set to 10 by default.
apostasi The type of distance to use, either "euclidean" or "manhattan".
method If you want to take the average of the reponses of the k closest observations, type "average". For the median, type "median" and for the harmonic mean, type "harmonic".
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.
graph If graph is TRUE (default value) a filled contour plot will appear.

Details

A k -fold cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression for compositional response data is performed.

Value

A list including:

mspe	The mean square error of prediction.
performance	The minimum mean square error of prediction.
opt_a	The optimal value of α.
opt_k	The optimal value of k.
runtime	The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5

See Also

alfa.rda, alfa.fda

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- fgl[, 1]
mod <- alfaknnreg.tune(y, x, a = seq(0.2, 0.4, by = 0.1), k = 2:4, nfolds = 5)
```

```
Cross validation for the alpha-k-NN regression with compositional
response data
```

Cross validation for the $\alpha-k-N N$ regression with compositional response data

Description

Cross validation for the $\alpha-\mathrm{k}-\mathrm{NN}$ regression with compositional response data.

Usage

aknnreg.tune(y, x, a = seq(0.1, 1, by = 0.1), k = 2:10, apostasi = "euclidean", nfolds $=10$, folds $=$ NULL, seed $=$ NULL, rann = FALSE)

Arguments

y A matrix with the compositional response data. Zeros are allowed.
$x \quad$ A matrix with the available predictor variables.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
k The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
nfolds The number of folds. Set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "Rnanoflann". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

Details

A k-fold cross validation for the α-k-NN regression for compositional response data is performed.

Value

A list including:
kl
js
klmin
jsmin
kl.alpha
kl.k
js.alpha
js.k
runtime

The Kullback-Leibler divergence for all combinations of α and k.
The Jensen-Shannon divergence for all combinations of α and k.
The minimum Kullback-Leibler divergence.
The minimum Jensen-Shannon divergence.
The optimal α that leads to the minimum Kullback-Leibler divergence.
The optimal k that leads to the minimum Kullback-Leibler divergence.
The optimal α that leads to the minimum Jensen-Shannon divergence.
The optimal k that leads to the minimum Jensen-Shannon divergence.
The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5

See Also

aknn.reg, akernreg.tune, akern.reg, alfa.rda, alfa.fda

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- aknnreg.tune(y, x, a = c(0.4, 0.6), k = 2:4, nfolds = 5)
```

Cross validation for the alpha-kernel regression with compositional response data

Cross validation for the α-kernel regression with compositional response data

Description

Cross validation for the α-kernel regression with compositional response data.

Usage

akernreg.tune (y, $x, a=\operatorname{seq}(0.1,1$, by $=0.1)$, $h=\operatorname{seq}(0.1,1$, length $=10)$, type = "gauss", nfolds = 10, folds = NULL, seed = NULL)

Arguments

y A matrix with the compositional response data. Zeros are allowed.
$x \quad$ A matrix with the available predictor variables.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
h A vector with the bandwidth value(s) to consider.
type \quad The type of kernel to use, "gauss" or "laplace".
nfolds The number of folds. Set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.

Details

A k-fold cross validation for the α-kernel regression for compositional response data is performed.

Value

A list including:
kl The Kullback-Leibler divergence for all combinations of α and h.
js The Jensen-Shannon divergence for all combinations of α and h.
klmin The minimum Kullback-Leibler divergence.
jsmin The minimum Jensen-Shannon divergence.
kl.alpha The optimal α that leads to the minimum Kullback-Leibler divergence.
kl.h The optimal h that leads to the minimum Kullback-Leibler divergence.
js.alpha The optimal α that leads to the minimum Jensen-Shannon divergence.
js.h The optimal h that leads to the minimum Jensen-Shannon divergence.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5

See Also

akern.reg, aknnreg.tune, aknn.reg, alfa.rda, alfa.fda

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- akernreg.tune(y, x, a = c(0.4, 0.6), h = c(0.1, 0.2), nfolds = 5)
```

Cross validation for the kernel regression with Euclidean response
data
data

Cross validation for the kernel regression with Euclidean response data

Description

Cross validation for the kernel regression with Euclidean response data.

Usage

kernreg.tune(y, $x, h=\operatorname{seq}(0.1,1$, length $=10)$, type = "gauss", nfolds $=10$, folds = NULL, seed $=$ NULL, graph $=$ FALSE, ncores = 1)

Arguments

$y \quad$ A matrix or a vector with the Euclidean response.
$x \quad$ A matrix with the available predictor variables.
$\mathrm{h} \quad$ A vector with the bandwidth value(s) h to consider.
type \quad The type of kernel to use, "gauss" or "laplace".
nfolds The number of folds. Set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE (default value) a plot will appear.
ncores \quad The number of cores to use. Default value is 1.

Details

A k-fold cross validation for the kernel regression with a euclidean response is performed.

36Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation

Value

A list including:
mspe \quad The mean squared prediction error (MSPE) for each fold and value of h.
$\mathrm{h} \quad$ The optimal h that leads to the minimum MSPE.
performance The minimum MSPE.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Wand M. P. and Jones M. C. (1994). Kernel smoothing. CRC press.

See Also

kern.reg, aknnreg.tune, aknn.reg

Examples

```
y <- iris[, 1]
x <- iris[, 2:4]
mod <- kernreg.tune(y, x, h = c(0.1, 0.2, 0.3) )
```

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation

Cross validation for the regularised and flexible discriminant analysis with compositional data using the α-transformation

Description

Cross validation for the regularised and flexible discriminant analysis with compositional data using the α-transformation.

Usage

alfarda.tune(x, ina, a $=\operatorname{seq}(-1,1$, by $=0.1)$, nfolds $=10$, gam $=\operatorname{seq}(0,1$, by $=0.1)$, del $=\operatorname{seq}(0,1$, by $=0.1)$, ncores = 1, folds = NULL, stratified = TRUE, seed = NULL)
alfafda.tune(x, ina, $a=\operatorname{seq}(-1,1$, by $=0.1)$, nfolds $=10$, folds $=$ NULL, stratified $=$ TRUE, seed $=$ NULL, graph = FALSE)

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation37

Arguments

x
ina
a
nfolds
gam A vector of values between 0 and 1. It is the weight of the pooled covariance and the diagonal matrix.
del A vector of values between 0 and 1. It is the weight of the LDA and QDA.
ncores The number of cores to use. If it is more than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
stratified Do you want the folds to be created in a stratified way? TRUE or FALSE.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE (default value) a plot will appear.

Details

A k -fold cross validation is performed.

Value

For the alfa.rda a list including:
res The estimated optimal rate and the best values of α, γ and δ.
percent \quad For the best value of α the averaged over all folds best rates of correct classification. It is a matrix, where rows correspond to the γ values and columns correspond to δ values.
se The estimated standard errors of the "percent" matrix.
runtime The runtime of the cross-validation procedure.
For the alfa.fda a graph (if requested) with the estimated performance for each value of α and a list including:
per \quad The performance of the fda in each fold for each value of α.
performance \quad The average performance for each value of α.
opt_a The optimal value of α.
runtime The runtime of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin

Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the α-transformation. Jounal of Classification, 33(2):243-261.

Hastie, Tibshirani and Buja (1994). Flexible Disriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 89(428):1255-1270.

See Also

> alfa.rda, alfanb.tune, cv.dda, compknn.tune cv. compnb

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
ina <- fgl[, 10]
moda <- alfarda.tune(x, ina, a = seq(0.7, 1, by = 0.1), nfolds = 10,
gam = seq(0.1, 0.3, by = 0.1), del = seq(0.1, 0.3, by = 0.1) )
```

```
Cross validation for the ridge regression
```

 Cross validation for the ridge regression

Description

Cross validation for the ridge regression is performed. There is an option for the GCV criterion which is automatic.

Usage

ridge.tune(y, x, nfolds = 10, lambda $=\operatorname{seq}(0,2$, by $=0.1)$, folds $=$ NULL, ncores $=1$, seed $=$ NULL, graph $=$ FALSE)

Arguments

y

X
nfolds The number of folds in the cross validation.
lambda A vector with the a grid of values of λ to be used.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores The number of cores to use. If it is more than 1 parallel computing is performed.
seed You can specify your own seed number here or leave it NULL.
graph If graph is set to TRUE the performances for each fold as a function of the λ values will appear.

Details

A k-fold cross validation is performed. This function is used by alfaridge.tune.

Value

A list including:
$m s p \quad$ The performance of the ridge regression for every fold.
mspe \quad The values of the mean prediction error for each value of λ.
lambda The value of λ which corresponds to the minimum MSPE.
performance The minimum MSPE.
runtime The time required by the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Giorgos Athineou gioathineou@gmail.com and Michail Tsagris mtsagris@uoc.gr.

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67.

Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

See Also

```
    ridge.reg, alfaridge.tune
```

40Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation

Examples

```
y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
ridge.tune( \(y, x, n f o l d s=10\), lambda \(=\) seq(0, 2, by \(=0.1\) ), graph = TRUE )
```

Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation

Cross validation for the ridge regression with compositional data as predictor using the α-transformation

Description

Cross validation for the ridge regression is performed. There is an option for the GCV criterion which is automatic. The predictor variables are compositional data and the α-transformation is applied first.

Usage

```
alfaridge.tune(y, x, nfolds = 10, a = seq(-1, 1, by = 0.1),
lambda = seq(0, 2, by = 0.1), folds = NULL, ncores = 1,
graph = TRUE, col.nu = 15, seed = NULL)
```


Arguments

y	A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into R using the logit transformation.
x	A numeric matrix containing the compositional data, i.e. the predictor variables. Zero values are allowed.
nfolds	The number of folds in the cross validation. A vector with the a grid of values of α to be used.
lambda	A vector with the a grid of values of λ to be used. If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores	The number of cores to use. If it is more than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
graph	If graph is TRUE (default value) a filled contour plot will appear.
col.nu	A number parameter for the filled contour plot, taken into account only if graph is TRUE.
seed	You can specify your own seed number here or leave it NULL.

Details

A k-fold cross validation is performed.

Value

If graph is TRUE a fileld contour a filled contour will appear. A list including:
mspe \quad The MSPE where rows correspond to the α values and the columns to the number of principal components.
best.par \quad The best pair of α and λ.
performance The minimum mean squared error of prediction.
runtime \quad The run time of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Giorgos Athineou gioathineou@gmail.com and Michail Tsagris mtsagris@uoc.gr.

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67.

Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
alfa.ridge, ridge.tune
```


Examples

```
library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
alfaridge.tune( y, x, nfolds = 10, a = seq(0.1, 1, by = 0.1),
lambda = seq(0, 1, by = 0.1) )
```

Cross validation for the TFLR model
Cross validation for the TFLR model

Description

Cross validation for the TFLR model.

Usage

cv.tflr $(\mathrm{y}, \mathrm{x}, \mathrm{nfolds}=10$, folds $=$ NULL, seed $=$ NULL)

Arguments

y A matrix with compositional response data. Zero values are allowed.
$x \quad$ A matrix with compositional predictors. Zero values are allowed.
nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed If seed is TRUE the results will always be the same.

Details

A k-fold cross validation for the transformation-free linear regression for compositional responses and predictors is performed.

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergences for all runs.
js The Jensen-Shannon divergences for all runs.
perf The average Kullback-Leibler divergence and average Jensen-Shannon divergence.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

```
tflr, cv.scls, klalfapcr.tune
```


Examples

```
library(MASS)
y <- rdiri(100, runif(3, 1, 3))
x <- as.matrix(fgl[1:100, 2:9])
x <- x / rowSums(x)
mod <- cv.tflr(y, x)
mod
```

Cross-validation for LASSO with compositional predictors using the
alpha-transformation

Cross-validation for LASSO with compositional predictors using the alpha-transformation

Description

Cross-validation for LASSO with compositional predictors using the alpha-transformation.

Usage

alfalasso.tune (y, x, $a=\operatorname{seq}(-1,1$, by $=0.1)$, model = "gaussian", lambda = NULL, type.measure = "mse", nfolds = 10, folds = NULL, stratified = FALSE)

Arguments

y
x
a
model
lambda
model

A numerical vector or a matrix for multinomial logistic regression.
A numerical matrix containing the predictor variables, compositional data, where zero values are allowed..

A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.

The type of the regression model, "gaussian", "binomial", "poisson", "multinomial", or "mgaussian".
This information is copied from the package glmnet. A user supplied lambda sequence. Typical usage is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Avoid supplying a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path than compute a single fit.
type.measure This information is taken from the package glmnet. The loss function to use for cross-validation. For gaussian models this can be "mse", "deviance" for logistic and poisson regression, "class" applies to binomial and multinomial logistic regression only, and gives misclassification error. "auc" is for two-class logistic regression only, and gives The area under the ROC curve. "mse" or "mae" (mean absolute error) can be used by all models.
nfolds The number of folds. Set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
stratified Do you want the folds to be created in a stratified way? TRUE or FALSE.

Details

The function uses the glmnet package to perform LASSO penalised regression. For more details see the function in that package.

Value

A matrix with two columns and number of rows equal to the number of α values used. Each row contains, the optimal value of the λ penalty parameter for the LASSO and the optimal value of the loss function, for each value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

alfa.lasso, cv.lasso.klcompreg, lasso.compreg, alfa.knn.reg

Examples

```
y <- iris[, 1]
x <- rdiri(150, runif(20, 2, 5) )
mod <- alfalasso.tune( y, x, a = c(0.2, 0.5, 1) )
```

Cross-validation for the alpha-SCLS model
Cross-validation for the alpha-SCLS model

Description

Cross-validation for the alpha-SCLS model.

Usage

cv.ascls(y, $x, a=\operatorname{seq}(0.1,1, b y=0.1), n f o l d s=10$, folds $=$ NULL, seed $=$ NULL)

Arguments

y A numerical matrix with the simplicial response data. Zero values are allowed.
$x \quad$ A matrix with the simplicial predictor variables. Zero values are allowed.
a A vector or a single number of values of the α-parameter. This has to be different from zero, and it can take negative values if there are no zeros in the simplicial response (y).
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.

Details

The K-fold cross validation is performed in order to select the optimal value for α of the α-SCLS model.

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergence for every value of α.
js The Jensen-Shannon divergence for every value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

```
ascls, cv.atflr
```


Examples

```
library(MASS)
y <- rdiri( 214, runif(4, 1, 3) )
x <- as.matrix( fgl[, 2:9] )
mod <- cv.ascls(y, x, nfolds = 5)
```

Cross-validation for the alpha-TFLR model
Cross-validation for the alpha-TFLR model

Description

Cross-validation for the alpha-TFLR model.

Usage

$c v . \operatorname{atflr}(y, x, a=\operatorname{seq}(0.1,1, b y=0.1), n f o l d s=10$, folds $=$ NULL, seed $=N U L L)$

Arguments

y A numerical matrix with the simplicial response data. Zero values are allowed.
$x \quad$ A matrix with the simplicial predictor variables. Zero values are allowed.
a A vector or a single number of values of the α-parameter. This has to be different from zero, and it can take negative values if there are no zeros in the simplicial response (y).
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.

Details

The K-fold cross validation is performed in order to select the optimal value for α of the α-TFLR model.

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl
js
The Kullback-Leibler divergence for every value of α.
The Jensen-Shannon divergence for every value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

atflr, cv.ascls

Examples

library(MASS)
$y<-r d i r i(214, \operatorname{runif}(4,1,3)$)
x <- as.matrix(fgl[, 2:9])
$\bmod <-\mathrm{cv} . \operatorname{ascls}(\mathrm{y}, \mathrm{x}, \mathrm{nfolds}=2$, $a=c(0.5,1)$)

Cross-validation for the Dirichlet discriminant analysis
Cross-validation for the Dirichlet discriminant analysis

Description

Cross-validation for the Dirichlet discriminant analysis.

Usage

cv.dda(x, ina, nfolds = 10, folds = NULL, stratified = TRUE, seed = NULL)

Arguments

x
ina A vector of data. The response variable, which is categorical (factor is acceptable).
folds A list with the indices of the folds.
nfolds The number of folds to be used. This is taken into consideration only if "folds" is NULL.
stratified Do you want the folds to be selected using stratified random sampling? This preserves the analogy of the samples of each group. Make this TRUE if you wish.
seed If you set this to TRUE, the same folds will be created every time.

Details

This function estimates the performance of the Dirichlet discriminant analysis via k-fold crossvalidation.

Value

A list including:
percent The percentage of correct classification
runtime The duration of the cross-validation proecdure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.
Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

See Also

dda, alfanb.tune, alfarda.tune, compknn.tune, cv.compnb

Examples

$x<-$ as.matrix(iris[, 1:4])
$\mathrm{x}<-\mathrm{x} / \operatorname{rowSums}(\mathrm{x})$
$\bmod <-\mathrm{cv} . \mathrm{dda}(\mathrm{x}$, ina $=\operatorname{iris}[$, 5])

```
Cross-validation for the LASSO Kullback-Leibler divergence based
```

regression

Cross-validation for the LASSO Kullback-Leibler divergence based regression

Description

Cross-validation for the LASSO Kullback-Leibler divergence based regression.

Usage

cv.lasso.klcompreg(y, x, alpha = 1, type = "grouped", nfolds = 10, folds $=$ NULL, seed $=$ NULL, graph $=$ FALSE)

Arguments

y	A numerical matrix with compositional data with or without zeros.
x	A matrix with the predictor variables.
alpha	The elastic net mixing parameter, with $0 \leq \alpha \leq 1$. The penalty is defined as a weighted combination of the ridge and of the Lasso regression. When $\alpha=1$ LASSO is applied, while $\alpha=0$ yields the ridge regression.
type	This information is copied from the package glmnet. If "grouped" then a grouped lasso penalty is used on the multinomial coefficients for a variable. This ensures they are all in our out together. The default in our case is "grouped".
nfolds	The number of folds for the K-fold cross validation, set to 10 by default.
folds	If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed	You can specify your own seed number here or leave it NULL. graph

Details

The K-fold cross validation is performed in order to select the optimal value for λ, the penalty parameter in LASSO.

Value

The outcome is the same as in the R package glmnet. The extra addition is that if "graph = TRUE", then the plot of the cross-validated object is returned. The contains the logarithm of λ and the deviance. The numbers on top of the figure show the number of set of coefficients for each component, that are not zero.

Author(s)

Michail Tsagris and Abdulaziz Alenazi.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Abdulaziz Alenazi a.alenazi@nbu.edu.sa.

References

Alenazi, A. A. (2022). f-divergence regression models for compositional data. Pakistan Journal of Statistics and Operation Research, 18(4): 867-882.

Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

lasso.klcompreg, lassocoef.plot, lasso.compreg, cv.lasso.compreg, kl.compreg

Examples

```
    library(MASS)
    y <- rdiri( 214, runif(4, 1, 3) )
    x <- as.matrix( fgl[, 2:9] )
    mod <- cv.lasso.klcompreg(y, x)
```

Cross-validation for the LASSO log-ratio regression with
compositional response

Cross-validation for the LASSO log-ratio regression with compositional response

Description

Cross-validation for the LASSO log-ratio regression with compositional response.

Usage

cv.lasso. $\operatorname{compreg}(\mathrm{y}, \mathrm{x}, \mathrm{alpha}=1, \mathrm{nfolds}=10$,
folds $=$ NULL, seed $=$ NULL, graph $=$ FALSE)

Arguments

y A numerical matrix with compositional data. Zero values are not allowed as the additive log-ratio transformation (alr) is applied to the compositional response prior to implementing the LASSO algortihm.
$x \quad$ A matrix with the predictor variables.
alpha The elastic net mixing parameter, with $0 \leq \alpha \leq 1$. The penalty is defined as a weighted combination of the ridge and of the Lasso regression. When $\alpha=1$ LASSO is applied, while $\alpha=0$ yields the ridge regression.
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE (default value) a filled contour plot will appear.

Details

The K-fold cross validation is performed in order to select the optimal value for λ, the penalty parameter in LASSO.

Value

The outcome is the same as in the R package glmnet. The extra addition is that if "graph = TRUE", then the plot of the cross-validated object is returned. The contains the logarithm of λ and the mean squared error. The numbers on top of the figure show the number of set of coefficients for each component, that are not zero.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

lasso.compreg, lasso.klcompreg, lassocoef.plot, cv.lasso.klcompreg, comp.reg

Examples

```
library(MASS)
y <- rdiri( 214, runif(4, 1, 3) )
x <- as.matrix( fgl[, 2:9] )
mod <- cv.lasso.compreg(y, x)
```

```
Cross-validation for the naive Bayes classifiers for compositional
data
```

Cross-validation for the naive Bayes classifiers for compositional data

Description

Cross-validation for the naive Bayes classifiers for compositional data.

Usage

cv.compnb(x, ina, type = "beta", folds = NULL, nfolds = 10, stratified $=$ TRUE, seed $=$ NULL, pred.ret $=$ FALSE)

Arguments

x
ina
type
folds
nfolds The number of folds to be used. This is taken into consideration only if "folds" is NULL.

52Cross-validation for the naive Bayes classifiers for compositional data using the alpha-transformation
stratified Do you want the folds to be selected using stratified random sampling? This preserves the analogy of the samples of each group. Make this TRUE if you wish.
seed You can specify your own seed number here or leave it NULL.
pred.ret If you want the predicted values returned set this to TRUE.

Value
A list including:
preds If pred.ret is TRUE the predicted values for each fold are returned as elements in a list.
crit A vector whose length is equal to the number of k and is the accuracy metric for each k . For the classification case it is the percentage of correct classification.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

See Also

comp.nb

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
mod <- cv.compnb(x, ina = iris[, 5] )
```

```
Cross-validation for the naive Bayes classifiers for compositional
data using the alpha-transformation
```

Cross-validation for the naive Bayes classifiers for compositional data using the α-transformation

Description

Cross-validation for the naive Bayes classifiers for compositional data using the α-transformation.

Usage

```
alfanb.tune(x, ina, a = seq(-1, 1, by = 0.1), type = "gaussian",
folds = NULL, nfolds = 10, stratified = TRUE, seed = NULL)
```


Arguments

$x \quad$ A matrix with the available data, the predictor variables.

ina A vector of data. The response variable, which is categorical (factor is acceptable).
a
The value of α for the α-transformation. This can be a vector of values or a single number.
type The type of naive Bayes, "gaussian", "cauchy" or "laplace".
folds A list with the indices of the folds.
nfolds The number of folds to be used. This is taken into consideration only if "folds" is NULL.
stratified Do you want the folds to be selected using stratified random sampling? This preserves the analogy of the samples of each group. Make this TRUE if you wish.
seed You can specify your own seed number here or leave it NULL.

Details

This function estimates the performance of the naive Bayes classifier for each value of α of the α-transformation.

Value

A list including:
crit A vector whose length is equal to the number of k and is the accuracy metric for each k. For the classification case it is the percentage of correct classification.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

See Also

```
alfa.nb, alfarda.tune, compknn.tune, cv.dda, cv.compnb
```


Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
mod <- alfanb.tune(x, ina = iris[, 5], a = c(0, 0.1, 0.2) )
```

Cross-validation for the SCLS model
Cross-validation for the SCLS model

Description

Cross-validation for the SCLS model.

Usage

cv.scls(y, x, nfolds = 10, folds = NULL, seed = NULL)

Arguments

y A matrix with compositional response data. Zero values are allowed.
$x \quad$ A matrix with compositional predictors. Zero values are allowed.
nfolds The number of folds to be used. This is taken into consideration only if the folds argument is not supplied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
seed You can specify your own seed number here or leave it NULL.

Details

The function performs k-fold cross-validation for the least squares regression where the beta coefficients are constained to be positive and sum to 1 .

Value

A list including:
runtime The runtime of the cross-validation procedure.
kl The Kullback-Leibler divergences for all runs.
js The Jensen-Shannon divergences for all runs.
perf The average Kullback-Leibler divergence and average Jensen-Shannon divergence.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

scls, cv.tflr, klalfapcr.tune

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(3, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- cv.scls(y, x, nfolds = 5, seed = 12345)
mod
```

Density of compositional data from Gaussian mixture models
Simulation of compositional data from Gaussian mixture models

Description

Simulation of compositional data from Gaussian mixture models.

Usage

dmix.compnorm(x, mu, sigma, prob, type = "alr", logged = TRUE)

Arguments

X
prob A vector with mixing probabilities. Its length is equal to the number of clusters.
mu A matrix where each row corresponds to the mean vector of each cluster.
sigma
type
logged A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

A sample from a multivariate Gaussian mixture model is generated.

Value

A vector with the density values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.

See Also

mix.compnorm, bic.mixcompnorm

Examples

```
p <- c(1/3, 1/3, 1/3)
mu <- matrix(nrow = 3, ncol = 4)
s <- array( dim = c(4, 4, 3) )
x <- as.matrix(iris[, 1:4])
ina <- as.numeric(iris[, 5])
mu <- rowsum(x, ina) / 50
s[, , 1] <- cov(x[ina == 1, ])
s[, , 2] <- cov(x[ina == 2, ])
s[, , 3] <- cov(x[ina == 3, ])
y <- rmixcomp(100, p, mu, s, type = "alr")$x
mod <- dmix.compnorm(y, mu, s, p)
```

Density of the Flexible Dirichlet distribution
Density of the Flexible Dirichlet distribution

Description

Density of the Flexible Dirichlet distribution

Usage

dfd(x, alpha, prob, tau)

Arguments

X
alpha
prob
tau

A vector or a matrix with compositional data.
A vector of the non-negative α parameters.
A vector of the clusters' probabilities. It must sum to one.
The non-negative scalar tau parameter.

Details

For more information see the references and the package FlxeDir.

Value

The density value(s).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ongaro A. and Migliorati S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.
Migliorati S., Ongaro A. and Monti G. S. (2017). A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 27, 963-983.

See Also

rfd

Examples

```
alpha <- c(12, 11, 10)
prob <- c(0.25, 0.25, 0.5)
tau <- 8
x <- rfd(20, alpha, prob, tau)
dfd(x, alpha, prob, tau)
```

```
Density of the folded normal distribution
    Density of the folded model normal distribution
```


Description

Density of the folded model normal distribution.

Usage

dfolded(x, a, p, mu, su, logged = TRUE)

Arguments

x
a
p
mu
su
logged

A vector or a matrix with compositional data. No zeros are allowed.
The value of α.
The probability inside the simplex of the folded model.
The mean vector.
The covariance matrix.
A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

Density values of the folded model.

Value

The density value(s).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

See Also

rfolded, a.est, folded.contour

Examples

```
s <- c(0.1490676523, -0.4580818209, 0.0020395316, -0.0047446076, -0.4580818209,
1.5227259250, 0.0002596411, 0.0074836251, 0.0020395316, 0.0002596411,
0.0365384838, -0.0471448849, -0.0047446076, 0.0074836251, -0.0471448849,
0.0611442781)
s <- matrix(s, ncol = 4)
m <- c(1.715, 0.914, 0.115, 0.167)
x <- rfolded(100, m, s, 0.5)
mod <- a.est(x)
den <- dfolded(x, mod$best, mod$p, mod$mu, mod$su)
```

```
Density values of a Dirichlet distribution
                                    Density values of a Dirichlet distribution
```


Description

Density values of a Dirichlet distribution.

Usage

ddiri(x, a, logged = TRUE)

Arguments

x
a
logged

A matrix containing compositional data. This can be a vector or a matrix with the data.

A vector of parameters. Its length must be equal to the number of components, or columns of the matrix with the compositional data and all values must be greater than zero.
A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

The density of the Dirichlet distribution for a vector or a matrix of compositional data is returned.

Value

A vector with the density values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

See Also

```
dgendiri, diri.nr, diri.est, diri.contour, rdiri, dda
```


Examples

$x<-\operatorname{rdiri}(100, c(5,7,4,8,10,6,4))$
a <- diri.est(x)
f <- ddiri(x, a\$param)
sum(f)
a

Density values of a generalised Dirichlet distribution Density values of a generalised Dirichlet distribution

Description

Density values of a generalised Dirichlet distribution.

Usage

dgendiri (x, a, b, logged = TRUE)

Arguments

$x \quad$ A matrix containing compositional data. This can be a vector or a matrix with the data.
a
A numerical vector with the shape parameter values of the Gamma distribution.
b A numerical vector with the scale parameter values of the Gamma distribution.
logged A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

The density of the Dirichlet distribution for a vector or a matrix of compositional data is returned.

Value

A vector with the density values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
ddiri, rgendiri, diri.est, diri.contour, rdiri, dda
```


Examples

```
a<-c(1, 2, 3)
b <- c(2, 3, 4)
x <- rgendiri(100, a, b)
y <- dgendiri(x, a, b)
```

Density values of a mixture of Dirichlet distributions
Density values of a mixture of Dirichlet distributions

Description

Density values of a mixture of Dirichlet distributions.

Usage

dmixdiri(x, a, prob, logged = TRUE)

Arguments

$x \quad$ A vector or a matrix with compositional data. Zeros are not allowed.
a A matrix where each row contains the parameters of each Dirichlet component.
prob A vector with the mixing probabilities.
logged A boolean variable specifying whether the logarithm of the density values to be returned. It is set to TRUE by default.

Details

The density of the mixture of Dirichlet distribution for a vector or a matrix of compositional data is returned.

Value

A vector with the density values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ye X., Yu Y. K. and Altschul S. F. (2011). On the inference of Dirichlet mixture priors for protein sequence comparison. Journal of Computational Biology, 18(8), 941-954.

See Also

rmixdiri, mixdiri.contour

Examples

```
    a <- matrix( c(12, 30, 45, 32, 50, 16), byrow = TRUE,ncol = 3)
    prob <- c(0.5, 0.5)
    x <- rmixdiri(100, a, prob)$x
    f <- dmixdiri(x, a, prob)
```

Dirichlet discriminant analysis
Dirichlet discriminant analysis

Description

Dirichlet discriminant analysis.

Usage

dda(xnew, x, ina)

Arguments

xnew A matrix with the new compositional predictor data whose class you want to predict. Zeros are allowed.
$x \quad$ A matrix with the available compositional predictor data. Zeros are allowed.
ina A vector of data. The response variable, which is categorical (factor is acceptable).

Details

The funcitons performs maximum likelihood discriminant analysis using the Dirichlet distribution.

Value

A vector with the estimated group.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.
Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf
Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
cv.dda, comp.nb, alfa.rda, alfa.knn,comp.knn, mix.compnorm, diri.reg, zadr
```


Examples

```
x <- Compositional::rdiri(100, runif(5) )
ina <- rbinom(100, 1, 0.5) + 1
mod <- dda(x, x, ina )
```

Dirichlet random values simulation

Description

Dirichlet random values simulation.

Usage

rdiri(n, a)

Arguments

n
a
The sample size, a numerical value. A numerical vector with the parameter values.

Details

The algorithm is straightforward, for each vector, independent gamma values are generated and then divided by their total sum.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

diri.est, diri.nr, diri.contour, rgendiri

Examples

```
x <- rdiri( 100, c(5, 7, 1, 3, 10, 2, 4) )
diri.est(x)
```

Dirichlet regression Dirichlet regression

Description

Dirichlet regression.

Usage

diri.reg(y, x, plot = FALSE, xnew = NULL)
diri.reg2(y, x, xnew = NULL)
diri.reg3(y, x, xnew = NULL)

Arguments

$y \quad$ A matrix with the compositional data (dependent variable). Zero values are not allowed.
x
The predictor variable(s), they can be either continuous or categorical or both.
plot
A boolean variable specifying whether to plot the leverage values of the observations or not. This is taken into account only when xnew = NULL.
xnew If you have new data use it, otherwise leave it NULL.

Details

A Dirichlet distribution is assumed for the regression. This involves numerical optimization. The function "diri.reg2()" allows for the covariates to be linked with the precision parameter ϕ via the exponential link function $\phi=e^{x * b}$. The function "diri.reg3()" links the covariates to the alpha parameters of the Dirichlet distribution, i.e. it uses the classical parametrization of the distribution. This means, that there is a set of regression parameters for each component.

Value

A list including:

runtime loglik phi	The time required by the regression. The value of the log-likelihood. The precision parameter. If covariates are linked with it (function "diri.reg2()"), this will be a vector.
phipar	The coefficients of the phi parameter if it is linked to the covariates. std.phi The standard errors of the coefficients of the phi parameter is it linked to the covariates.
log.phi	The logarithm of the precision parameter.
std.logphi	The standard error of the logarithm of the precision parameter. be
The beta coefficients.	
seb	The standard error of the beta coefficients. sigma
Th covariance matrix of the regression parameters (for the mean vector and the	
phi parameter)".	
lev	The leverage values.
	For the "diri.reg" this contains the fitted or the predicted values (if xnew is not NULL). For the "diri.reg2" if xnew is NULL, this is also NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Maier, Marco J. (2014) DirichletReg: Dirichlet Regression for Compositional Data in R. Research Report Series/Department of Statistics and Mathematics, 125. WU Vienna University of Economics and Business, Vienna. http://epub.wu.ac.at/4077/1/Report125.pdf

Gueorguieva, Ralitza, Robert Rosenheck, and Daniel Zelterman (2008). Dirichlet component regression and its applications to psychiatric data. Computational statistics \& data analysis 52(12): 5344-5355.
Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

js.compreg, kl.compreg, ols.compreg, comp.reg, alfa.reg, diri.nr, dda

Examples

```
x <- as.vector(iris[, 4])
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.reg(y, x)
mod2 <- diri.reg2(y, x)
mod3 <- comp.reg(y, x)
```

Distance based regression models for proportions Distance based regression models for proportions

Description

Distance based regression models for proportions.

Usage

```
ols.prop.reg(y, x, cov = FALSE, tol = 1e-07, maxiters = 100)
helling.prop.reg(y, x, tol = 1e-07, maxiters = 100)
```


Arguments

$y \quad$ A numerical vector proportions. 0 s and 1 s are allowed.
$x \quad$ A matrix or a data frame with the predictor variables.
cov Should the covariance matrix be returned? TRUE or FALSE.
tol The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
maxiters The maximum number of iterations before the Newton-Raphson is terminated automatically.

Details

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model. The functions accept binary responses as well (0 or 1).

Value

A list including:
sse The sum of squres of errors for the "ols.prop.reg" function.
be The estimated regression coefficients.
seb The standard error of the regression coefficients if "cov" is TRUE.
covb The covariance matrix of the regression coefficients in "ols.prop.reg" if "cov" is TRUE.

H The Hellinger distance between the true and the obseervd proportions in "helling.prop.reg".
iters The number of iterations required by the Newton-Raphson.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.
McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

propreg, beta.reg

Examples

```
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(100 * 2), ncol = 2)
a1 <- ols.prop.reg(y, x)
a2 <- helling.prop.reg(y, x)
```

Divergence based regression for compositional data
Divergence based regression for compositional data

Description

Regression for compositional data based on the Kullback-Leibler the Jensen-Shannon divergence and the symmetric Kullback-Leibler divergence.

Usage

$$
\begin{aligned}
& \text { kl. compreg }(y, x \text {, con }=\text { TRUE, } B=1 \text {, ncores }=1 \text {, xnew }=\text { NULL, tol }=1 \text { e-07, maxiters }=50) \\
& \text { js.compreg }(y, x \text {, con }=\text { TRUE, } B=1 \text {, ncores }=1 \text {, xnew }=\text { NULL) } \\
& \text { tv.compreg }(y, x, \text { con }=\text { TRUE, } B=1 \text {, ncores }=1 \text {, xnew }=\text { NULL) } \\
& \text { symkl.compreg }(y, x, \text { con }=\text { TRUE, } B=1 \text {, ncores }=1 \text {, xnew }=\text { NULL) }
\end{aligned}
$$

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
$x \quad$ The predictor variable(s), they can be either continnuous or categorical or both.
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.

B If B is greater than 1 bootstrap estimates of the standard error are returned. If $B=1$, no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration.
xnew If you have new data use it, otherwise leave it NULL.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.

Details

In the kl.compreg() the Kullback-Leibler divergence is adopted as the objective function. In case of problematic convergence the "multinom" function by the "nnet" package is employed. This will obviously be slower. The js.compreg() uses the Jensen-Shannon divergence and the symkl.compreg() uses the symmetric Kullback-Leibler divergence. The tv.compreg() uses the Total Variation divergence. There is no actual log-likelihood for the last three regression models.

Value

A list including:

runtime	The time required by the regression.		
iters	The number of iterations required by the Newton-Raphson in the kl.compreg function.		
loglik	The log-likelihood. This is actually a quasi multinomial regression. This is bascially half the negative deviance, or $-\sum_{i=1}^{n} y_{i} \log y_{i} / \hat{y}_{i}$.		
be	The beta coefficients.		
covbe	The covariance matrix of the beta coefficients, if bootstrap is chosen, i.e. if B >		
1.		\quad	The fitted values of xnew if xnew is not NULL.
:---			

Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation6

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.
Tsagris, Michail (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 15-18/4/2015, Athens, Greece. https://arxiv.org/pdf/1511.07600.pdf
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

diri.reg, ols.compreg, comp.reg

Examples

```
library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
mod1<- kl.compreg(y, x, B = 1, ncores = 1)
mod2 <- js.compreg(y, x, B = 1, ncores = 1)
```

Divergence based regression for compositional data with
compositional data in the covariates side using the
alpha-transformation

Divergence based regression for compositional data with compositional data in the covariates side using the α-transformation

Description

Divergence based regression for compositional data with compositional data in the covariates side using the α-transformation.

Usage

kl.alfapcr (y, x, covar = NULL, a, k, xnew = NULL, B = 1, ncores = 1, tol = 1e-07, maxiters = 50)

70 Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformatio

Arguments

$y \quad$ A numerical matrixc with compositional data with or without zeros.
x
covar If you have other covariates as well put themn here.
a
k
xnew

B
If B is greater than 1 bootstrap estimates of the standard error are returned. If $\mathrm{B}=1$, no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.

Details

The α-transformation is applied to the compositional data first, the first k principal component scores are calcualted and used as predictor variables for the Kullback-Leibler divergence based regression model.

Value

A list including:

runtime	The time required by the regression.
iters	The number of iterations required by the Newton-Raphson in the kl.compreg function.
loglik	The log-likelihood. This is actually a quasi multinomial regression. This is bascially minus the half deviance, or $-\operatorname{sum}_{i=1}^{n} y_{i} \log y_{i} / \hat{y}_{i}$.
be	The beta coefficients. seb
est	The standard error of the beta coefficients, if bootstrap is chosen, i.e. if B >1.
	The fitted values of xnew if xnew is not NULL.

Author(s)

Initial code by Abdulaziz Alenazi. Modifications by Michail Tsagris.
R implementation and documentation: Abdulaziz Alenazi <a. alenazi@nbu.edu.sa> and Michail Tsagris mtsagris@uoc.gr.

References

Alenazi A. (2019). Regression for compositional data with compositional data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219-238. https://jds-online.org/journal/JDS/article/136/file/pdf
Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

klalfapcr.tune, tflr, glm.pcr, alfapcr.tune

Examples

```
library(MASS)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- alfa.pcr(y = y, x = x, a = 0.7, k = 1)
mod
```

Divergence matrix of compositional data
Divergence matrix of compositional data

Description

Divergence matrix of compositional data.

Usage

divergence(x, type = "kullback_leibler", vector = FALSE)

Arguments

$x \quad$ A matrix with the compositional data.
type This is either "kullback_leibler" (Kullback-Leibler, which computes the symmetric Kullback-Leibler divergence) or "jensen_shannon" (Jensen-Shannon) divergence.
vector For return a vector instead a matrix.

Details

The function produces the distance matrix either using the Kullback-Leibler (distance) or the JensenShannon (metric) divergence. The Kullback-Leibler refers to the symmetric Kullback-Leibler divergence.

Value

if the vector argument is FALSE a symmetric matrix with the divergences, otherwise a vector with the divergences.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

comp.knn, js.compreg

Examples

```
x <- as.matrix(iris[1:20, 1:4])
x <- x / rowSums(x)
divergence(x)
```

Energy test of equality of distributions using the alpha-transformation

Description

Energy test of equality of distributions using the α-transformation.

Usage

aeqdist.etest(x, sizes, $a=1, R=999)$

Arguments

x
sizes A numeric vector matrix with the sample sizes.

The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied. If more than one values are supplied the energy distance of equality of distributions is applied for each value of α.

R
The number of permutations to apply in order to compute the approximate pvalue.

Details

The α-transformation is applied to each composition and then the energy distance of equality of distributions is applied for each value of α or for the single value of α.

Value

A numerical value or a numerical vector, depending on the length of the values of α, with the approximate p -value(s) of the energy test.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Szekely, G. J. and Rizzo, M. L. (2004) Testing for Equal Distributions in High Dimension. InterStat, November (5).

Szekely, G. J. (2000) Technical Report 03-05: E-statistics: Energy of Statistical Samples. Department of Mathematics and Statistics, Bowling Green State University.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

acor, acor.tune, alfa, alfa.profile

Examples

```
y <- rdiri(50, c(3, 4, 5) )
x <- rdiri(60, c(3, 4, 5) )
aeqdist.etest( rbind(x, y), c(dim(x)[1], dim(y)[1]), a = c(-1, 0, 1) )
```

```
Estimating location and scatter parameters for compositional data
    Estimating location and scatter parameters for compositional data
```


Description

Estimating location and scatter parameters for compositional data in a robust and non robust way.

Usage

comp.den (x, type = "alr", dist = "normal", tol = 1e-07)

Arguments

$x \quad$ A matrix containing compositional data. No zero values are allowed.
type A boolean variable indicating the transformation to be used. Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.
dist Takes values "normal", "t", "skewnorm", "rob" and "spatial". They first three options correspond to the parameters of the normal, t and skew normal distribution respectively. If it set to "rob" the MCD estimates are computed and if set to "spatial" the spatial median and spatial sign covariance matrix are computed.
tol A tolerance level to terminate the process of finding the spatial median when dist $=$ "spatial". This is set to $1 \mathrm{e}-09$ by default.

Details

This function calculates robust and non robust estimates of location and scatter.

Value

A list including: The mean vector and covariance matrix mainly. Other parameters are also returned depending on the value of the argument "dist".

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212-223.

Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
T. Karkkaminen and S. Ayramo (2005). On computation of spatial median for robust data mining. Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems EUROGEN 2005.

A Durre, D Vogel, DE Tyler (2014). The spatial sign covariance matrix with unknown location. Journal of Multivariate Analysis, 130: 107-117.
J. T. Kent, D. E. Tyler and Y. Vardi (1994) A curious likelihood identity for the multivariate tdistribution. Communications in Statistics-Simulation and Computation 23, 441-453.

Azzalini A. and Dalla Valle A. (1996). The multivariate skew-normal distribution. Biometrika 83(4): 715-726.

See Also

```
spatmed.reg, multivt
```


Examples

```
library(MASS)
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
comp.den(x)
comp.den(x, type = "alr", dist = "t")
comp.den(x, type = "alr", dist = "spatial")
```

```
Estimation of the probability left outside the simplex when using
the alpha-transformation
Estimation of the probability left outside the simplex when using the alpha-transformation
```


Description

Estimation of the probability left outside the simplex when using the alpha-transformationn.

Usage

probout (mu, su, a)

Arguments

mu
The mean vector.
su
a

The covariance matrix.
The value of α.

Details

When applying the α-transformation based on a multivariate normal there might be probability left outside the simplex as the space of this transformation is a subspace of the Euclidean space. The function estimates the missing probability via Monte Carlo simulation using 40 million generated vectors.

Value

The estimated probability left outside the simplex.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa, alpha.mle, a.est, rfolded

Examples

```
s <- c(0.1490676523, -0.4580818209, 0.0020395316, -0.0047446076, -0.4580818209,
1.5227259250, 0.0002596411, 0.0074836251, 0.0020395316, 0.0002596411,
0.0365384838, -0.0471448849, -0.0047446076, 0.0074836251, -0.0471448849,
0.0611442781)
s <- matrix(s, ncol = 4)
m <- c(1.715, 0.914, 0.115, 0.167)
probout(m, s, 0.5)
```

Estimation of the value of alpha in the folded model
Estimation of the value of α in the folded model

Description

Estimation of the value of α in the folded model.

Usage

a.est(x)

Arguments

$x \quad$ A matrix with the compositional data. No zero vaues are allowed.

Details

This is a function for choosing or estimating the value of α in the folded model (Tsagris and Stewart, 2020).

Value

A list including:
runtime The runtime of the algorithm.
best The estimated optimal α of the folded model.
loglik The maximimised log-likelihood of the folded model.
p
mu The estimated mean vector of the folded model.
su The estimated covariance matrix of the folded model.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2022). A Review of Flexible Transformations for Modeling Compositional Data. In Advances and Innovations in Statistics and Data Science, pp. 225-234. https://link.springer.com/chapter/10.10 3-031-08329-7_10
Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.profile, alfa, alfainv, alpha.mle

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune(x)
a.est(x)
```

```
Estimation of the value of alpha via the profile log-likelihood
    Estimation of the value of \alpha via the alfa profile log-likelihood
```


Description

Estimation of the value of α via the alfa profile log-likelihood.

Usage

alfa.profile(x, a = seq(-1, 1, by = 0.01))

Arguments

x
A matrix with the compositional data. Zero values are not allowed.
a

A grid of values of α.

Details

For every value of α the normal likelihood (see the refernece) is computed. At the end, the plot of the values is constructed.

Value

A list including:
res The chosen value of α, the corresponding log-likelihood value and the loglikelihood when $\alpha=0$.
ci An asympotic 95% confidence interval computed from the log-likelihood ratio test.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.tune, alfa, alfainv

Examples

$x<-$ as.matrix(iris[, 1:4])
$x<-x / \operatorname{rowSums}(x)$
alfa.tune(x)
alfa.profile(x)

Fast estimation of the value of alpha
Fast estimation of the value of α

Description

Fast estimation of the value of α.

Usage

alfa.tune(x, B = 1, ncores = 1)

Arguments

$x \quad$ A matrix with the compositional data. No zero vaues are allowed.
B If no (bootstrap based) confidence intervals should be returned this should be 1 and more than 1 otherwise.
ncores If ncores is greater than 1 parallel computing is performed. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.

Details

This is a faster function than alfa. profile for choosing the value of α.

Value

A vector with the best alpha, the maximised log-likelihood and the log-likelihood at $\alpha=0$, when $B=1$ (no bootstrap). If $B>1$ a list including:
param The best alpha and the value of the log-likelihod, along with the 95% bootstrap based confidence intervals.
message A message with some information about the histogram.
runtime The time (in seconds) of the process.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.profile, alfa, alfainv

Examples

```
library(MASS)
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
alfa.tune(x)
alfa.profile(x)
```

Gaussian mixture models for compositional data
Gaussian mixture models for compositional data

Description

Gaussian mixture models for compositional data.

Usage

mix.compnorm(x, g, model, type = "alr", veo = FALSE)

Arguments

$x \quad$ A matrix with the compositional data.
$\mathrm{g} \quad$ How many clusters to create.
model The type of model to be used.

1. "EII": All groups have the same diagonal covariance matrix, with the same variance for all variables.
2. "VII": Different diagonal covariance matrices, with the same variance for all variables within each group.
3. "EEI": All groups have the same diagonal covariance matrix.
4. "VEI": Different diagonal covariance matrices. If we make all covariance matrices have determinant 1 , (divide the matrix with the $\$ \mathrm{p} \$$-th root of its determinant) then all covariance matrices will be the same.
5. "EVI": Different diagonal covariance matrices with the same determinant.
6. "VVI": Different diagonal covariance matrices, with nothing in common.
7. "EEE": All covariance matrices are the same.
8. "EEV": Different covariance matrices, but with the same determinant and in addition, if we make them have determinant 1 , they will have the same trace.
9. "VEV": Different covariance matrices but if we make the matrices have determinant 1 , then they will have the same trace.
10. "VVV": Different covariance matrices with nothing in common.
11. "EVE": Different covariance matrices, but with the same determinant. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
12. "VVE": Different covariance matrices, but they have something in common with their directions. Calculate the eigenvectors of each covariance matrix and you will see the similarities.
13. "VEE": Different covariance matrices, but if we make the matrices have determinant 1, then they will have the same trace. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
14. "EVV": Different covariance matrices, but with the same determinant.
type \quad The type of trasformation to be used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
veo Stands for "Variables exceed observations". If TRUE then if the number variablesin the model exceeds the number of observations, but the model is still fitted.

Details

A log-ratio transformation is applied and then a Gaussian mixture model is constructed.

Value

A list including:

mu	A matrix where each row corresponds to the mean vector of each cluster.
su	An array containing the covariance matrix of each cluster.
prob	The estimated mixing probabilities.
est	The estimated cluster membership values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

bic.mixcompnorm, rmixcomp, mix.compnorm.contour, alfa.mix.norm, alfa.knn, alfa.rda, comp.nb

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
mod1 <- mix.compnorm(x, 3, model = "EII" )
mod2 <- mix.compnorm(x, 4, model = "VII")
```

Gaussian mixture models for compositional data using the
alpha-transformation

Gaussian mixture models for compositional data using the α transformation

Description

Gaussian mixture models for compositional data using the α-transformation.

Usage

alfa.mix. $\operatorname{norm(x,~g,~a,~model,~veo~=~FALSE)~}$

Arguments

$x \quad$ A matrix with the compositional data.
g How many clusters to create.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
model The type of model to be used.

1. "EII": All groups have the same diagonal covariance matrix, with the same variance for all variables.
2. "VII": Different diagonal covariance matrices, with the same variance for all variables within each group.
3. "EEI": All groups have the same diagonal covariance matrix.
4. "VEI": Different diagonal covariance matrices. If we make all covariance matrices have determinant 1, (divide the matrix with the \$p\$-th root of its determinant) then all covariance matrices will be the same.
5. "EVI": Different diagonal covariance matrices with the same determinant.
6. "VVI": Different diagonal covariance matrices, with nothing in common.
7. "EEE": All covariance matrices are the same.
8. "EEV": Different covariance matrices, but with the same determinant and in addition, if we make them have determinant 1 , they will have the same trace.
9. "VEV": Different covariance matrices but if we make the matrices have determinant 1, then they will have the same trace.
10. "VVV": Different covariance matrices with nothing in common.
11. "EVE": Different covariance matrices, but with the same determinant. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
12. "VVE": Different covariance matrices, but they have something in common with their directions. Calculate the eigenvectors of each covariance matrix and you will see the similarities.
13. "VEE": Different covariance matrices, but if we make the matrices have determinant 1, then they will have the same trace. In addition, calculate the eigenvectors for each covariance matrix and you will see the extra similarities.
14. "EVV": Different covariance matrices, but with the same determinant.
veo Stands for "Variables exceed observations". If TRUE then if the number variablesin the model exceeds the number of observations, but the model is still fitted.

Details

A log-ratio transformation is applied and then a Gaussian mixture model is constructed.

Value

A list including:

mu	A matrix where each row corresponds to the mean vector of each cluster.
su	An array containing the covariance matrix of each cluster.
prob	The estimated mixing probabilities.
est	The estimated cluster membership values.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
bic.alfamixnorm, bic.mixcompnorm, rmixcomp, mix.compnorm.contour, mix.compnorm,alfa,
alfa.knn, alfa.rda, comp.nb
```


Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
mod1 <- alfa.mix.norm(x, 3, 0.4, model = "EII" )
mod2 <- alfa.mix.norm(x, 4, 0.7, model = "VII")
```

Generalised Dirichlet random values simulation
Generalised Dirichlet random values simulation

Description

Generalised Dirichlet random values simulation.

Usage

rgendiri(n, a, b)

Arguments

n
a
b

The sample size, a numerical value.
A numerical vector with the shape parameter values of the Gamma distribution.
A numerical vector with the scale parameter values of the Gamma distribution.

Details

The algorithm is straightforward, for each vector, independent gamma values are generated and then divided by their total sum. The difference with rdiri is that here the Gamma distributed variables are not equally scaled.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
rdiri, diri.est, diri.nr, diri.contour
```


Examples

```
\(a<-c(1,2,3)\)
b <- c(2, 3, 4)
x <- rgendiri(100, a, b)
```

Generate random folds for cross-validation
Generate random folds for cross-validation

Description

Random folds for use in a cross validation are generated. There is the option for stratified splitting as well.

Usage

makefolds(ina, nfolds $=10$, stratified $=$ TRUE, seed $=$ NULL)

Arguments

ina A variable indicating the groupings.
nfolds The number of folds to produce.
stratified A boolean variable specifying whether stratified random (TRUE) or simple random (FALSE) sampling is to be used when producing the folds.
seed You can specify your own seed number here or leave it NULL.

Details

I was inspired by the command in the package TunePareto in order to do the stratified version.

Value

A list with nfolds elements where each elements is a fold containing the indices of the data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

compknn. tune

Examples

```
a <- makefolds(iris[, 5], nfolds = 5, stratified = TRUE)
table(iris[a[[1]], 5]) ## 10 values from each group
```


Greenacre's power transformation

Greenacre's power transformation

Description

Greenacre's power transformation.

Usage

green(x, theta)

Arguments

x
theta

A matrix with the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\theta=0$ the \log transformation is applied.

Details

Greenacre's transformation is applied to the compositional data.

Value

A matrix with the power transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Greenacre, M. (2009). Power transformations in correspondence analysis. Computational Statistics \& Data Analysis, 53(8): 3107-3116. http://www.econ.upf.edu/~michael/work/PowerCA.pdf

See Also

> alfa

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- green(x, 0.1)
y2 <- green(x, 0.2)
rbind( colMeans(y1), colMeans(y2) )
```

```
Helper Frechet mean for compositional data
        Helper Frechet mean for compositional data
```


Description

Helper Frechet mean for compositional data.

Usage

frechet2(x, di, a, k)

Arguments

$x \quad$ A matrix with the compositional data.
di A matrix with indices as produced by the function "dista" of the package "Rfast"" or the function "nn" of the package "Rnanoflann". Better see the details section.

The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied and the closed geometric mean is calculated.
k
The number of nearest neighbours used for the computation of the Frechet means.

Details

The power transformation is applied to the compositional data and the mean vector is calculated. Then the inverse of it is calculated and the inverse of the power transformation applied to the last vector is the Frechet mean.

What this helper function do is to speed up the Frechet mean when used in the $\alpha-\mathrm{k}-\mathrm{NN}$ regression. The $\alpha-\mathrm{k}-\mathrm{NN}$ regression computes the Frechet mean of the k nearest neighbours for a value of α and this function does exactly that. Suppose you want to predict the compositional value of some new predictors. For each predictor value you must use the Frechet mean computed at various nearest neighbours. This function performs these computations in a fast way. It is not the fastest way, yet it is a pretty fast way. This function is being called inside the function aknn.reg.

Value

A list where eqch element contains a matrix. Each matrix contains the Frechet means computed at various nearest neighbours.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
alfa, alfainv, profile
```


Examples

```
library(MASS)
library(Rfast)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
xnew <- x[1:10, ]
x <- x[-c(1:10), ]
k <- 2:5
di <- Rfast::dista( xnew, x, k = max(k), index = TRUE, square = TRUE )
est <- frechet2(x, di, 0.2, k)
```

```
Helper functions for the Kullback-Leibler regression
    Helper functions for the Kullback-Leibler regression
```


Description

Helper functions for the Kullback-Leibler regression.

Usage

kl.compreg2 (y, x, con $=$ TRUE, $\mathrm{xnew}=\mathrm{NULL}, \mathrm{tol}=1 \mathrm{e}-07$, maxiters = 50)
klcompreg. boot (y, x, der, der2, id, b1, $n, ~ p, d$, tol $=1 e-07$, maxiters $=50$)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed. For the klcompreg.boot the first column is removed.
x
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.
xnew If you have new data use it, otherwise leave it NULL.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.
der An vector to put the first derivative there.
der2 An empty matrix to put the second derivatives there, the Hessian matrix will be put here.
id A help vector with indices.
b1 The matrix with the initial estimated coefficients.
n The sample size
$p \quad$ The number of columns of the design matrix.
d The dimensionality of the simplex, that is the number of columns of the compositional data minus 1.

Details

These are help functions for the kl. compreg function. They are not to be called directly by the user.

Value

For kl.compreg2 a list including:
iters The nubmer of iterations required by the Newton-Raphson.
loglik The loglikelihood.
be The beta coefficients.
est The fitted or the predicted values (if xnew is not NULL).
For klcompreg.boot a list including:
loglik The loglikelihood.
be The beta coefficients.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.

See Also

diri.reg, js.compreg, ols.compreg, comp.reg

Examples

library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
$\bmod 1<-\mathrm{kl} . \operatorname{compreg}(\mathrm{y}, \mathrm{x}, \mathrm{B}=1$, ncores $=1)$
$\bmod 2<-$ js.compreg(y, $x, B=1$, ncores = 1)

```
Hypothesis testing for two or more compositional mean vectors
```

Hypothesis testing for two or more compositional mean vectors

Description

Hypothesis testing for two or more compositional mean vectors.

Usage

comp.test(x, ina, test = "james", R = 0, ncores = 1, graph = FALSE)

Arguments

x	
ina	
test	A matrix containing compositional data. A numerical or factor variable indicating the groups of the data. This can take the values of "james" for James' test, "hotel" for Hotelling's test, "maov" for multivariate analysis of variance assuming equality of the covariance matrices, "maovjames" for multivariate analysis of variance without assuming equality of the covariance matrices. "el" for empirical likelihood or "eel" for exponential empirical likelihood. R This depends upon the value of the argument "test". If the test is "maov" or
"maovjames", R is not taken into consideration. If test is "hotel", then R denotes	
the number of bootstrap resamples. If test is "james", then R can be 1 (chi-square	
distribution), 2 (F distribution), or more for bootstrap calibration. If test is "el",	
then R can be 0 (chi-square), 1 (corrected chi-sqaure), 2 (F distribution) or more	
for bootstrap calibration. See the help page of each test for more information.	

Details

The idea is to apply the α-transformation, with $\alpha=1$, to the compositional data and then use a test to compare their mean vectors. See the help page of each test for more information. The function is visible so you can see exactly what is going on.

Value

A list including:
result The outcome of each test.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M., Preston S. and Wood A.T.A. (2017). Nonparametric hypothesis testing for equality of means on the simplex. Journal of Statistical Computation and Simulation, 87(2): 406-422.
G.S. James (1954). Tests of Linear Hypothese in Univariate and Multivariate Analysis when the Ratios of the Population Variances are Unknown. Biometrika, 41(1/2): 19-43
Krishnamoorthy K. and Yanping Xia (2006). On Selecting Tests for Equality of Two Normal Mean Vectors. Multivariate Behavioral Research 41(4): 533-548.

Owen A. B. (2001). Empirical likelihood. Chapman and Hall/CRC Press.
Owen A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2): 237-249.

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal bootstrap methods for k-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association 102(478): 695-707.
Preston S.P. and Wood A.T.A. (2010). Two-Sample Bootstrap Hypothesis Tests for Three-Dimensional Labelled Landmark Data. Scandinavian Journal of Statistics 37(4): 568-587.
Jing Bing-Yi and Andrew TA Wood (1996). Exponential empirical likelihood is not Bartlett correctable. Annals of Statistics 24(1): 365-369.

See Also

```
hd.meantest2, dptest
```


Examples

```
ina <- rep(1:2, each = 50)
x <- as.matrix(iris[1:100, 1:4])
x <- x/ rowSums(x)
comp.test( x, ina, test = "james" )
comp.test( x, ina, test = "hotel" )
comp.test( x, ina, test = "el" )
comp.test( x, ina, test = "eel" )
```

```
ICE plot for projection pursuit regression with compositional
predictor variables
```

ICE plot for projection pursuit regression with compositional predictor variables

Description

ICE plot for projection pursuit regression with compositional predictor variables.

Usage

ice.pprcomp(model, x, k = 1, frac = 0.1, type = "log")

Arguments

model The ppr model, the outcome of the pprcomp function.
$x \quad$ A matrix with the compositional data. No zero values are allowed.
$\mathrm{k} \quad$ Which variable to select?.
frac Fraction of observations to use. The default value is 0.1.
type Either "alr" or "log" corresponding to the additive log-ratio transformation or the simple logarithm applied to the compositional data.

Details

This function implements the Individual Conditional Expecation plots of Goldstein et al. (2015). See the references for more details.

Value

A graph with several curves. The horizontal axis contains the selected variable, whereas the vertical axis contains the centered predicted values. The black curves are the effects for each observation and the blue line is their average effect.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

https://christophm.github.io/interpretable-ml-book/ice.html
Goldstein, A., Kapelner, A., Bleich, J. and Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24(1): 44-65.
Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

See Also

```
pprcomp, pprcomp.tune, ice.kernreg, alfa.pcr, lc.reg, comp.ppr
```


Examples

```
x <- as.matrix( iris[, 2:4] )
x <- x/ rowSums(x)
y <- iris[, 1]
model <- pprcomp(y, x)
ice <- ice.pprcomp(model, x, k = 1)
```

```
ICE plot for the alpha-k-NN regression
                                    ICE plot for the \alpha-k-NN regression
```


Description

ICE plot for the $\alpha-k-N N$ regression.

Usage

ice.aknnreg(y, x, a, k, apostasi = "euclidean", rann = FALSE,
ind $=1$, frac $=0.2$, qpos $=0.9$)

Arguments

$y \quad$ A numerical vector with the response values.
$x \quad$ A numerical matrix with the predictor variables.
a The value α to consider.
k
The number of nearest neighbours to consider.
apostasi
The type of distance to use, either "euclidean" or "manhattan".
rann If you have large scale datasets and want a faster $k-N N$ search, you can use kdtrees implemented in the R package "Rnanoflann". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".
ind Which variable to select?.
frac Fraction of observations to use. The default value is 0.1.
qpos A number between 0.8 and 1 . This is used to place the legend of the figure better. You can play with it. In the worst case scenario the code is open and you tweak this argument as you prefer.

Details

This function implements the Individual Conditional Expecation plots of Goldstein et al. (2015). See the references for more details.

Value

A graph with several curves, one for each component. The horizontal axis contains the selected variable, whereas the vertical axis contains the locally smoothed predicted compositional lines.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

https://christophm.github.io/interpretable-ml-book/ice.html
Goldstein, A., Kapelner, A., Bleich, J. and Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24(1): 44-65.

See Also

ice.akernreg, ice.pprcomp

Examples

```
y <- as.matrix( iris[, 2:4] )
x <- iris[, 1]
ice <- ice.aknnreg(y, x, a = 0.6, k = 5, ind = 1)
```

```
ICE plot for the alpha-kernel regression
    ICE plot for the \alpha-kernel regression
```


Description

ICE plot for the α-kernel regression.

Usage

ice.akernreg(y, x, a, h, type ="gauss", ind $=1$, frac $=0.1$, qpos $=0.9)$

Arguments

$y \quad$ A numerical vector with the response values.
$x \quad$ A numerical matrix with the predictor variables.
a The value α to consider.
h The bandwidth value to consider.
type \quad The type of kernel to use, "gauss" or "laplace".
ind Which variable to select?.
frac Fraction of observations to use. The default value is 0.1.
qpos A number between 0.8 and 1 . This is used to place the legend of the figure better. You can play with it. In the worst case scenario the code is open and you tweak this argument as you prefer.

Details

This function implements the Individual Conditional Expecation plots of Goldstein et al. (2015). See the references for more details.

Value

A graph with several curves, one for each component. The horizontal axis contains the selected variable, whereas the vertical axis contains the locally smoothed predicted compositional lines.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

https://christophm.github.io/interpretable-ml-book/ice.html
Goldstein, A., Kapelner, A., Bleich, J. and Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24(1): 44-65.

See Also

ice.aknnreg, ice.pprcomp

Examples

```
y <- as.matrix( iris[, 2:4] )
x <- iris[, 1]
ice <- ice.akernreg(y, x, a = 0.6, h = 0.1, ind = 1)
```

ICE plot for univariate kernel regression
ICE plot for univariate kernel regression

Description

ICE plot for univariate kernel regression.

Usage

ice.kernreg(y, x, h, type = "gauss", k = 1, frac = 0.1)

Arguments

$y \quad$ A numerical vector with the response values.
$x \quad$ A numerical matrix with the predictor variables.
h The bandwidth value to consider.
type The type of kernel to use, "gauss" or "laplace".
$\mathrm{k} \quad$ Which variable to select?.
frac Fraction of observations to use. The default value is 0.1.

Details

This function implements the Individual Conditional Expecation plots of Goldstein et al. (2015). See the references for more details.

Value

A graph with several curves. The horizontal axis contains the selected variable, whereas the vertical axis contains the centered predicted values. The black curves are the effects for each observation and the blue line is their average effect.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

https://christophm.github.io/interpretable-ml-book/ice.html
Goldstein, A., Kapelner, A., Bleich, J. and Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24(1): 44-65.

See Also

ice.pprcomp, kernreg.tune, alfa.pcr, lc.reg

Examples

```
x <- as.matrix( iris[, 2:4] )
y <- iris[, 1]
ice <- ice.kernreg(y, x, h = 0.1, k = 1)
```

Inverse of the alpha-transformation
Inverse of the α-transformation

Description

The inverse of the α-transformation.

Usage

alfainv(x, a, h = TRUE)

Arguments

$x \quad$ A matrix with Euclidean data. However, they must lie within the feasible, acceptable space. See references for more information.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$, the inverse of the isometric log-ratio transformation is applied.
$\mathrm{h} \quad$ If $\mathrm{h}=$ TRUE this means that the multiplication with the Helmer sub-matrix will take place. It is set to TRUe by default.

Details

The inverse of the α-transformation is applied to the data. If the data lie outside the α-space, NAs will be returned for some values.

Value

A matrix with the pairwise distances.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M. and Stewart C. (2022). A Review of Flexible Transformations for Modeling Compositional Data. In Advances and Innovations in Statistics and Data Science, pp. 225-234. https://link.springer.com/chapter/10.10 3-031-08329-7_10
Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the α-transformation. Journal of Classification 33(2): 243-261. https://arxiv.org/pdf/1506.04976v2.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa, alfadist

Examples

```
library(MASS)
x <- as.matrix(fgl[1:10, 2:9])
x <- x / rowSums(x)
y <- alfa(x, 0.5)$aff
alfainv(y, 0.5)
```

Kernel regression with a numerical response vector or matrix
Kernel regression with a numerical response vector or matrix

Description

Kernel regression (Nadaraya-Watson estimator) with a numerical response vector or matrix.

Usage

kern.reg(xnew, y, $x, h=\operatorname{seq}(0.1,1$, length $=10)$, type = "gauss")

Arguments

xnew A matrix with the new predictor variables whose compositions are to be predicted.
$y \quad$ A numerical vector or a matrix with the response value.
$x \quad$ A matrix with the available predictor variables.
h The bandwidth value(s) to consider.
type \quad The type of kernel to use, "gauss" or "laplace".

Details

The Nadaraya-Watson estimator regression is applied.

Value

The fitted values. If a single bandwidth is considered then this is a vector or a matrix, depeding on the nature of the response. If multiple bandwidth values are considered then this is a matrix, if the response is a vector, or a list, if the response is a matrix.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Wand M. P. and Jones M. C. (1994). Kernel smoothing. CRC press.

See Also

kernreg.tune, ice.kernreg, akern.reg, aknn.reg

Examples

```
y <- iris[, 1]
x <- iris[, 2:4]
est <- kern.reg(x, y, x, h = c(0.1, 0.2) )
```

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions

Description

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions.

Usage

kl.diri(a, b, type = "KL")

Arguments

a
b
type

A vector with the parameters of the first Dirichlet distribution.
A vector with the parameters of the second Dirichlet distribution.
A variable indicating whether the Kullback-Leibler divergence ("KL") or the Bhattacharyya distance ("bhatt") is to be computed.

Details

Note that the order is important in the Kullback-Leibler divergence, since this is asymmetric, but not in the Bhattacharyya distance, since it is a metric.

Value

The value of the Kullback-Leibler divergence or the Bhattacharyya distance.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

See Also

diri.est, diri.nr

Examples

```
library(MASS)
a <- runif(10, 0, 20)
b <- runif(10, 1, 10)
kl.diri(a, b)
kl.diri(b, a)
kl.diri(a, b, type = "bhatt")
kl.diri(b, a, type = "bhatt")
```

```
LASSO Kullback-Leibler divergence based regression
    LASSO Kullback-Leibler divergence based regression
```


Description

LASSO Kullback-Leibler divergence based regression.

Usage

lasso.klcompreg(y, x , alpha $=1$, lambda $=$ NULL,
nlambda $=100$, type = "grouped", xnew = NULL)

Arguments

$$
\begin{array}{ll}
\mathrm{y} & \text { A numerical matrix with compositional data. Zero values are allowed. } \\
\mathrm{x} & \text { A numerical matrix containing the predictor variables. } \\
\text { alpha } & \begin{array}{l}
\text { The elastic net mixing parameter, with } 0 \leq \alpha \leq 1 . \text { The penalty is defined as } \\
\text { a weighted combination of the ridge and of the Lasso regression. When } \alpha=1
\end{array} \\
\text { LASSO is applied, while } \alpha=0 \text { yields the ridge regression. } \\
\text { lambda } & \begin{array}{l}
\text { This information is copied from the package glmnet. A user supplied lambda } \\
\text { sequence. Typical usage is to have the program compute its own lambda se- } \\
\text { quence based on nlambda and lambda.min.ratio. Supplying a value of lambda } \\
\text { overrides this. WARNING: use with care. Avoid supplying a single value for } \\
\text { lambda (for predictions after CV use predict() instead). Supply instead a de- } \\
\text { creasing sequence of lambda values. glmnet relies on its warms starts for speed, } \\
\text { and its often faster to fit a whole path than compute a single fit. }
\end{array} \\
\text { nlambda } & \begin{array}{l}
\text { This information is copied from the package glmnet. The number of lambda } \\
\text { values, default is 100. }
\end{array} \\
\text { type } & \begin{array}{l}
\text { This information is copied from the package glmnet. If "grouped" then a } \\
\text { grouped lasso penalty is used on the multinomial coefficients for a variable. This }
\end{array} \\
\text { ensures they are all in our out together. The default in our case is "grouped". } \\
\text { xnew } & \begin{array}{l}
\text { If you have new data use it, otherwise leave it NULL. }
\end{array} \\
&
\end{array}
$$

Details

The function uses the glmnet package to perform LASSO penalised regression. For more details see the function in that package.

Value

A list including:
$\bmod \quad$ We decided to keep the same list that is returned by glmnet. So, see the function in that package for more information.
est If you supply a matrix in the "xnew" argument this will return an array of many matrices with the fitted values, where each matrix corresponds to each value of λ.

Author(s)

Michail Tsagris and Abdulaziz Alenazi.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Abdulaziz Alenazi a.alenazi@nbu.edu.sa.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Alenazi, A. A. (2022). f-divergence regression models for compositional data. Pakistan Journal of Statistics and Operation Research, 18(4): 867-882.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

```
lassocoef.plot, cv.lasso.klcompreg, kl.compreg, lasso.compreg, ols.compreg, alfa.pcr,
alfa.knn.reg
```


Examples

```
y <- as.matrix(iris[, 1:4])
y <- y / rowSums(y)
x <- matrix( rnorm(150 * 30), ncol = 30)
a <- lasso.klcompreg(y, x)
```

LASSO log-ratio regression with compositional response
LASSO log-ratio regression with compositional response

Description

LASSO log-ratio regression with compositional response.

Usage

lasso.compreg(y, x, alpha = 1, lambda = NULL, nlambda $=100$, xnew $=$ NULL)

Arguments

nlambda This information is copied from the package glmnet. The number of lambda
y

X
alpha
lambda
xnew

A numerical matrix with compositional data. Zero values are not allowed as the additive log-ratio transformation (alr) is applied to the compositional response prior to implementing the LASSO algortihm.
A numerical matrix containing the predictor variables.
The elastic net mixing parameter, with $0 \leq \alpha \leq 1$. The penalty is defined as a weighted combination of the ridge and of the Lasso regression. When $\alpha=1$ LASSO is applied, while $\alpha=0$ yields the ridge regression.

This information is copied from the package glmnet. A user supplied lambda sequence. Typical usage is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Avoid supplying a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path than compute a single fit. values, default is 100 .

If you have new data use it, otherwise leave it NULL.

Details

The function uses the glmnet package to perform LASSO penalised regression. For more details see the function in that package.

Value

A list including:
mod We decided to keep the same list that is returned by glmnet. So, see the function in that package for more information.
est If you supply a matrix in the "xnew" argument this will return an array of many matrices with the fitted values, where each matrix corresponds to each value of λ.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

cv.lasso.compreg, lassocoef.plot, lasso.klcompreg, cv.lasso.klcompreg, comp.reg

Examples

```
y <- as.matrix(iris[, 1:4])
y <- y / rowSums(y)
x <- matrix( rnorm(150 * 30), ncol = 30 )
a <- lasso.compreg(y, x)
```

LASSO with compositional predictors using the alpha-transformation LASSO with compositional predictors using the alpha-transformation

Description

LASSO with compositional predictors using the alpha-transformation.

Usage

alfa.lasso(y, $x, a=\operatorname{seq}(-1,1, b y=0.1)$, model = "gaussian", lambda = NULL, xnew = NULL)

Arguments

y A numerical vector or a matrix for multinomial logistic regression.
$x \quad$ A numerical matrix containing the predictor variables, compositional data, where zero values are allowed..
a
A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
model The type of the regression model, "gaussian", "binomial", "poisson", "multinomial", or "mgaussian".
lambda This information is copied from the package glmnet. A user supplied lambda sequence. Typical usage is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this. WARNING: use with care. Avoid supplying a single value for lambda (for predictions after CV use predict() instead). Supply instead a decreasing sequence of lambda values. glmnet relies on its warms starts for speed, and its often faster to fit a whole path than compute a single fit.
xnew If you have new data use it, otherwise leave it NULL.

Details

The function uses the glmnet package to perform LASSO penalised regression. For more details see the function in that package.

Value

A list including sublists for each value of α :
mod We decided to keep the same list that is returned by glmnet. So, see the function in that package for more information.
est If you supply a matrix in the "xnew" argument this will return an array of many matrices with the fitted values, where each matrix corresponds to each value of λ.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also
alfalasso.tune, cv.lasso.klcompreg, lasso.compreg, alfa.knn.reg

Examples

```
y <- as.matrix(iris[, 1])
x <- rdiri(150, runif(20, 2, 5) )
mod <- alfa.lasso(y, x, a = c(0, 0.5, 1))
```

Log-contrast GLMs with compositional predictor variables
Log-contrast GLMS with compositional predictor variables

Description

Log-contrast GLMs with compositional predictor variables.

Usage

lc.glm(y, x, z = NULL, model = "logistic", xnew = NULL, znew = NULL)

Arguments

$y \quad$ A numerical vector containing the response variable values. This is either a binary variable or a vector with counts.
$x \quad$ A matrix with the predictor variables, the compositional data. No zero values are allowed.
z A matrix, data.frame, factor or a vector with some other covariate(s).
model For the ulc.glm(), this can be either "logistic" or "poisson".
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the log-contrast logistic or Poisson regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see ulc.glm. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value

A list including:
devi The residual deviance of the logistic or Poisson regression model.
be The constrained regression coefficients. Their sum (excluding the constant) equals 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Lu J., Shi P. and Li H. (2019). Generalized linear models with linear constraints for microbiome compositional data. Biometrics, 75(1): 235-244.

See Also

ulc.glm, lc.glm2, ulc.glm2, lcglm.aov

Examples

```
y <- rbinom(150, 1, 0.5)
x <- rdiri(150, runif(3, 1, 4) )
mod1 <- lc.glm(y, x)
```

```
Log-contrast logistic or Poisson regression with with multiple
compositional predictors
    Log-contrast logistic or Poisson regression with with multiple compo-
    sitional predictors
```


Description

Log-contrast logistic or Poisson regression with with multiple compositional predictors.

Usage

Arguments

y
x
z
model
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the log-contrast logistic or Poisson regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see ulc.glm2. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value

A list including:
devi The residual deviance of the logistic or Poisson regression model.
be The constrained regression coefficients. Their sum (excluding the constant) equals 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Lu J., Shi P. and Li H. (2019). Generalized linear models with linear constraints for microbiome compositional data. Biometrics, 75(1): 235-244.

See Also

```
ulc.glm2, ulc.glm, lc.glm
```


Examples

```
y <- rbinom(150, 1, 0.5)
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
x[[[ 1 ] ]}]<-x
x[[ 2 ]] <- rdiri(150, runif(4) )
x[[ 3 ]] <- rdiri(150, runif(5) )
mod <- lc.glm2(y, x)
```

```
Log-contrast quantile regression with compositional predictor
variables
Log-contrast quantile regression with compositional predictor variables
```


Description

Log-contrast quantile regression with compositional predictor variables.

Usage

lc.rq(y, x, z = NULL, tau, xnew = NULL, znew = NULL)

Arguments

$y \quad$ A numerical vector containing the response variable values.
$x \quad$ A matrix with the predictor variables, the compositional data. No zero values are allowed.
z A matrix, data.frame, factor or a vector with some other covariate(s).
tau The quantile to be estimated, a number between 0 and 1.
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the quantile regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the logtransformed data with the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see ulc.rq. Extra predictor variables are allowed as well, for instance categorical or continuous.

Value

A list including:
mod The object as returned by the function quantreg::rq(). This is useful for hypothesis testing purposes.
be The constrained regression coefficients. Their sum (excluding the constant) equals 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Koenker R. W. and Bassett G. W. (1978). Regression Quantiles, Econometrica, 46(1): 33-50.
Koenker R. W. and d'Orey V. (1987). Algorithm AS 229: Computing Regression Quantiles. Applied Statistics, 36(3): 383-393.

See Also

lc.rq2, ulc.rq

Examples

```
y <- rnorm(150)
x <- rdiri(150, runif(3, 1, 4) )
mod1 <- lc.rq(y, x)
```

```
Log-contrast quantile regression with with multiple compositional
predictors
Log-contrast quantile regression with with multiple compositional predictors
```


Description

Log-contrast quantile regression with with multiple compositional predictors.

Usage

lc.rq2 $(y, x, z=N U L L, ~ t a u=0.5, x n e w=N U L L, z n e w=N U L L)$

Arguments

$y \quad$ A numerical vector containing the response variable values.
$x \quad$ A matrix with the predictor variables, the compositional data. No zero values are allowed.
z
A matrix, data.frame, factor or a vector with some other covariate(s).
tau The quantile to be estimated, a number between 0 and 1.
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the log-contrast quantile regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see ulc.rq2. Extra predictor variables are allowed as well, for instance categorical or continuous.

Value

A list including:
mod The object as returned by the function quantreg::rq(). This is useful for hypothesis testing purposes.
be The constrained regression coefficients. Their sum (excluding the constant) equals 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Koenker R. W. and Bassett G. W. (1978). Regression Quantiles, Econometrica, 46(1): 33-50.
Koenker R. W. and d’Orey V. (1987). Algorithm AS 229: Computing Regression Quantiles. Applied Statistics, 36(3): 383-393.

See Also

lc.rq, ulc.rq

Examples

```
y <- rnorm(150)
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
x[[[ 1 ] ] < <- x1
x[[ 2 ]] <- rdiri(150, runif(4) )
x[[ 3 ]] <- rdiri(150, runif(5) )
mod <- lc.rq2(y, x)
```

Log-contrast regression with compositional predictor variables
Log-contrast regression with compositional predictor variables

Description

Log-contrast regression with compositional predictor variables.

Usage

lc. $\mathrm{reg}(\mathrm{y}, \mathrm{x}, \mathrm{z}=\mathrm{NULL}, \mathrm{xnew}=\mathrm{NULL}, \quad \mathrm{znew}=\mathrm{NULL})$

Arguments

y A numerical vector containing the response variable values. This must be a continuous variable.
$x \quad$ A matrix with the predictor variables, the compositional data. No zero values are allowed.
$z \quad$ A matrix, data.frame, factor or a vector with some other covariate(s).
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the log-contrast regression model as described in Aitchison (2003), pg. 8485. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients equals 0 . Hence, we apply constrained least squares, which has a closed form solution. The constrained least squares is described in Chapter 8.2 of Hansen (2019). The idea is to minimise the sum of squares of the residuals under the constraint $R^{T} \beta=c$, where $c=0$ in our case. If you want the regression without the zum-to-zero contraints see ulc. reg. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value

A list including:

be	The constrained regression coefficients. Their sum (excluding the constant)		
equals 0.		\quad	The covariance matrix of the constrained regression coefficients.
:---			
covbe			
va			
residuals			
est	\quad	The estimated regression variance.	
:---			

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Hansen, B. E. (2022). Econometrics. Princeton University Press.

See Also

ulc.reg, lcreg.aov, lc.reg2, alfa.pcr, alfa.knn.reg

Examples

```
y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
mod1 <- lc.reg(y, x)
mod2 <- lc.reg(y, x, z = iris[, 5])
```

Log-contrast regression with multiple compositional predictors Log-contrast regression with multiple compositional predictors

Description

Log-contrast regression with multiple compositional predictors.

Usage

lc.reg2 (y, $x, z=N U L L, x n e w=N U L L, z n e w=N U L L)$

Arguments

y
x
z
xnew
znew

A numerical vector containing the response variable values. This must be a continuous variable.
A list with multiple matrices with the predictor variables, the compositional data. No zero values are allowed.
A matrix, data.frame, factor or a vector with some other covariate(s).
A matrix containing a list with multiple matrices with compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the log-contrast regression model as described in Aitchison (2003), pg. 8485. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data with the constraint that the sum of the regression coefficients for each composition equals 0 . Hence, we apply constrained least squares, which has a closed form solution. The constrained least squares is described in Chapter 8.2 of Hansen (2019). The idea is to minimise the sum of squares of the residuals under the constraint $R^{T} \beta=c$, where $c=0$ in our case. If you want the regression without the zum-to-zero contraints see ulc.reg2. Extra predictors variables are allowed as well, for instance categorical or continuous. The difference with lc.reg is that instead of one, there are multiple compositions treated as predictor variables.

Value

A list including:
be The constrained regression coefficients. The sum of the sets of coefficients (excluding the constant) corresponding to each predictor composition sums to 0 .
covbe If covariance matrix of the constrained regression coefficients.
va The variance of the estimated regression coefficients.
residuals The vector of residuals.
est If the arguments "xnew" and "znew" were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Hansen, B. E. (2022). Econometrics. Princeton University Press.
Xiaokang Liu, Xiaomei Cong, Gen Li, Kendra Maas and Kun Chen (2020). Multivariate LogContrast Regression with Sub-Compositional Predictors: Testing the Association Between Preterm Infants' Gut Microbiome and Neurobehavioral Outcome.

See Also

ulc.reg2, lc.reg, ulc.reg, lcreg.aov, alfa.pcr, alfa.knn.reg

Examples

```
y <- iris[, 1]
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
x[[ 1 ]] <- x1
```

```
x[[ 2 ]] <- rdiri(150, runif(4) )
x[[ [ 3 ]] <- rdiri(150, runif(5) )
mod <- lc.reg2(y, x)
be <- mod$be
sum(be[2:4])
sum(be[5:8])
sum(be[9:13])
```

```
Log-likelihood ratio test for a Dirichlet mean vector
```

 Log-likelihood ratio test for a Dirichlet mean vector

Description

Log-likelihood ratio test for a Dirichlet mean vector.

Usage

dirimean.test(x, a)

Arguments

$x \quad$ A matrix with the compositional data. No zero values are allowed.
a A compositional mean vector. The concentration parameter is estimated at first. If the elements do not sum to 1 , it is assumed that the Dirichlet parameters are supplied.

Details

Log-likelihood ratio test is performed for the hypothesis the given vector of parameters "a" describes the compositional data well.

Value

If there are no zeros in the data, a list including:
param A matrix with the estimated parameters under the null and the alternative hypothesis.
loglik The log-likelihood under the alternative and the null hypothesis.
info The value of the test statistic and its relevant p-value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

See Also

sym.test, diri.nr, diri.est, rdiri, ddiri

Examples

```
x <- rdiri( 100, c(1, 2, 3) )
dirimean.test(x, c(1, 2, 3) )
dirimean.test( x, c(1, 2, 3)/6 )
```

Log-likelihood ratio test for a symmetric Dirichlet distribution Log-likelihood ratio test for a symmetric Dirichlet distribution

Description

Log-likelihood ratio test for a symmetric Dirichlet distribution.

Usage

sym.test(x)

Arguments

$x \quad$ A matrix with the compositional data. No zero values are allowed.

Details

Log-likelihood ratio test is performed for the hypothesis that all Dirichelt parameters are equal.

Value

A list including:
est.par The estimated parameters under the alternative hypothesis.
one.par The value of the estimated parameter under the null hypothesis.
res The loglikelihood under the alternative and the null hypothesis, the value of the test statistic, its relevant p -value and the associated degrees of freedom, which are actually the dimensionality of the simplex, $D-1$, where D is the number of components.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.

See Also

diri.nr, diri.est, rdiri, dirimean.test

Examples

```
x <- rdiri( 100, c(5, 7, 1, 3, 10, 2, 4) )
sym.test(x)
x <- rdiri( 100, c(5, 5, 5, 5, 5) )
sym.test(x)
```

```
Minimized Kullback-Leibler divergence between Dirichlet and logistic
normal
    Minimized Kullback-Leibler divergence between Dirichlet and logistic
    normal
```


Description

Minimized Kullback-Leibler divergence between Dirichlet and logistic normal distributions.

Usage

kl.diri.normal(a)

Arguments

a
A vector with the parameters of the Dirichlet parameters.

Details

The function computes the minimized Kullback-Leibler divergence from the Dirichlet distribution to the logistic normal distribution.

Value

The minimized Kullback-Leibler divergence from the Dirichlet distribution to the logistic normal distribution.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data, p. 127. Chapman \& Hall.

See Also

diri.nr, diri.contour, rdiri, ddiri, dda, diri.reg

Examples

```
a <- runif(5, 1, 5)
kl.diri.normal(a)
```

```
Mixture model selection via BIC
    Mixture model selection via BIC
```


Description

Mixture model selection via BIC.

Usage

bic.mixcompnorm(x, G, type = "alr", veo = FALSE, graph = TRUE)

Arguments

$x \quad$ A matrix with compositional data.
G A numeric vector with the number of components, clusters, to be considered, e.g. 1:3.
type The type of trasformation to be used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
veo Stands for "Variables exceed observations". If TRUE then if the number variablesin the model exceeds the number of observations, but the model is still fitted.
graph A boolean variable, TRUE or FALSE specifying whether a graph should be drawn or not.

Details

The alr or the ilr-transformation is applied to the compositional data first and then mixtures of multivariate Gaussian distributions are fitted. BIC is used to decide on the optimal model and number of components.

Value
A plot with the BIC of the best model for each number of components versus the number of components. A list including:
mod A message informing the user about the best model.
BIC The BIC values for every possible model and number of components.
optG The number of components with the highest BIC.
optmodel The type of model corresponding to the highest BIC.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2018). mixture: Mixture Models for Clustering and Classification. R package version 1.5.

Ryan P. Browne and Paul D. McNicholas (2014). Estimating Common Principal Components in High Dimensions. Advances in Data Analysis and Classification, 8(2), 217-226.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

mix.compnorm, mix.compnorm.contour, rmixcomp, bic.alfamixnorm

Examples

```
x <- as.matrix( iris[, 1:4] )
x <- x/ rowSums(x)
bic.mixcompnorm(x, 1:3, type = "alr", graph = FALSE)
bic.mixcompnorm(x, 1:3, type = "ilr", graph = FALSE)
```

Mixture model selection with the alpha-transformation using BIC Mixture model selection with the α-transformation using BIC

Description

Mixture model selection with the α-transformation using BIC.

Usage

bic.alfamixnorm(x, G, a $=\operatorname{seq}(-1,1$, by $=0.1)$, veo $=$ FALSE, graph $=$ TRUE $)$

Arguments

$x \quad$ A matrix with compositional data.
G A numeric vector with the number of components, clusters, to be considered, e.g. 1:3.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
veo Stands for "Variables exceed observations". If TRUE then if the number variablesin the model exceeds the number of observations, but the model is still fitted.
graph A boolean variable, TRUE or FALSE specifying whether a graph should be drawn or not.

Details

The α-transformation is applied to the compositional data first and then mixtures of multivariate Gaussian distributions are fitted. BIC is used to decide on the optimal model and number of components.

Value

A list including:

abic	A list that contains the matrices of all BIC values for all values of α
optalpha	The value of α that leads to the highest BIC.
optG	The number of components with the highest BIC.
optmodel	The type of model corresponding to the highest BIC.

If graph is set equal to TRUE a plot with the BIC of the best model for each number of components versus the number of components and a list with the results of the Gaussian mixture model for each value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2018). mixture: Mixture Models for Clustering and Classification. R package version 1.5.
Ryan P. Browne and Paul D. McNicholas (2014). Estimating Common Principal Components in High Dimensions. Advances in Data Analysis and Classification, 8(2), 217-226.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.mix.norm, mix.compnorm, mix.compnorm.contour, rmixcomp, alfa, alfa.knn, alfa.rda, comp.nb

Examples

```
x <- as.matrix( iris[, 1:4] )
x <- x/ rowSums(x)
bic.alfamixnorm(x, 1:3, a = c(0.4, 0.5, 0.6), graph = FALSE)
```

```
MLE for the multivariate t distribution
    MLE for the multivariate t distribution
```


Description

MLE of the parameters of a multivariate t distribution.

Usage

multivt(y, plot = FALSE)

Arguments

y
A matrix with continuous data.
plot If plot is TRUE the value of the maximum log-likelihood as a function of the degres of freedom is presented.

Details

The parameters of a multivariate t distribution are estimated. This is used by the functions comp. den and bivt.contour.

Value

A list including:
center The location estimate.
scatter The scatter matrix estimate.
df The estimated degrees of freedom.
loglik The log-likelihood value.
mesos The classical mean vector.
covariance The classical covariance matrix.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Nadarajah, S. and Kotz, S. (2008). Estimation methods for the multivariate t distribution. Acta Applicandae Mathematicae, 102(1):99-118.

See Also

```
bivt.contour, comp.den
```


Examples

```
x <- as.matrix(iris[, 1:4])
multivt(x)
```

```
MLE of distributions defined in the (0, 1) interval
    MLE of distributions defined in the (0, 1) interval
```


Description

MLE of distributions defined in the $(0,1)$ interval.

Usage

```
beta.est(x, tol = 1e-07)
logitnorm.est(x)
hsecant01.est(x, tol = 1e-07)
kumar.est(x, tol = 1e-07)
unitweibull.est(x, tol = 1e-07, maxiters = 100)
ibeta.est(x, tol = 1e-07)
zilogitnorm.est(x)
```


Arguments

x
A numerical vector with proportions, i.e. numbers in $(0,1)$ (zeros and ones are not allowed).
tol The tolerance level up to which the maximisation stops.
maxiters The maximum number of iterations the Newton-Raphson algorithm will perform.

Details

Maximum likelihood estimation of the parameters of some distributions are performed, some of which use the Newton-Raphson. Some distributions and hence the functions do not accept zeros. "logitnorm.mle" fits the logistic normal, hence no Newton-Raphson is required and the "hypersecant01.mle" use the golden ratio search as is it faster than the Newton-Raphson (less computations). The "zilogitnorm.est" stands for the zero inflated logistic normal distribution. The "ibeta.est" fits the zero or the one inflated beta distribution.

Value

A list including:

iters	The number of iterations required by the Newton-Raphson.
loglik	The value of the log-likelihood.
param	The estimated parameters. In the case of "hypersecant01.est" this is called
	"theta" as there is only one parameter.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology. 46(1-2): 79-88.
Jones, M.C. (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology. 6(1): 70-81.
You can also check the relevant wikipedia pages.

See Also

```
diri.est
```


Examples

```
x <- rbeta(1000, 1, 4)
beta.est(x)
ibeta.est(x)
x <- runif(1000)
hsecant01.est(x)
logitnorm.est(x)
ibeta.est(x)
x <- rbeta(1000, 2, 5)
x[sample(1:1000, 50)] <- 0
ibeta.est(x)
```


Description

MLE of the parameters of a Dirichlet distribution.

Usage

diri.est(x, type = "mle")

Arguments

x	A matrix containing compositional data.
type	If you want to estimate the parameters use type="mle". If you want to estimate the mean vector along with the precision parameter, the second parametrisation of the Dirichlet, use type="prec".

Details

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed.

Value

A list including:
loglik The value of the log-likelihood.
param The estimated parameters.
phi The estimated precision parameter, if type = "prec".
mu The estimated mean vector, if type = "prec".
runtime The run time of the maximisation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley \& Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

diri.nr, diri.contour, rdiri, ddiri, dda, diri.reg

Examples

```
x <- rdiri( 100, c(5, 7, 1, 3, 10, 2, 4) )
diri.est(x)
diri.est(x, type = "prec")
```

```
MLE of the Dirichlet distribution via Newton-Rapshon
    MLE of the Dirichlet distribution via Newton-Rapshon
```


Description

MLE of the Dirichlet distribution via Newton-Rapshon.

Usage

diri.nr(x, type $=1$, tol $=1 \mathrm{e}-07)$

Arguments

x
type
tol

A matrix containing compositional data. Zeros are not allowed.
Type can either be 1 , so that the Newton-Rapshon is used for the maximisation of the log-likelihood, as Minka (2012) suggested or it can be 1. In the latter case the Newton-Raphson algorithm is implemented involving matrix inversions. In addition an even faster implementation has been implemented (in $\mathrm{C}++$) in the package Rfast and is used here.

The tolerance level indicating no further increase in the log-likelihood.

Details

Maximum likelihood estimation of the parameters of a Dirichlet distribution is performed via Newton-Raphson. Initial values suggested by Minka (2003) are used. The estimation is super faster than "diri.est" and the difference becomes really apparent when the sample size and or the dimensions increase. In fact this will work with millions of observations. So in general, I trust this one more than "diri.est".

The only problem I have seen with this method is that if the data are concentrated around a point, say the center of the simplex, it will be hard for this and the previous methods to give estimates of the parameters. In this extremely difficult scenario I would suggest the use of the previous function with the precision parametrization "diri.est $(\mathrm{x}$, type = "prec")". It will be extremely fast and accurate.

Value

A list including:
iter The number of iterations required. If the argument "type" is set to 2 this is not returned.
loglik The value of the log-likelihood.
param The estimated parameters.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Thomas P. Minka (2003). Estimating a Dirichlet distribution. http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf

See Also

diri.est, diri.contour rdiri, ddiri, dda

Examples

```
x <- rdiri( 100, c(5, 7, 5, 8, 10, 6, 4) )
diri.nr(x)
diri.nr(x, type = 2)
diri.est(x)
```

```
MLE of the folded model for a given value of alpha
    MLE of the folded model for a given value of \alpha
```


Description

MLE of the folded model for a given value of α.

Usage

alpha.mle(x, a)
a.mle(a, x)

Arguments

x
a

A matrix with the compositional data. No zero vaues are allowed.
A value of α.

Details

This is a function for choosing or estimating the value of α in the α-folded model (Tsagris and Stewart, 2020). It is called by a.est.

Value

If "alpha.mle" is called, a list including:
iters The number of iterations the EM algorithm required.
loglik The maximimized log-likelihood of the folded model.
$\mathrm{p} \quad$ The estimated probability inside the simplex of the α-folded model.
mu The estimated mean vector of the α-folded model.
su The estimated covariance matrix of the α-folded model.
If "a.mle" is called, the log-likelihood is returned only.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2022). A Review of Flexible Transformations for Modeling Compositional Data. In Advances and Innovations in Statistics and Data Science, pp. 225-234. https://link.springer.com/chapter/10.10 3-031-08329-7_10
Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.profile, alfa, alfainv, a.est

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
mod <- alfa.tune(x)
mod
alpha.mle(x, mod[1])
```


Description

MLE of the zero adjusted Dirichlet distribution.

Usage

zad.est(y)

Arguments

y A matrix with the compositional data.

Details

A zero adjusted Dirichlet distribution is being fitted and its parameters are estimated.

Value

A list including:
loglik The value of the log-likelihood.
phi The precision parameter. If covariates are linked with it (function "diri.reg2"), this will be a vector.
mu The mean vector of the distribution.
runtime The time required by the regression.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2018). A Dirichlet regression model for compositional data with zeros. Lobachevskii Journal of Mathematics,39(3): 398-412.

Preprint available from https://arxiv.org/pdf/1410.5011.pdf

See Also

```
zadr, diri.nr, zilogitnorm.est, zeroreplace
```


Examples

```
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.nr(y)
y[sample(1:450, 15) ] <- 0
mod2 <- zad.est(y)
```

```
Multivariate kernel density estimation
    Multivariate kernel density estimation
```


Description

Multivariate kernel density estimation.

Usage

mkde(x, h = NULL, thumb = "silverman")

Arguments

$x \quad$ A matrix with Euclidean (continuous) data.
h The bandwidh value. It can be a single value, which is turned into a vector and then into a diagonal matrix, or a vector which is turned into a diagonal matrix. If you put this NULL then you need to specify the "thumb" argument below.
thumb Do you want to use a rule of thumb for the bandwidth parameter? If no, set h equal to NULL and put "estim" for maximum likelihood cross-validation, "scott" or "silverman" for Scott's and Silverman's rules of thumb respectively.

Details

The multivariate kernel density estimate is calculated with a (not necssarily given) bandwidth value.

Value

A vector with the density estimates calculated for every vector.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives. The kedd R package.
M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.
B.W. Silverman (1986). Density estimation for statistics and data analysis, pages 76-78.

See Also

mkde.tune, comp.kerncontour

Examples

```
mkde( as.matrix(iris[, 1:4]), thumb = "scott" )
mkde( as.matrix(iris[, 1:4]), thumb = "silverman" )
```

```
Multivariate kernel density estimation for compositional data
    Multivariate kernel density estimation for compositional data
```


Description

Multivariate kernel density estimation for compositional data.

Usage

comp.kern(x, type= "alr", h = NULL, thumb = "silverman")

Arguments

x
type The type of trasformation used, either the additive log-ratio ("alr"), the isometric log-ratio ("ilr") or the pivot coordinate ("pivot") transformation.
$h \quad$ The bandwidh value. It can be a single value, which is turned into a vector and then into a diagonal matrix, or a vector which is turned into a diagonal matrix. If it is NULL, then you need to specify the "thumb" argument below.
thumb Do you want to use a rule of thumb for the bandwidth parameter? If no, leave the " h " NULL and put "estim" for maximum likelihood cross-validation, "scott" or "silverman" for Scott's and Silverman's rules of thumb respectively.

Details

The multivariate kernel density estimate is calculated with a (not necssarily given) bandwidth value.

Value

A vector with the density estimates calculated for every vector.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives.

The kedd R package.
M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.
B.W. Silverman (1986). Density estimation for statistics and data analysis, pages 76-78.

See Also

comp.kerncontour, mkde

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
f<- comp.kern(x)
```

Multivariate linear regression
Multivariate linear regression

Description

Multivariate linear regression.

Usage

multivreg(y, x, plot = TRUE, xnew = NULL)

Arguments

y A matrix with the Eucldidean (continuous) data.
$x \quad$ A matrix with the predictor variable(s), they have to be continuous.
plot Should a plot appear or not?
xnew If you have new data use it, otherwise leave it NULL.

Details

The classical multivariate linear regression model is obtained.

Value

A list including:
suma A summary as produced by lm, which includes the coefficients, their standard error, t -values, p -values.
r.squared \quad The value of the R^{2} for each univariate regression.
resid.out A vector with number indicating which vectors are potential residual outliers.
x.leverage A vector with number indicating which vectors are potential outliers in the predictor variables space.
out A vector with number indicating which vectors are potential outliers in the residuals and in the predictor variables space.
est The predicted values if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

K.V. Mardia, J.T. Kent and J.M. Bibby (1979). Multivariate Analysis. Academic Press.

See Also

diri.reg, js.compreg, kl.compreg, ols.compreg, comp.reg

Examples

```
library(MASS)
x <- as.matrix(iris[, 1:2])
y <- as.matrix(iris[, 3:4])
multivreg(y, x, plot = TRUE)
```

Multivariate normal random values simulation on the simplex Multivariate normal random values simulation on the simplex

Description

Multivariate normal random values simulation on the simplex.

Usage

rcompnorm(n, m, s, type = "alr")

Arguments

n
The sample size, a numerical value.
m
The mean vector in R^{d}.
s
The covariance matrix in R^{d}.
type
The alr (type = "alr") or the ilr (type = "ilr") is to be used for closing the Euclidean data onto the simplex.

Details

The algorithm is straightforward, generate random values from a multivariate normal distribution in R^{d} and brings the values to the simplex S^{d} using the inverse of a log-ratio transformation.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

comp.den, rdiri, rcompt, rcompsn

Examples

```
x <- as.matrix(iris[, 1:2])
m <- colMeans(x)
s <- var(x)
y <- rcompnorm(100, m, s)
comp.den(y)
ternary(y)
```

Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation

Multivariate or univariate regression with compositional data in the covariates side using the α-transformation

Description

Multivariate or univariate regression with compositional data in the covariates side using the α transformation.

Usage

alfa.pcr(y, x, a, k, model = "gaussian", xnew = NULL)

Arguments

y A numerical vector containing the response variable values. They can be continuous, binary, discrete (counts). This can also be a vector with discrete values or a factor for the multinomial regression (model = "multinomial").

X
A matrix with the predictor variables, the compositional data.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
k How many principal components to use. You may also specify a vector and in this case the results produced will refer to each number of principal components.
model The type of regression model to fit. The possible values are "gaussian", "multinomial", "binomial" and "poisson".
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

Details

The α-transformation is applied to the compositional data first ,the first k principal component scores are calcualted and used as predictor variables for a regression model. The family of distributions can be either, "normal" for continuous response and hence normal distribution, "binomial" corresponding to binary response and hence logistic regression or "poisson" for count response and poisson regression.

Value

A list tincluding:
be
If linear regression was fitted, the regression coefficients of the k principal component scores on the response variable y .

$$
\begin{array}{ll}
\text { mod } & \begin{array}{l}
\text { If another regression model was fitted its outcome as produced in the package } \\
\text { Rfast. }
\end{array} \\
\text { per } & \text { The percentage of variance explained by the first } k \text { principal components. } \\
\text { vec } & \begin{array}{l}
\text { The first } k \text { principal components, loadings or eigenvectors. These are useful for } \\
\text { future prediction in the sense that one needs not fit the whole model again. }
\end{array} \\
\text { est } & \begin{array}{l}
\text { If the argument "xnew" was given these are the predicted or estimated values (if } \\
\text { xnew is not NULL). If the argument } k \text { is a vector then this is a matrix with the } \\
\text { estimated values for each number of components. }
\end{array}
\end{array}
$$

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
glm.pcr, alfapcr.tune
```


Examples

```
library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- alfa.pcr(y = y, x = x, 0.7, 1)
mod
```

```
Multivariate regression with compositional data
    Multivariate regression with compositional data
```


Description

Multivariate regression with compositional data.

Usage

comp.reg(y, x, type = "classical", xnew = NULL, yb = NULL)

Arguments

y A matrix with compsitional data. Zero values are not allowed.
$x \quad$ The predictor variable(s), they have to be continuous.
type The type of regression to be used, "classical" for standard multivariate regression, or "spatial" for the robust spatial median regression. Alternatively you can type "lmfit" for the fast classical multivariate regression that does not return standard errors whatsoever.
xnew This is by default set to NULL. If you have new data whose compositional data values you want to predict, put them here.
yb If you have already transformed the data using the additive log-ratio transformation, plut it here. Othewrise leave it NULL. This is intended to be used in the function alfareg. tune in order to speed up the process.

Details

The additive log-ratio transformation is applied and then the chosen multivariate regression is implemented. The alr is easier to explain than the ilr and that is why the latter is avoided here.

Value

A list including:
runtime The time required by the regression.
be The beta coefficients.
seb The standard error of the beta coefficients.
est The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

multivreg, spatmed.reg, js.compreg, diri.reg

Examples

library (MASS)
$\mathrm{y}<-\operatorname{as} . \operatorname{matrix}(\operatorname{iris}[, 1: 3])$
$\mathrm{y}<-\mathrm{y} / \operatorname{rowSums}(\mathrm{y})$
$x<-$ as. vector (iris[, 4])
$\bmod 1<-\operatorname{comp} . \operatorname{reg}(y, x)$
$\bmod 2<-\operatorname{comp} . \operatorname{reg}(y, x$, type = "spatial")

Multivariate skew normal random values simulation on the simplex
Multivariate skew normal random values simulation on the simplex

Description

Multivariate skew normal random values simulation on the simplex.

Usage

rcompsn(n, xi, Omega, alpha, dp = NULL, type = "alr")

Arguments

n
xi A numeric vector of length d representing the location parameter of the distribution.

Omega A $d \times d$ symmetric positive-definite matrix of dimension.
alpha A numeric vector which regulates the slant of the density.
dp A list with three elements, corresponding to xi, Omega and alpha described above. The default value is FALSE. If dp is assigned, individual parameters must not be specified.
type \quad The alr (type $=$ "alr") or the ilr (type $=$ "ilr") is to be used for closing the Euclidean data onto the simplex.

Details

The algorithm is straightforward, generate random values from a multivariate t distribution in R^{d} and brings the values to the simplex S^{d} using the inverse of a log-ratio transformation.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83(4): 715-726.
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society Series B, 61(3):579-602. Full-length version available from http://arXiv.org/abs/0911.2093

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

comp.den, rdiri, rcompnorm

Examples

```
x <- as.matrix(iris[, 1:2])
par <- sn::msn.mle(y = x)$dp
y <- rcompsn(100, dp = par)
comp.den(y, dist = "skewnorm")
ternary(y)
```

Multivariate t random values simulation on the simplex
Multivariate trandom values simulation on the simplex

Description

Multivariate t random values simulation on the simplex.

Usage

$\operatorname{rcompt}(\mathrm{n}, \mathrm{m}, \mathrm{s}$, dof, type $=$ "alr")

Arguments

n
m
s The covariance matrix in R^{d}.
dof
type
The sample size, a numerical value.
The mean vector in R^{d}.

The degrees of freedom.

The alr (type $=$ "alr") or the ilr (type $=$ "ilr") is to be used for closing the Euclidean data onto the simplex.

Details

The algorithm is straightforward, generate random values from a multivariate t distribution in R^{d} and brings the values to the simplex S^{d} using the inverse of a log-ratio transformation.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
comp.den, rdiri, rcompnorm
```


Examples

```
x <- as.matrix(iris[, 1:2])
m <- Rfast::colmeans(x)
s <- var(x)
y <- rcompt(100, m, s, 10)
comp.den(y, dist = "t")
ternary(y)
```

Naive Bayes classifiers for compositional data
Naive Bayes classifiers for compositional data

Description

Naive Bayes classifiers for compositional data.

Usage

comp.nb(xnew $=$ NULL, x, ina, type = "beta")

Arguments

xnew A matrix with the new compositional predictor data whose class you want to predict. Zeros are not allowed
$x \quad$ A matrix with the available compositional predictor data. Zeros are not allowed
ina A vector of data. The response variable, which is categorical (factor is acceptable).
type The type of naive Bayes, "beta", "logitnorm", "cauchy", "laplace", "gamma", "normlog" or "weibull". For the last 4 distributions, the negative of the logarithm of the compositional data is applied first.

Value

Depending on the classifier a list including (the ni and est are common for all classifiers):
shape A matrix with the shape parameters.
scale A matrix with the scale parameters.
expmu A matrix with the mean parameters.
sigma A matrix with the (MLE, hence biased) variance parameters.
location A matrix with the location parameters (medians).
scale A matrix with the scale parameters.
mean A matrix with the scale parameters.
var A matrix with the variance parameters.
a
A matrix with the "alpha" parameters.
b A matrix with the "beta" parameters.
ni The sample size of each group in the dataset.
est The estimated group of the xnew observations. It returns a numerical value back regardless of the target variable being numerical as well or factor. Hence, it is suggested that you do \backslash "as.numeric(ina) $\backslash "$ in order to see what is the predicted class of the new data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

See Also

cv.compnb, alfa.rda, alfa.knn, comp.knn, mix.compnorm, dda

Examples

```
x <- Compositional::rdiri(100, runif(5) )
ina <- rbinom(100, 1, 0.5) + 1
a <- comp.nb(x, x, ina, type = "beta")
```

```
Naive Bayes classifiers for compositional data using the
alpha-transformation
Naive Bayes classifiers for compositional data using the \(\alpha\) transformation
```


Description

Naive Bayes classifiers for compositional data using the α-transformation.

Usage

alfa.nb(xnew, x, ina, a, type = "gaussian")

Arguments

xnew A matrix with the new compositional predictor data whose class you want to predict. Zeros are allowed.
$x \quad$ A matrix with the available compositional predictor data. Zeros are allowed.
ina A vector of data. The response variable, which is categorical (factor is acceptable).
a This can be a vector of values or a single number.
type \quad The type of naive Bayes, "gaussian", "cauchy" or "laplace".

Details

The α-transformation is applied to the compositional and a naive Bayes classifier is employed.

Value

A matrix with the estimated groups. One column for each value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
Friedman J., Hastie T. and Tibshirani R. (2017). The elements of statistical learning. New York: Springer.

See Also

```
comp.nb, alfa.rda, alfa.knn, comp.knn, mix.compnorm
```


Examples

```
x <- Compositional::rdiri(100, runif(5) )
ina <- rbinom(100, 1, 0.5) + 1
mod <- alfa.nb(x, x, a = c(0, 0.1, 0.2), ina )
```

```
Non linear least squares regression for compositional data
    Non linear least squares regression for compositional data
```


Description

Non linear least squares regression for compositional data.

Usage

ols.compreg(y, x, con $=$ TRUE, $B=1$, ncores $=1$, xnew $=$ NULL)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.

X
A matrix or a data frame with the predictor variable(s).
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.
B If B is greater than 1 bootstrap estimates of the standard error are returned. If $\mathrm{B}=1$, no standard errors are returned.
ncores If ncores is 2 or more parallel computing is performed. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration.
xnew If you have new data use it, otherwise leave it NULL.

Details

The ordinary least squares between the observed and the fitted compositional data is adopted as the objective function. This involves numerical optimization since the relationship is non linear. There is no log-likelihood.

Value
A list including:
runtime The time required by the regression.
beta The beta coefficients.
covbe The covariance matrix of the beta coefficients. If $\mathrm{B}=1$, this is based on the observed information (Hessian matrix), otherwise if $\mathrm{B}>$ this is the bootstrap estimate.
est The fitted of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Murteira, Jose MR, and Joaquim JS Ramalho 2016. Regression analysis of multivariate fractional data. Econometric Reviews 35(4): 515-552.

See Also

diri.reg, js.compreg, kl.compreg, comp.reg, comp.reg, alfa.reg

Examples

```
library(MASS)
x <- as.vector(fgl[, 1])
y <- as.matrix(fgl[, 2:9])
y <- y / rowSums(y)
mod1 <- ols.compreg(y, x, B = 1, ncores = 1)
mod2 <- js.compreg(y, x, B = 1, ncores = 1)
```

```
Non-parametric zero replacement strategies
    Non-parametric zero replacement strategies
```


Description

Non-parametric zero replacement strategies.

Usage

```
zeroreplace(x, a = 0.65, delta = NULL, type = "multiplicative")
```


Arguments

delta Unless you specify the replacement value δ here.
type \quad This can be any of "multiplicative", "additive" or "simple". See the references
x
a

A matrix with the compositional data.
The replacement value (δ) will be "a" times the minimum value observed in the compositional data. for more details.

Details

The "additive" is the zero replacement strategy suggested in Aitchison (1986, pg. 269). All of the three strategies can be found in Martin-Fernandez et al. (2003).

Value

A matrix with the zero replaced compositional data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Martin-Fernandez J. A., Barcelo-Vidal C. \& Pawlowsky-Glahn, V. (2003). Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology, 35(3): 253-278.

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

perturbation, alfa

Examples

```
x <- as.matrix(iris[1:20, 1:4])
x <- x/ rowSums(x)
x[ sample(1:20, 4), sample(1:4, 1) ] <- 0
x <- x / rowSums(x)
zeroreplace(x)
```

```
Permutation linear independence test in the SCLS model
    Permutation linear independence test in the SCLS model
```


Description

Permutation linear independence test in the SCLS model.

Usage

scls.indeptest(y, x, R = 999)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
$x \quad$ A matrix with the compositional predictors. Zero values are allowed.
$R \quad$ The number of permutations to perform.

Details

Permutation independence test in the constrained linear least squares for compositional responses and predictors is performed. The observed test statistic is the MSE computed by scls. Then, the rows of X are permuted B times and each time the constrained OLS is performed and the MSE is computed. The p -value is then computed in the usual way.

Value

The p-value for the test of independence between Y and X .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagrismtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

scls, scls2, tflr, scls.betest

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
scls.indeptest(y, x, R = 99)
```

Permutation linear independence test in the TFLR model
Permutation linear independence test in the TFLR model

Description

Permutation linear independence test in the TFLR model.

Usage

tflr.indeptest(y, $x, R=999$, ncores = 1)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
x
A matrix with the compositional predictors. Zero values are in general allowed, but there can be cases when these are problematic.
R The number of permutations to perform.
ncores The number of cores to use in case you are interested for parallel computations.

Details

Permutation independence test in the constrained linear least squares for compositional responses and predictors is performed. The observed test statistic is the Kullback-Leibler divergence computed by tflr. Then, the rows of X are permuted B times and each time the TFLR is performed and the Kullback-Leibler is computed. The p -value is then computed in the usual way.

Value

The p-value for the test of linear independence between the simplicial response Y and the simplicial predictor X .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

tflr, scls, tflr.betest

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
tflr.indeptest(y, x, R = 19)
```

Permutation test for the matrix of coefficients in the SCLS model
Permutation test for the matrix of coefficients in the SCLS model

Description

Permutation test for the matrix of coefficients in the SCLS model.

Usage

scls.betest(y, x, B, R = 999)

Arguments

$y \quad$ A matrix with the compositional data (dependent variable). Zero values are allowed.
$x \quad$ A matrix with the compositional predictors. Zero values are allowed.
B A specific matrix of coefficients to test. Under the null hypothesis, the matrix of coefficients is equal to this matrix.
R The number of permutations to perform.

Details

Permutation independence test in the constrained linear least squares for compositional responses and predictors is performed. The observed test statistic is the MSE computed by scls. Then, the rows of X are permuted B times and each time the constrained OLS is performed and the MSE is computed. The p -value is then computed in the usual way.

Value

The p-value for the test of independence between Y and X .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

scls, scls2, tflr, scls.indeptest, tflr.indeptest

Examples

```
y <- rdiri(100, runif(3, 1, 3) )
x <- rdiri(100, runif(3, 1, 3) )
B <- diag(3)
scls.betest(y, x, B = B, R = 99)
```

Permutation test for the matrix of coefficients in the TFLR model
Permutation test for the matrix of coefficients in the TFLR model

Description

Permutation test for the matrix of coefficients in the TFLR model.

Usage

tflr.betest(y, x, B, R = 999, ncores = 1)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
x
A matrix with the compositional predictors. Zero values are in general allowed, but there can be cases when these are problematic.
B A specific matrix of coefficients to test. Under the null hypothesis, the matrix of coefficients is equal to this matrix.

R
The number of permutations to perform.
ncores

Details

Permutation independence test in the constrained linear least squares for compositional responses and predictors is performed. The observed test statistic is the Kullback-Leibler divergence computed by tflr. Then, the rows of X are permuted B times and each time the TFLR is performed and the Kullback-Leibler is computed. The p-value is then computed in the usual way.

Value

The p-value for the test of linear independence between the simplicial response Y and the simplicial predictor X .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

```
See Also
tflr, tflr.indeptest, scls, scls.indeptest
```


Examples

```
y <- rdiri(100, runif(3, 1, 3) )
x <- rdiri(100, runif(3, 1, 3) )
B <- diag(3)
tflr.betest(y, x, B = B, R = 99)
```

Perturbation operation
Perturbation operation

Description

Perturbation operation.

Usage

perturbation(x, y, oper = "+")

Arguments

$x \quad$ A matrix with the compositional data.
y Either a matrix with compositional data or a vector with compositional data. In either case, the data may not be compositional data, as long as they non negative.
oper \quad For the summation this must be "*" and for the negation it must be "/". According to Aitchison (1986), multiplication is equal to summation in the log-space, and division is equal to negation.

Details

This is the perturbation operation defined by Aitchison (1986).

Value

A matrix with the perturbed compositional data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

power

Examples

```
x <- as.matrix(iris[1:15, 1:4])
y <- as.matrix(iris[21:35, 1:4])
perturbation(x, y)
perturbation(x, y[1, ])
```

Plot of the LASSO coefficients
Plot of the LASSO coefficients

Description

Plot of the LASSO coefficients.

Usage

lassocoef.plot(lasso, lambda = TRUE)

Arguments

lasso An object where you have saved the result of the LASSO regression. See the examples for more details.
lambda If you want the x-axis to contain the logarithm of the penalty parameter $\log (\lambda)$ set this to TRUE. Otherwise the x -axis will contain the L_{1}-norm of the coefficients.

Details

This function plots the L_{2}-norm of the coefficients of each predictor variable versus the $\log (\lambda)$ or the L_{1}-norm of the coefficients. This is the same plot as the one produced by the glmnet package with type.coef = "2norm".

Value

A plot of the L_{2}-norm of the coefficients of each predictor variable (y-axis) versus the L_{1}-norm of all the coefficients (x-axis).

Author(s)

Michail Tsagris and Abdulaziz Alenazi.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Abdulaziz Alenazi a.alenazi@nbu.edu.sa. a.alenazi@nbu.edu.sa.

References

Alenazi, A. A. (2022). f-divergence regression models for compositional data. Pakistan Journal of Statistics and Operation Research, 18(4): 867-882.

Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33(1), 1-22.

See Also

lasso.klcompreg, cv.lasso.klcompreg, lasso.compreg, cv.lasso.compreg, kl.compreg, comp.reg

Examples

```
y <- as.matrix(iris[, 1:4])
y <- y / rowSums(y)
x <- matrix( rnorm(150 * 30), ncol = 30 )
a <- lasso.klcompreg(y, x)
lassocoef.plot(a)
b <- lasso.compreg(y, x)
lassocoef.plot(b)
```


Power operation Power operation

Description

Power operation.

Usage

pow (x, a)

Arguments

$x \quad$ A matrix with the compositional data.
a Either a vector with numbers of a single number.

Details

This is the power operation defined by Aitchison (1986). It is also the starting point of the α transformation.

Value

A matrix with the power transformed compositional data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

perturbation, alfa

Examples

```
x <- as.matrix(iris[1:15, 1:4])
a <- runif(1)
pow(x, a)
```

```
Principal component analysis
```

 Principal component analysis

Description

Principal component analysis.

Usage

logpca(x , center $=$ TRUE, scale $=$ TRUE, $\mathrm{k}=$ NULL, vectors $=$ FALSE)

Arguments

$x \quad$ A matrix with the compositional data. Zero values are not allowed.
center Do you want your data centered? TRUE or FALSE.
scale Do you want each of your variables scaled, i.e. to have unit variance? TRUE or FALSE.
$k \quad$ If you want a specific number of eigenvalues and eigenvectors set it here, otherwise all eigenvalues (and eigenvectors if requested) will be returned.
vectors Do you want the eigenvectors be returned? By dafault this is FALSE.

Details

The logarithm is applied to the compositional data and PCA is performed.

Value

A list including: values The eigenvalues. vectors The eigenvectors.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

alfa.pca, alfa.pcr, kl.alfapcr

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
a <- logpca(x)
```

Principal component analysis using the alpha-transformation
Principal component analysis using the α-transformation

Description

Principal component analysis using the α-transformation.

Usage

alfa.pca(x, a, center $=$ TRUE, scale $=$ TRUE, $k=$ NULL, vectors $=$ FALSE)

Arguments

x
a
center
scale
k
vectors

A matrix with the compositional data. Zero values are allowed. In that case "a" should be positive.
The value of α to use in the α-transformation.
Do you want your data centered? TRUE or FALSE.
Do you want each of your variables scaled, i.e. to have unit variance? TRUE or FALSE.
If you want a specific number of eigenvalues and eigenvectors set it here, otherwise all eigenvalues (and eigenvectors if requested) will be returned.
Do you want the eigenvectors be returned? By dafault this is FALSE.

Details

The α-transformation is applied to the compositional data and then PCA is performed. Note however, that the right multiplication by the Helmert sub-matrix is not applied in order to be in accordance with Aitchison (1983). When $\alpha=0$, this results to the PCA proposed by Aitchison (1983).

Value

A list including:
values The eigenvalues.
vectors The eigenvectors.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70(1), 57-65.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

See Also

logpca, alfa.pcr, kl.alfapcr

Examples

$x<-$ as.matrix(iris[, 1:4])
$x<-x / \operatorname{rowSums}(x)$
a <- alfa.pca(x, 0.5)

```
Principal component generalised linear models
```


Description

Principal component generalised linear models.

Usage

glm. $\operatorname{pcr}(\mathrm{y}, \mathrm{x}, \mathrm{k}=1, \mathrm{xnew}=\mathrm{NULL})$

Arguments

y A numerical vector with 0 and 1 (binary) or a vector with discrete (count) data.
$x \quad$ A matrix with the predictor variable(s), they have to be continuous.
$\mathrm{k} \quad$ A number greater than or equal to 1 . How many principal components to use. You may get results for the sequence of principal components.
xnew If you have new data use it, otherwise leave it NULL.

Details

Principal component regression is performed with binary logistic or Poisson regression, depending on the nature of the response variable. The principal components of the cross product of the independent variables are obtained and classical regression is performed. This is used in the function alfa.pcr.

Value

A list including:
model The summary of the logistic or Poisson regression model as returned by the package Rfast.
per The percentage of variance of the predictor variables retained by the k principal components.
vec The principal components, the loadings.
est The fitted or the predicted values (if xnew is not NULL). If the argument k is a vector then this is a matrix with the estimated values for each number of components.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aguilera A.M., Escabias M. and Valderrama M.J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics \& Data Analysis 50(8): 1905-1924.
Jolliffe I.T. (2002). Principal Component Analysis.

See Also

alfa.pcr, alfapcr.tune

Examples

```
x <- as.matrix(iris[, 1:4])
y <- rbinom(150, 1, 0.6)
mod <- glm.pcr(y, x, k = 1)
```

Principal coordinate analysis using the alpha-distance
Principal coordinate analysis using the α-distance

Description

Principal coordinate analysis using the α-distance.

Usage

alfa.mds(x, a, k = 2, eig = TRUE)

Arguments

x
a
k
eig

Details

The function computes the α-distance matrix and then plugs it into the classical multidimensional scaling function in the "cmdscale" function.

Value

A list with the results of "cmdscale" function.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling. Second edition. Chapman and Hall.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London: Academic Press.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

esov.mds, alfa.pca,

Examples

```
    x <- as.matrix(iris[, 1:4])
    x <- x/ rowSums(x)
    a <- esov.mds(x)
```

```
Principal coordinate analysis using the Jensen-Shannon divergence
    Principal coordinate analysis using the Jensen-Shannon divergence
```


Description

Principal coordinate analysis using the Jensen-Shannon divergence.

Usage

esov.mds(x, k = 2, eig = TRUE)

Arguments

$x \quad$ A matrix with the compositional data. Zero values are allowed.
$\mathrm{k} \quad$ The maximum dimension of the space which the data are to be represented in. This can be a number between 1 and $D-1$, where D denotes the number of dimensions.
eig Should eigenvalues be returned? The default value is TRUE.

Details

The function computes the Jensen-Shannon divergence matrix and then plugs it into the classical multidimensional scaling function in the "cmdscale" function.

Value

A list with the results of "cmdscale" function.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling. Second edition. Chapman and Hall.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London: Academic Press.
Tsagris, Michail (2015). A novel, divergence based, regression for compositional data. Proceedings of the 28th Panhellenic Statistics Conference, 15-18/4/2015, Athens, Greece. https://arxiv.org/pdf/1511.07600.pdf

See Also
alfa.mds, alfa.pca,

Examples

$x<-$ as.matrix(iris[, 1:4])
$x<-x / \operatorname{rowSums}(x)$
a <- esov.mds(x)

Projection pursuit regression for compositional data
Projection pursuit regression for compositional data

Description

Projection pursuit regression for compositional data.

Usage

comp.ppr (y, x, nterms = 3, type = "alr", xnew = NULL, yb = NULL)

Arguments

$y \quad$ A matrix with the compositional data.
$x \quad$ A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
nterms The number of terms to include in the final model.
type Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.
xnew If you have new data use it, otherwise leave it NULL.
$\mathrm{yb} \quad$ If you have already transformed the data using a log-ratio transformation put it here. Othewrise leave it NULL.

Details

This is the standard projection pursuit. See the built-in function "ppr" for more details.

Value

A list includign:
runtime The runtime of the regression.
mod \quad The produced model as returned by the function "ppr".
est The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

See Also
compppr.tune, aknn.reg, akern.reg, comp.reg, kl.compreg, alfa.reg

Examples

```
y <- as.matrix(iris[, 1:3])
y <- y/ rowSums(y)
x <- iris[, 4]
mod <- comp.ppr(y, x)
```

Projection pursuit regression with compositional predictor variables
Projection pursuit regression with compositional predictor variables

Description

Projection pursuit regression with compositional predictor variables.

Usage

pprcomp(y, x, nterms = 3, type = "log", xnew = NULL)

Arguments

$y \quad$ A numerical vector with the continuous variable.
$x \quad$ A matrix with the compositional data. No zero values are allowed.
nterms The number of terms to include in the final model.
type Either "alr" or "log" corresponding to the additive log-ratio transformation or the simple logarithm applied to the compositional data.
xnew If you have new data use it, otherwise leave it NULL.

Details

This is the standard projection pursuit. See the built-in function "ppr" for more details. When the data are transformed with the additive log-ratio transformation this is close in spirit to the logcontrast regression.

160 Projection pursuit regression with compositional predictor variables using the alpha-transformation

Value

A list including:

runtime	The runtime of the regression.
mod	The produced model as returned by the function "ppr".
est	The fitted values of xnew if xnew is not NULL.

Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

See Also

pprcomp.tune, ice.pprcomp, alfa.pcr, lc.reg, comp.ppr

Examples

```
x <- as.matrix( iris[, 2:4] )
x <- x/ rowSums(x)
y <- iris[, 1]
pprcomp(y, x)
```

Projection pursuit regression with compositional predictor variables using the alpha-transformation

Projection pursuit regression with compositional predictor variables using the α-transformation

Description

Projection pursuit regression with compositional predictor variables using the α-transformation.

Usage

alfa.pprcomp(y, x, nterms = 3, a, xnew = NULL)

Arguments

$y \quad$ A numerical vector with the continuous variable.
$x \quad$ A matrix with the compositional data. Zero values are allowed.
nterms The number of terms to include in the final model.
a
The value of α for the α-transformation.
xnew
If you have new data use it, otherwise leave it NULL.

Details

This is the standard projection pursuit. See the built-in function "ppr" for more details. The compositional data are transformed with the α-transformation

Value

A list including:

runtime	The runtime of the regression.
mod	The produced model as returned by the function "ppr".
est	The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfapprcomp.tune, pprcomp, comp.ppr

Examples

```
x <- as.matrix( iris[, 2:4] )
x <- x / rowSums(x)
y <- iris[, 1]
alfa.pprcomp(y, x, a = 0.5)
```

```
Projections based test for distributional equality of two groups
                                    Projections based test for distributional equality of two groups
```


Description

Projections based test for distributional equality of two groups.

Usage

dptest(x1, $x 2, B=100)$

Arguments

$x 1 \quad$ A matrix containing compositional data of the first group.
$x 2$ A matrix containing compositional data of the second group.
B The number of random uniform projections to use.

Details

The test compares the distributions of two compositional datasets using random projections. For more details see Cuesta-Albertos, Cuevas and Fraiman (2009).

Value

A vector including:
pvalues \quad The p -values of the Kolmogorov-Smirnov tests.
pvalue The p-value of the test based on the Benjamini and Heller (2008) procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Cuesta-Albertos J. A., Cuevas A. and Fraiman, R. (2009). On projection-based tests for directional and compositional data. Statistics and Computing, 19: 367-380.
Benjamini Y. and Heller R. (2008). Screening for partial conjunction hypotheses. Biometrics, 64(4): 1215-1222.

See Also

```
    comp.test
```


Examples

```
x1 <- rdiri(50, c(3, 4, 5)) ## Fisher distribution with low concentration
x2 <- rdiri(50, c(3, 4, 5))
dptest(x1, x2)
```

Proportionality correlation coefficient matrix
Proportionality correlation coefficient matrix

Description

Proportionality correlation coefficient matrix.

Usage

$\operatorname{pcc}(x)$

Arguments

$x \quad$ A numerical matrix with the compositional data. Zeros are not allowed as the logarithm is applied.

Details

The function returns the proportionality correlation coefficient matrix. See Lovell et al. (2015) for more information.

Value

A matrix with the alr transformed data (if alr is used) or with the compositional data (if the alrinv is used).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Zheng, B. (2000). Summarizing the goodness of fit of generalized linear models for longitudinal data. Statistics in medicine, 19(10), 1265-1275.
Lovell D., Pawlowsky-Glahn V., Egozcue J. J., Marguerat S. and Bahler, J. (2015). Proportionality: a valid alternative to correlation for relative data. PLoS Computational Biology, 11(3), e1004075.

See Also

acor, alr

Examples

```
x <- Compositional::rdiri(100, runif(4) )
a <- Compositional::pcc(x)
```

Quasi binomial regression for proportions
Quasi binomial regression for proportions

Description

Quasi binomial regression for proportions.

Usage

propreg(y, x, varb = "quasi", tol = 1e-07, maxiters = 100)
propregs (y, x, varb = "quasi", tol = 1e-07, logged = FALSE, maxiters = 100)

Arguments

y
x
tol The tolerance value to terminate the Newton-Raphson algorithm. This is set to 10^{-9} by default.
varb The type of estimate to be used in order to estimate the covariance matrix of the regression coefficients. There are two options, either "quasi" (default value) or "glm". See the references for more information.
logged \quad Should the p-values be returned (FALSE) or their logarithm (TRUE)?
maxiters The maximum number of iterations before the Newton-Raphson is terminated automatically.

Details

We are using the Newton-Raphson, but unlike R's built-in function "glm" we do no checks and no extra calculations, or whatever. Simply the model. The "propregs" is to be used for very many univariate regressions. The " x " is a matrix in this case and the significance of each variable (column of the matrix) is tested. The function accepts binary responses as well (0 or 1).

Value

For the "propreg" function a list including:

iters	The number of iterations required by the Newton-Raphson.
varb	The covariance matrix of the regression coefficients.

varb The covariance matrix of the regression coefficients.
phi The phi parameter is returned if the input argument "varb" was set to "glm", othwerise this is NULL.
info A table similar to the one produced by "glm" with the estimated regression coefficients, their standard error, Wald test statistic and p-values.

For the "propregs" a two-column matrix with the test statistics (Wald statistic) and the associated p-values (or their loggarithm).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Papke L. E. \& Wooldridge J. (1996). Econometric methods for fractional response variables with an application to 401(K) plan participation rates. Journal of Applied Econometrics, 11(6): 619-632.
McCullagh, Peter, and John A. Nelder. Generalized linear models. CRC press, USA, 2nd edition, 1989.

See Also

ols.compreg beta.reg

Examples

```
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(100 * 3), ncol = 3)
a <- propreg(y, x)
y <- rbeta(100, 1, 4)
x <- matrix(rnorm(400 * 100), ncol = 400)
b <- propregs(y, x)
mean(b[, 2] < 0.05)
```

```
Random values generation from some univariate distributions defined
on the (0,1) interval
```

Random values generation from some univariate distributions defined on the $(0,1)$ interval

Description

Random values generation from some univariate distributions defined on the $(0,1)$ interval.

Usage

rbeta1 (n, a)
runitweibull(n, a, b)
rlogitnorm(n, m, s, fast = FALSE)

Arguments

n
a
b
m
S
fast
s

The sample size, a numerical value.
The shape parameter of the beta distribution. In the case of the unit Weibull, this is the shape parameter.

This is the scale parameter for the unit Weibull distribution.
The mean of the univariate normal in R.
The standard deviation of the univariate normal in R.
If you want a faster generation set this equal to TRUE. This will use the Rnorm() function from the Rfast package. However, the speed is only observable if you want to simulate at least 500 (this number may vary among computers) observations. The larger the sample size the higher the speed-up.

Details

The function genrates random values from the $\operatorname{Be}(a, 1)$, the unit Weibull or the univariate logistic normal distribution.

Value

A vector with the simulated data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

```
beta.est, colbeta.est, rdiri
```


Examples

```
x <- rbeta1(100, 3)
```

Regression with compositional data using the alpha-transformation Regression with compositional data using the α-transformation

Description

Regression with compositional data using the α-transformation.

Usage

alfa.reg(y, x, a, xnew = NULL, yb = NULL)
alfa.reg2(y, x, a, xnew = NULL)
alfa. $\operatorname{reg} 3(y, x, a=c(-1,1)$, xnew $=N U L L)$

Arguments

$y \quad$ A matrix with the compositional data.
$x \quad$ A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied and the solution exists in a closed form, since it the classical mutivariate regression. For the alfa.reg2() this should be a vector of α values and the function call repeatedly the alfa.reg() function. For the alfa.reg3() function it should be a vector with two values, the endpoints of the interval of α. This function searches for the optimal vaue of α that minimizes the sum of squares of the errors. Using the optimize function it searches for the optimal value of α. Instead of choosing the value of α using alfareg. tune (that uses cross-validation) one can select it this way.
xnew If you have new data use it, otherwise leave it NULL.
$\mathrm{yb} \quad$ If you have already transformed the data using the α-transformation with the same α as given in the argument "a", put it here. Othewrise leave it NULL.
This is intended to be used in the function alfareg. tune in order to speed up the process. The time difference in that function is small for small samples. But, if you have a few thousands and or a few more components, there will be bigger differences.

Details

The α-transformation is applied to the compositional data first and then multivariate regression is applied. This involves numerical optimisation. The alfa.reg2() function accepts a vector with many values of α, while the the alfa.reg3() function searches for the value of α that minimizes the Kulback-Leibler divergence between the observed and the fitted compositional values. The functions are highly optimized.

Value

For the alfa.reg() function a list including:

runtime	The time required by the regression.
be	The beta coefficients.
seb	The standard error of the beta coefficients.
est	The fitted values for xnew if xnew is not NULL.

For the alfa.reg2() function a list with as many sublists as the number of values of α. Each element (sublist) of the list contains the above outcomes of the alfa.reg() function.
For the alfa.reg3() function a list with all previous elements plus an output "alfa", the optimal value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

168Regularised and flexible discriminant analysis for compositional data using the alpha-transformation

References

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
Mardia K.V., Kent J.T., and Bibby J.M. (1979). Multivariate analysis. Academic press.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

alfareg.tune, diri.reg, js.compreg, kl.compreg,ols.compreg, comp.reg

Examples

```
library(MASS)
x <- as.vector(fgl[1:40, 1])
y <- as.matrix(fgl[1:40, 2:9])
y <- y / rowSums(y)
mod <- alfa.reg(y, x, 0.2)
```

```
Regularised and flexible discriminant analysis for compositional
data using the alpha-transformation
Regularised and flexible discriminant analysis for compositional data using the \(\alpha\)-transformation
```


Description

Regularised and flexible discriminant analysis for compositional data using the α-transformation.

Usage

alfa.rda(xnew, x, ina, a, gam $=1$, del $=0$)
alfa.fda(xnew, x, ina, a)

Arguments

xnew A matrix with the new compositional data whose group is to be predicted. Zeros are allowed, but you must be careful to choose strictly positive vcalues of α.
x
A matrix with the available compositional data. Zeros are allowed, but you must be careful to choose strictly positive vcalues of α.
ina A group indicator variable for the available data.
a
The value of α for the α-transformation.
gam
This is a number between 0 and 1 . It is the weight of the pooled covariance and the diagonal matrix.
del This is a number between 0 and 1. It is the weight of the LDA and QDA.

Details

For the alfa.rda, the covariance matrix of each group is calcualted and then the pooled covariance matrix. The spherical covariance matrix consists of the average of the pooled variances in its diagonal and zeros in the off-diagonal elements. gam is the weight of the pooled covariance matrix and 1 -gam is the weight of the spherical covariance matrix, $\mathrm{Sa}=\mathrm{gam} * \mathrm{Sp}+(1$-gam $) * \mathrm{sp}$. Then it is a compromise between LDA and QDA. del is the weight of Sa and 1-del the weight of each group covariance group.
For the alfa.fda a flexible discriminant analysis is performed. See the R package fda for more details.

Value

For the alfa.rda a list including:
prob The estimated probabilities of the new data of belonging to each group.
scores The estimated socres of the new data of each group.
est The estimated group membership of the new data.
For the alfa.fda a list including:
mod An fda object as returned by the command fda of the R package mda.
est The estimated group membership of the new data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin.
Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the α-transformation. Journal of classification, 33(2): 243-261. https://arxiv.org/pdf/1106.1451.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

Hastie, Tibshirani and Buja (1994). Flexible Disriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 89(428):1255-1270.

See Also

alfa, alfarda.tune, alfa.knn, alfa.nb, comp.nb, mix.compnorm

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
ina <- iris[, 5]
mod <- alfa.rda(x, x, ina, 0)
table(ina, mod$est)
mod2 <- alfa.fda(x, x, ina, 0)
table(ina, mod2$est)
```

Ridge regression Ridge regression

Description

Ridge regression.

Usage

ridge.reg(y, x, lambda, $B=1, x n e w=N U L L)$

Arguments

$y \quad$ A real valued vector. If it contains percentages, the logit transformation is applied.
x
A matrix with the predictor variable(s), they have to be continuous.
lambda
The value of the regularisation parameter λ.
B
If $B=1$ (default value) no bootstrpa is performed. Otherwise bootstrap standard errors are returned.
xnew If you have new data whose response value you want to predict put it here, otherwise leave it as is.

Details

This is used in the function alfa.ridge. There is also a built-in function available from the MASS library, called "lm.ridge".

Value

A list including:
beta The beta coefficients.
seb The standard eror of the coefficiens. If B >1 the bootstrap standard errors will be returned.
est The fitted or the predicted values (if xnew is not NULL).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

See Also

ridge.tune, alfa.ridge, ridge.plot

Examples

```
y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
mod1 <- ridge.reg(y, x, lambda = 0.1)
mod2 <- ridge.reg(y, x, lambda = 0)
```

Ridge regression plot Ridge regression plot

Description

A plot of the regularised regression coefficients is shown.

Usage

ridge.plot(y, x, lambda $=\operatorname{seq}(0,5$, by $=0.1)$)

Arguments

$y \quad$ A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into R using the logit transformation. In any case, they must be continuous only.
x
A numeric matrix containing the continuous variables. Rows are samples and columns are features.
lambda A grid of values of the regularisation parameter λ.

Details

For every value of λ the coefficients are obtained. They are plotted versus the λ values.

Value

A plot with the values of the coefficients as a function of λ.

Author(s)

Michail Tsagris.
R implementation and documentation: Giorgos Athineou gioathineou@gmail.com and Michail Tsagris mtsagris@uoc.gr.

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.

See Also

ridge. reg, ridge.tune, alfa.ridge, alfaridge.plot

Examples

```
y <- as.vector(iris[, 1])
x <- as.matrix(iris[, 2:4])
ridge.plot(y, x, lambda = seq(0, 2, by = 0.1) )
```

Ridge regression with compositional data in the covariates side
using the alpha-transformation

Ridge regression with compositional data in the covariates side using the α-transformation

Description

Ridge regression with compositional data in the covariates side using the α-transformation.

Usage

alfa.ridge(y, x, a, lambda, $B=1, x n e w=N U L L)$

Arguments

$y \quad$ A numerical vector containing the response variable values. If they are percentages, they are mapped onto R using the logit transformation.
x
A matrix with the predictor variables, the compositional data. Zero values are allowed, but you must be careful to choose strictly positive vcalues of α.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
lambda The value of the regularisation parameter, λ.
B
If $\mathrm{B}>1$ bootstrap estimation of the standard errors is implemented.
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.

Details

The α-transformation is applied to the compositional data first and then ridge components regression is performed.

Value

The output of the ridge.reg.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

ridge.reg, alfaridge.tune, alfaridge.plot

Examples

```
library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x/ rowSums(x)
mod1 <- alfa.ridge(y, x, a = 0.5, lambda = 0.1, B = 1, xnew = NULL)
mod2 <- alfa.ridge(y, x, a = 0.5, lambda = 1, B = 1, xnew = NULL)
```

Ridge regression with the alpha-transformation plot Ridge regression plot

Description

A plot of the regularised regression coefficients is shown.

Usage

alfaridge.plot(y, x, a, lambda $=\operatorname{seq}(0,5, b y=0.1)$)

Arguments

$y \quad$ A numeric vector containing the values of the target variable. If the values are proportions or percentages, i.e. strictly within 0 and 1 they are mapped into R using the logit transformation. In any case, they must be continuous only.
$x \quad$ A numeric matrix containing the continuous variables.
a The value of the α-transformation. It has to be between -1 and 1 . If there are zero values in the data, you must use a strictly positive value.
lambda A grid of values of the regularisation parameter λ.

Details

For every value of λ the coefficients are obtained. They are plotted versus the λ values.

Value

A plot with the values of the coefficients as a function of λ.

Author(s)

Michail Tsagris.
R implementation and documentation: Giorgos Athineou < gioathineou@gmail.com> and Michail Tsagris mtsagris@uoc.gr.

References

Hoerl A.E. and R.W. Kennard (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67.
Brown P. J. (1994). Measurement, Regression and Calibration. Oxford Science Publications.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
ridge.plot, alfa.ridge
```


Examples

```
library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
alfaridge.plot(y, x, a = 0.5, lambda = seq(0, 5, by = 0.1) )
```

```
Simplicial constrained median regression for compositional responses
and predictors model
Simplicial constrained median regression for compositional responses and predictors
```


Description

Simplicial constrained median regression for compositional responses and predictors.

Usage

$\operatorname{scrq}(y, x, x n e w=N U L L)$

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
$x \quad$ A matrix with the compositional predictors. Zero values are allowed.
xnew If you have new data use it, otherwise leave it NULL.

Details

The function performs median regression where the beta coefficients are constained to be positive and sum to 1 .

Value

A list including:

mlad	The mean absolute deviation.
be	The beta coefficients.
est	The fitted of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

```
scls, tflr, scls.indeptest
```


Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- scrq(y, x)
mod
```

Simulation of compositional data from Gaussian mixture models
Simulation of compositional data from Gaussian mixture models

Description

Simulation of compositional data from Gaussian mixture models.

Usage

rmixcomp(n, prob, mu, sigma, type = "alr")

Arguments

$\mathrm{n} \quad$ The sample size.
prob A vector with mixing probabilities. Its length is equal to the number of clusters.
mu A matrix where each row corresponds to the mean vector of each cluster.
sigma An array consisting of the covariance matrix of each cluster.
type \quad Should the additive ("type=alr") or the isometric (type="ilr") log-ration be used? The default value is for the additive log-ratio transformation.

Details

A sample from a multivariate Gaussian mixture model is generated.

Value

A list including:
id A numeric variable indicating the cluster of simulated vector.
$x \quad$ A matrix containing the simulated compositional data. The number of dimensions will be +1 .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas (2015). R package mixture: Mixture Models for Clustering and Classification.

See Also

mix.compnorm, bic.mixcompnorm

Examples

p <- c(1/3, 1/3, 1/3)
mu <- matrix(nrow $=3$, ncol = 4)
$\mathrm{s}<-\operatorname{array}(\operatorname{dim}=c(4,4,3)$)
x <- as.matrix(iris[, 1:4])
ina <- as.numeric(iris[, 5])
mu <- rowsum(x, ina) / 50
$s[, ~, 1]<-\operatorname{cov}(x[$ ina $==1]$,
$s[$, , 2] <- $\operatorname{cov}(x[$ ina $==2])$,
$s[, ~, 3]<-\operatorname{cov}(x[i n a==3]$,
y <- rmixcomp(100, p, mu, s, type = "alr")

```
Simulation of compositional data from mixtures of Dirichlet
distributions
```

Simulation of compositional data from mixtures of Dirichlet distributions

Description

Simulation of compositional data from mixtures of Dirichlet distributions.

Usage

rmixdiri(n, a, prob)

Arguments

n
a
prob

The sample size.
A matrix where each row contains the parameters of each Dirichlet component. A vector with the mixing probabilities.

Details

A sample from a Dirichlet mixture model is generated.

Value

A list including:
id A numeric variable indicating the cluster of simulated vector.
x
A matrix containing the simulated compositional data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Ye X., Yu Y. K. and Altschul S. F. (2011). On the inference of Dirichlet mixture priors for protein sequence comparison. Journal of Computational Biology, 18(8), 941-954.

See Also

rmixcomp, mixdiri.contour,

Examples

```
a <- matrix( c(12, 30, 45, 32, 50, 16), byrow = TRUE,ncol = 3)
prob <- c(0.5, 0.5)
x <- rmixdiri(100, a, prob)
```

```
Simulation of compositional data from the Flexible Dirichlet
distribution
```

Simulation of compositional data from the Flexible Dirichlet distribution

Description

Simulation of compositional data from the Flexible Dirichlet distribution.

Usage

$r f d(n$, alpha, prob, tau)

Arguments

$\mathrm{n} \quad$ The sample size.
alpha A vector of the non-negative α parameters.
prob A vector of the clusters' probabilities that must sum to one.
tau The positive scalar tau parameter.

Details

For more information see the references and the package FlxeDir.

Value

A matrix with compositional data.

Author(s)

Michail Tsagris ported from the R package FlexDir. mtsagris@uoc.gr.

References

Ongaro A. and Migliorati S. (2013). A generalization of the Dirichlet distribution. Journal of Multivariate Analysis, 114, 412-426.
Migliorati S., Ongaro A. and Monti G. S. (2017). A structured Dirichlet mixture model for compositional data: inferential and applicative issues. Statistics and Computing, 27, 963-983.

See Also

dfd

Examples

```
alpha <- c(12, 11, 10)
prob <- c(0.25, 0.25, 0.5)
x <- rfd(100, alpha, prob, 7)
```

```
Simulation of compositional data from the folded normal distribution
    Simulation of compositional data from the folded model normal distri-
    bution
```


Description

Simulation of compositional data from the folded model normal distribution.

Usage

rfolded(n, mu, su, a)

Arguments

$\mathrm{n} \quad$ The sample size.
mu The mean vector.
su The covariance matrix.
a The value of α.

Details

A sample from the folded model is generated.

Value

A matrix with compositional data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf

See Also

```
alfa, alpha.mle, a.est
```


Examples

```
    s <- c(0.1490676523, -0.4580818209, 0.0020395316, -0.0047446076, -0.4580818209,
    1.5227259250, 0.0002596411, 0.0074836251, 0.0020395316, 0.0002596411,
    0.0365384838, -0.0471448849, -0.0047446076, 0.0074836251, -0.0471448849,
    0.0611442781)
    s <- matrix(s, ncol = 4)
    m <- c(1.715, 0.914, 0.115, 0.167)
    x <- rfolded(100, m, s, 0.5)
    a.est(x)
```

Spatial median regression
Spatial median regression

Description

Spatial median regression with Euclidean data.

Usage

spatmed.reg(y, x, xnew $=$ NULL, tol $=1 \mathrm{e}-07$, ses $=$ FALSE)

Arguments

y A matrix with the compositional data. Zero values are not allowed.
$x \quad$ The predictor variable(s), they have to be continuous.
xnew If you have new data use it, otherwise leave it NULL.
tol The threshold upon which to stop the iterations of the Newton-Rapshon algorithm.
ses If you want to extract the standard errors of the parameters, set this to TRUE. Be careful though as this can slow down the algorithm dramatically. In a run example with 10,000 observations and 10 variables for y and 30 for x , when ses $=$ FALSE the algorithm can take 0.20 seconds, but when ses $=$ TRUE it can go up to 140 seconds.

Details

The objective function is the minimization of the sum of the absolute residuals. It is the multivariate generalization of the median regression. This function is used by comp. reg.

Value

A list including:
iter
The number of iterations that were required.
runtime
The time required by the regression.

be	The beta coefficients.
seb	The standard error of the beta coefficients is returned if ses=TRUE and NULL otherwise.
est	The fitted of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Biman Chakraborty (2003). On multivariate quantile regression. Journal of Statistical Planning and Inference, 110(1-2), 109-132. http://www.stat.nus.edu.sg/export/sites/dsap/research/documents/tr01_2000.pdf

See Also

multivreg, comp.reg, alfa.reg, js.compreg, diri.reg

Examples

```
library(MASS)
x <- as.matrix(iris[, 3:4])
y <- as.matrix(iris[, 1:2])
mod1 <- spatmed.reg(y, x)
mod2 <- multivreg(y, x, plot = FALSE)
```

```
Ternary diagram Ternary diagram
```


Description

Ternary diagram.

Usage

```
ternary(x, dg = FALSE, hg = FALSE, means = TRUE, pca = FALSE, colour = NULL)
```


Arguments

x	A matrix with the compositional data.
dg	Do you want diagonal grid lines to appear? If yes, set this TRUE.
hg	Do you want horizontal grid lines to appear? If yes, set this TRUE.
means	A boolean variable. Should the closed geometric mean and the arithmetic mean appear (TRUE) or not (FALSE)?.
pca	Should the first PCA calculated Aitchison (1983) described appear? If yes, then this should be TRUE, or FALSE otherwise.
colour	If you want the points to appear in different colour put a vector with the colour numbers or colours.

Details

There are two ways to create a ternary graph. We used here that one where each edge is equal to 1 and it is what Aitchison (1986) uses. For every given point, the sum of the distances from the edges is equal to 1 . Horizontal and or diagonal grid lines can appear, so as the closed geometric and the simple arithmetic mean. The first PCA is calculated using the centred log-ratio transformation as Aitchison $(1983,1986)$ suggested. If the data contain zero values, the first PCA will not be plotted. Zeros in the data appear with green circles in the triangle and you will also see NaN in the closed geometric mean.

Value

The ternary plot and a 2-row matrix with the means. The closed geometric and the simple arithmetic mean vector and or the first principal component will appear as well if the user has asked for them. Additionally, horizontal or diagonal grid lines can appear as well.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70(1):57-65.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

ternary.mcr, ternary.reg, diri.contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
ternary(x, means = TRUE, pca = TRUE)
```

Ternary diagram of regression models
Ternary diagram of regression models

Description

Ternary diagram of regression models.

Usage

ternary.reg(y, est, id, labs)

Arguments

y
est
id A vector indicating the regression model of each fitted compositional data set.
labs
A matrix with the compositional data.
A matrix with all fitted compositional data for all regression models, one under the other.

The names of the regression models to appea in the legend.

Details

The points first appear on the ternary plot. Then, the fitted compositional data appear with different lines for each regression model.

Value

The ternary plot and lines for the fitted values of each regression model.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

ternary, ternary.mcr, diri.contour

Examples

```
x <- cbind(1, rnorm(50) )
a <- exp( x %*% matrix( rnorm(6,0, 0.4), ncol = 3) )
y <- matrix(NA, 50, 3)
for (i in 1:50) y[i, ] <- rdiri(1, a[i, ])
est <- comp.reg(y, x[, -1], xnew = x[, -1])$est
ternary.reg(y, est, id = rep(1, 50), labs = "ALR regression")
```

Ternary diagram with confidence region for the matrix of coefficients of the SCLS or the TFLR model

Ternary diagram with confidence region for the matrix of coefficients of the SCLS or the TFLR model

Description

Ternary diagram with confidence region for the matrix of coefficients of the SCLS or the TFLR model.

Usage

ternary. coefcr (y, x, type $=$ "scls", conf $=0.95, \mathrm{R}=1000, \mathrm{dg}=$ FALSE, $\mathrm{hg}=$ FALSE $)$

Arguments

$y \quad$ A matrix with the response compositional data.
$x \quad$ A matrix with the predictor compositional data.
type The type of model to use, "scls" or "tflr". Depending on the model selected, the function will construct the confidence regions of the estimated matrix of coefficients of that model.
conf The confidence level, by default this is set to 0.95 .
R Number of bootstrap replicates to run.
dg Do you want diagonal grid lines to appear? If yes, set this TRUE.
hg Do you want horizontal grid lines to appear? If yes, set this TRUE.

Details

This function runs the SCLS or the TFLR model and constructs confidence regions for the estimated matrix of regression coefficients using non-parametric bootstrap.

Value

A ternary plot of the estimated matrix of coefficients of the SCLS or of the TFLR model, and their associated confidence regions.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

```
ternary, scls, tflr, ternary.mcr
```


Examples

```
y <- rdiri(50, runif(3))
x <- rdiri(50, runif(4))
ternary.coefcr(y, x, R = 500, dg = TRUE, hg = TRUE)
```

Ternary diagram with confidence region for the mean Ternary diagram with confidence region for the mean

Description

Ternary diagram with confidence region for the mean.

Usage

ternary.mcr (x, type = "alr", conf = 0.95, dg = FALSE, hg = FALSE, colour = NULL)

Arguments

x
dg Do you want diagonal grid lines to appear? If yes, set this TRUE.
type \quad The type of log-ratio transformation to aply, the "alr" or the "ilr".
conf The confidence level, by default this is set to 0.95 .
hg Do you want horizontal grid lines to appear? If yes, set this TRUE.
colour If you want the points to appear in different colour put a vector with the colour numbers or colours.

Details

Ternary plot of compositional data including the log-ratio mean and its confidence region. The confidence region is based on the Hotelling T^{2} test statistic of the log-ratio transformed data.

Value

A ternary plot of compositional data including the log-ratio mean and its confidence region.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70(1):57-65.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

ternary, ternary.reg, diri.contour

Examples

```
x <- as.matrix(iris[, 1:3])
x <- x / rowSums(x)
ternary.mcr(x, type = "alr", dg = TRUE, hg = TRUE)
```

Ternary diagram with the coefficients of the simplicial-simplicial regression models

Ternary diagram with the coefficients of the simplicial-simplicial regression models

Description

Ternary diagram with the coefficients of the simplicial-simplicial regression models.

Usage

ternary.coef(B, dg = FALSE, hg = FALSE, colour = NULL)

Arguments

B A matrix with the coefficients of the $t f l r$ or the $s c l s$ functions. See examples for this.
dg Do you want diagonal grid lines to appear? If yes, set this TRUE.
hg Do you want horizontal grid lines to appear? If yes, set this TRUE.
colour If you want the points to appear in different colour put a vector with the colour numbers or colours.

Details

Ternary plot of the coefficients of the tflr or the scls functions.

Value

A ternary plot of the coefficients of the $t f l r$ or the $s c l s$ functions.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70(1):57-65.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

ternary, ternary.reg, scls

Examples

```
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
x <- rdiri(150, runif(5, 1,4) )
mod <- scls(y, x)
ternary.coef(mod$be)
```

The additive log-ratio transformation and its inverse The additive log-ratio transformation and its inverse

Description

The additive log-ratio transformation and its inverse.

Usage

$\operatorname{alr}(x)$
alrinv(y)

Arguments

$x \quad$ A numerical matrix with the compositional data.
y
A numerical matrix with data to be closed into the simplex.

Details

The additive log-ratio transformation with the first component being the common divisor is applied. The inverse of this transformation is also available. This means that no zeros are allowed.

Value

A matrix with the alr transformed data (if alr is used) or with the compositional data (if the alrinv is used).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
bc, pivot, fp, green, alfa, alfainv
```


Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- alr(x)
x1 <- alrinv(y)
```

The alpha-distance The α-distance

Description

This is the Euclidean (or Manhattan) distance after the α-transformation has been applied.

Usage

alfadist(x, a, type = "euclidean", square = FALSE)
alfadista(xnew, x, a, type = "euclidean", square = FALSE)

Arguments

xnew A matrix or a vector with new compositional data.
$x \quad$ A matrix with the compositional data.
a
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$, the isometric log-ratio transformation is applied.
type \quad Which type distance do you want to calculate after the α-transformation, "euclidean", or "manhattan".
square In the case of the Euclidean distance, you can choose to return the squared distance by setting this TRUE.

Details

The α-transformation is applied to the compositional data first and then the Euclidean or the Manhattan distance is calculated.

Value

For "alfadist" a matrix including the pairwise distances of all observations or the distances between xnew and x. For "alfadista" a matrix including the pairwise distances of all observations or the distances between xnew and x.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the α-transformation. Journal of Classification. 33(2): 243-261. https://arxiv.org/pdf/1506.04976v2.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

```
alfa, alfainv, alfa.reg, esov
```


Examples

```
library(MASS)
x <- as.matrix(fgl[1:20, 2:9])
x <- x / rowSums(x)
alfadist(x, 0.1)
alfadist(x, 1)
```

The alpha-IT transformation

Description

The α-IT transformation.

Usage

$\operatorname{ait}(x, a, h=T R U E)$

Arguments

X
a
h

A matrix with the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.

A boolean variable. If is TRUE (default value) the multiplication with the Helmert sub-matrix will take place. When $\alpha=0$ and $\mathrm{h}=$ FALSE, the result is the centred log-ratio transformation (Aitchison, 1986). In general, when $\mathrm{h}=$ FALSE the resulting transformation maps the data onto a singualr space. The sum of the vectors is equal to 0 . Hence, from the simplex constraint the data go to another constraint.

Details

The α-IT transformation is applied to the compositional data.

Value

A matrix with the α-IT transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Clarotto L., Allard D. and Menafoglio A. (2022). A new class of α-transformations for the spatial analysis of Compositional Data. Spatial Statistics, 47.

See Also

aitdist, ait.knn, alfa, green, alr

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1<- ait(x, 0.2)
y2 <- ait(x, 1)
rbind( colMeans(y1), colMeans(y2) )
```

The alpha-IT-distance The α-IT-distance

Description

This is the Euclidean (or Manhattan) distance after the α-IT-transformation has been applied.

Usage

aitdist(x, a, type = "euclidean", square = FALSE)
aitdista(xnew, x, a, type = "euclidean", square = FALSE)

Arguments

xnew A matrix or a vector with new compositional data.
$x \quad$ A matrix with the compositional data.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$, the isometric log-ratio transformation is applied.
type \quad Which type distance do you want to calculate after the α-transformation, "euclidean", or "manhattan".
square In the case of the Euclidean distance, you can choose to return the squared distance by setting this TRUE.

Details

The α-IT-transformation is applied to the compositional data first and then the Euclidean or the Manhattan distance is calculated.

Value

For "alfadist" a matrix including the pairwise distances of all observations or the distances between xnew and x . For "alfadista" a matrix including the pairwise distances of all observations or the distances between xnew and x .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Clarotto L., Allard D. and Menafoglio A. (2021). A new class of α-transformations for the spatial analysis of Compositional Data. https://arxiv.org/abs/2110.07967

See Also

```
ait, alfadist, alfa
```


Examples

```
library(MASS)
x <- as.matrix(fgl[1:20, 2:9])
x <- x / rowSums(x)
aitdist(x, 0.1)
aitdist(x, 1)
```

The alpha-k-NN regression for compositional response data
The $\alpha-k-N N$ regression for compositional response data

Description

The $\alpha-\mathrm{k}-\mathrm{NN}$ regression for compositional response data.

Usage

aknn.reg(xnew, y, $x, a=\operatorname{seq}(0.1,1$, by $=0.1), k=2: 10$, apostasi $=$ "euclidean", rann = FALSE)

Arguments

xnew A matrix with the new predictor variables whose compositions are to be predicted.
y A matrix with the compositional response data. Zeros are allowed.
$x \quad$ A matrix with the available predictor variables.
a
The value(s) of α. Either a single value or a vector of values. As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of α. However, if negative values are passed, the positive ones are used only.
k
The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "Rnanoflann". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

Details

The α-k-NN regression for compositional response variables is applied.

Value

A list with the estimated compositional response data for each value of α and k .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5

See Also

aknnreg.tune, akern.reg, alfa.reg, comp.ppr, comp.reg, kl.compreg

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- aknn.reg(x, y, x, a = c(0.4, 0.5), k = 2:3, apostasi = "euclidean")
```

The alpha-k-NN regression with compositional predictor variables
The $\alpha-k-N N$ regression with compositional predictor variables

Description

The α-k-NN regression with compositional predictor variables.

Usage

alfa.knn.reg(xnew, y, x, a = 1, k=2:10, apostasi = "euclidean", method = "average")

Arguments

xnew A matrix with the new compositional predictor variables whose response is to be predicted. Zeros are allowed.
y
x
The response variable, a numerical vector.
A matrix with the available compositional predictor variables. Zeros are allowed.
a A single value of α. As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of α. If negative values are passed, the positive ones are used only. If the data are already alphatransformed, you can make this NULL.
k
The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use, either "euclidean" or "manhattan".
method If you want to take the average of the reponses of the k closest observations, type "average". For the median, type "median" and for the harmonic mean, type "harmonic".

Details

The α-k-NN regression with compositional predictor variables is applied.

Value

A matrix with the estimated response data for each value of k .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5

See Also

```
aknn.reg, alfa.knn, alfa.pcr, alfa.ridge
```


Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- fgl[, 1]
mod <- alfa.knn.reg(x, y, x, a = 0.5, k = 2:4)
```

The alpha-kernel regression with compositional response data
The α-kernel regression with compositional response data

Description

The α-kernel regression with compositional response data.

Usage

akern.reg(xnew, y, x, a = seq(0.1, 1, by = 0.1),
h = seq(0.1, 1, length = 10), type = "gauss")

Arguments

xnew A matrix with the new predictor variables whose compositions are to be predicted.
y A matrix with the compositional response data. Zeros are allowed.
$x \quad$ A matrix with the available predictor variables.
a The value(s) of α. Either a single value or a vector of values. As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of α. However, if negative values are passed, the positive ones are used only.
h The bandwidth value(s) to consider.
type \quad The type of kernel to use, "gauss" or "laplace".

Details

The α-kernel regression for compositional response variables is applied.

Value

A list with the estimated compositional response data for each value of α and h .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5

See Also

akernreg.tune, aknn.reg, aknnreg.tune, alfa.reg, comp.ppr, comp.reg, kl.compreg

Examples

```
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- akern.reg( x, y, x, a = c(0.4, 0.5), h = c(0.1, 0.2) )
```

The alpha-SCLS model The α-SCLS model for compositional responses and predictors

Description

The α-SCLS model for compositional responses and predictors.

Usage

$\operatorname{ascls}(y, x, a=\operatorname{seq}(0.1,1, b y=0.1), x n e w)$

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
x
A matrix with the compositional predictors. Zero values are allowed.
a
A vector or a single number of values of the α-parameter. This has to be different from zero, and it can take negative values if there are no zeros in the simplicial response (y).
xnew \quad The new data for which predictions will be made.

Details

This is an extension of the SCLS model that includes the α-transformation and is intended solely for prediction purposes.

Value

A list with matrices containing the predicted simplicial response values, one matrix for each value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

```
scls, cv.ascls, tflr
```


Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- ascls(y, x, xnew = x)
mod
```

The alpha-TFLR model The α-TFLR model for compositional responses and predictors

Description

The α-TFLR model for compositional responses and predictors.

Usage

$\operatorname{atflr}(y, x, a=\operatorname{seq}(0.1,1, b y=0.1), x n e w)$

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
x
A matrix with the compositional predictors. Zero values are allowed.
a
A vector or a single number of values of the α-parameter. This has to be different from zero, and it can take negative values if there are no zeros in the simplicial response (y).
xnew The new data for which predictions will be made.

Details

This is an extension of the TFLR model that includes the α-transformation and is intended solely for prediction purposes.

Value

A list with matrices containing the predicted simplicial response values, one matrix for each value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

tflr, cv.atflr, scls

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- ascls(y, x, a = c(0.5, 1), xnew = x)
mod
```

The alpha-transformation
The α-transformation

Description

The α-transformation.

Usage

alfa(x, a, h = TRUE)
alef(x, a)

Arguments

x
a

A matrix with the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
h
A boolean variable. If is TRUE (default value) the multiplication with the Helmert sub-matrix will take place. When $\alpha=0$ and $\mathrm{h}=$ FALSE, the result is the centred log-ratio transformation (Aitchison, 1986). In general, when $\mathrm{h}=$ FALSE the resulting transformation maps the data onto a singualr space. The sum of the vectors is equal to 0 . Hence, from the simplex constraint the data go to another constraint.

Details

The α-transformation is applied to the compositional data. The command "alef" is the same as "alfa(x, a, h = FALSE)", but reurns a different element as well and is necessary for the functions a.est, a.mle and alpha.mle.

Value

A list including:
sa The logarithm of the Jacobian determinant of the α-transformation. This is used in the "profile" function to speed up the computations.
sk If the "alef" was called, this will return the sum of the α-power transformed data, prior to being normalised to sum to 1 . If $\alpha=0$, this will not be returned.
aff The α-transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M. and Stewart C. (2022). A Review of Flexible Transformations for Modeling Compositional Data. In Advances and Innovations in Statistics and Data Science, pp. 225-234. https://link.springer.com/chapter/10.10 3-031-08329-7_10

Tsagris Michail and Stewart Connie (2020). A folded model for compositional data analysis. Australian and New Zealand Journal of Statistics, 62(2): 249-277. https://arxiv.org/pdf/1802.07330.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
alfainv, pivot, alfa.profile, alfa.tune a.est, alpha.mle, alr, bc, fp, green
```


Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- alfa(x, 0.2)$aff
y2 <- alfa(x, 1)$aff
rbind( colMeans(y1), colMeans(y2) )
y3 <- alfa(x, 0.2)$aff
dim(y1) ; dim(y3)
rowSums(y1)
rowSums(y3)
```

The Box-Cox transformation applied to ratios of components The Box-Cox transformation applied to ratios of components

Description

The Box-Cox transformation applied to ratios of components.

Usage

bc (x, lambda)

Arguments

x
A matrix with the compositional data. The first component must be zero values free.
lambda The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\lambda=0$ the additive log-ratio transformation (alr) is applied.

Details

The Box-Cox transformation applied to ratios of components, as described in Aitchison (1986) is applied.

Value

A matrix with the transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

alr, fp, green, alfa

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- bc(x, 0.2)
y2<- bc(x, 0)
rbind( colMeans(y1), colMeans(y2) )
rowSums(y1)
rowSums(y2)
```

The ESOV-distance The ESOV-distance

Description

The ESOV-distance.

Usage

```
esov(x)
esova(xnew, x)
es(x1, x2)
```


Arguments

x	A matrix with compositional data.
xnew	A matrix or a vector with new compositional data.
x1	A vector with compositional data.
x2	A vector with compositional data.

Details

The ESOV distance is calculated.

Value

For "esov()" a matrix including the pairwise distances of all observations or the distances between xnew and x.
For "esova()" a matrix including the pairwise distances of all observations or the distances between xnew and x.
For "es()" a number, the ESOV distance between x1 and x2.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534.
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

alfadist, comp.knn, js.compreg

Examples

```
library(MASS)
x <- as.matrix(fgl[1:20, 2:9])
x <- x / rowSums(x)
esov(x)
```

The folded power transformation The folded power transformation

Description

The folded power transformation.

Usage

$f p(x$, lambda)

Arguments

$x \quad$ A matrix with the compositional data. Zero values are allowed.
lambda
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\lambda=0$ the additive log-ratio transformation (alr) is applied. If zero values are present λ must be strictly positive.

Details

The folded power transformation is applied to the compositional data.

Value

A matrix with the transformed data.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Atkinson, A. C. (1985). Plots, transformations and regression; an introduction to graphical methods of diagnostic regression analysis Oxford University Press.

See Also

```
alr, bc, green, alfa
```


Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y1 <- fp(x, 0.2)
y2 <- fp(x, 0)
rbind( colMeans(y1), colMeans(y2) )
rowSums(y1)
rowSums(y2)
```

The Frechet mean for compositional data

The Frechet mean for compositional data

Description

Mean vector or matrix with mean vectors of compositional data using the α-transformation.

Usage

frechet (x, a)

Arguments

x
a

A matrix with the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied and the closed geometric mean is calculated. You can also provide a sequence of values of alpha and in this case a matrix of Frechet means will be returned.

Details

The power transformation is applied to the compositional data and the mean vector is calculated. Then the inverse of it is calculated and the inverse of the power transformation applied to the last vector is the Frechet mean.

Value

If α is a single value, the function will return a vector with the Frechet mean for the given value of α. Otherwise the function will return a matrix with the Frechet means for each value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa, alfainv, profile

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
frechet(x, 0.2)
frechet(x, 1)
```

 The Helmert sub-matrix
 The Helmert sub-matrix

Description

The Helmert sub-matrix.

Usage

helm(n)

Arguments

n A number grater than or equal to 2 .

Details

The Helmert sub-matrix is returned. It is an orthogonal matrix without the first row.

Value

A $(n-1) \times n$ matrix.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
John Aitchison (2003). The Statistical Analysis of Compositional Data, p. 99. Blackburn Press.
Lancaster H. O. (1965). The Helmert matrices. The American Mathematical Monthly 72(1): 4-12.

See Also

alfa, alfainv

Examples

helm(3)
helm(5)

The k-nearest neighbours using the alpha-distance
The k-nearest neighbours using the α-distance

Description

The k-nearest neighbours using the α-distance.

Usage

alfann(xnew, x, a, k=10, rann = FALSE)

Arguments

xnew A matrix or a vector with new compositional data.
x
A matrix with the compositional data.
a
The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$, the isometric log-ratio transformation is applied.
$k \quad$ The number of nearest neighbours to search for.
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "Rnanoflann". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

Details

The α-transformation is applied to the compositional data first and the indices of the k-nearest neighbours using the Euclidean distance are returned.

Value

A matrix including the indices of the nearest neighbours of each xnew from x .

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

MTsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain.
https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.knn, comp.nb, alfa.rda, alfa.nb,link\{aknn.reg\}, alfa, alfainv

Examples

```
library(MASS)
xnew <- as.matrix(fgl[1:20, 2:9])
xnew <- xnew / rowSums(xnew)
x <- as.matrix(fgl[-c(1:20), 2:9])
x <- x / rowSums(x)
b <- alfann(xnew, x, a = 0.1, k = 10)
```

The k-NN algorithm for compositional data
The k-NN algorithm for compositional data

Description

The k-NN algorithm for compositional data with and without using the power transformation.

Usage

comp. knn(xnew, x, ina, a = 1, k = 5, apostasi = "ESOV", mesos = TRUE)
alfa.knn(xnew, x, ina, $a=1, k=5$, mesos $=$ TRUE, apostasi $=$ "euclidean", rann = FALSE)
ait.knn(xnew, x, ina, $a=1, k=5$, mesos $=$ TRUE, apostasi = "euclidean", rann = FALSE)

Arguments

xnew A matrix with the new compositional data whose group is to be predicted. Zeros are allowed, but you must be careful to choose strictly positive values of α or not to set apostasi= "Ait".
x
A matrix with the available compositional data. Zeros are allowed, but you must be careful to choose strictly positive values of α or not to set apostasi= "Ait".
ina A group indicator variable for the available data.
a
The value of α. As zero values in the compositional data are allowed, you must be careful to choose strictly positive vcalues of α. You have the option to put $\mathrm{a}=$ NULL. In this case, the xnew and x are assumed to be the already α-transformed data.
k
The number of nearest neighbours to consider. It can be a single number or a vector.
apostasi The type of distance to use. For the compk.knn this can be one of the following: "ESOV", "taxicab", "Ait", "Hellinger", "angular" or "CS". See the references for them. For the alfa.knn this can be either "euclidean" or "manhattan".
mesos This is used in the non standard algorithm. If TRUE, the arithmetic mean of the distances is calulated, otherwise the harmonic mean is used (see details).
rann If you have large scale datasets and want a faster k-NN search, you can use kdtrees implemented in the R package "Rnanoflann". In this case you must set this argument equal to TRUE. Note however, that in this case, the only available distance is by default "euclidean".

Details

The k-NN algorithm is applied for the compositional data. There are many metrics and possibilities to choose from. The algorithm finds the k nearest observations to a new observation and allocates it to the class which appears most times in the neighbours. It then computes the arithmetic or the harmonic mean of the distances. The new point is allocated to the class with the minimum distance.

Value

A vector with the estimated groups.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534.
Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris Michail, Simon Preston and Andrew T.A. Wood (2016). Improved classification for compositional data using the α-transformation. Journal of Classification 33(2): 243-261.
Connie Stewart (2017). An approach to measure distance between compositional diet estimates containing essential zeros. Journal of Applied Statistics 44(7): 1137-1152.
Clarotto L., Allard D. and Menafoglio A. (2022). A new class of α-transformations for the spatial analysis of Compositional Data. Spatial Statistics, 47.
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

compknn.tune, alfa.rda, comp.nb, alfa.nb, alfa, esov, mix.compnorm

Examples

```
x <- as.matrix( iris[, 1:4] )
x <- x/ rowSums(x)
ina <- iris[, 5]
mod <- comp.knn(x, x, ina, a = 1, k = 5)
table(ina, mod)
mod2 <- alfa.knn(x, x, ina, a = 1, k = 5)
table(ina, mod2)
```

The multiplicative log-ratio transformation and its inverse The multiplicative log-ratio transformation and its inverse

Description

The multiplicative log-ratio transformation and its inverse.

Usage

$m \operatorname{lr}(x)$
mlrinv(y)

Arguments

$x \quad$ A numerical matrix with the compositional data.
$y \quad$ A numerical matrix with data to be closed into the simplex.

Details

The multiplicative log-ratio transformation and its inverse are applied here. This means that no zeros are allowed.

Value

A matrix with the mlr transformed data (if mlr is used) or with the compositional data (if the mlrinv is used).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

```
alr, pivot, green, alfa
```


Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- mlr(x)
x1 <- mlrinv(y)
```

The pivot coordinate transformation and its inverse
The pivot coordinate transformation and its inverse

Description

The pivot coordinate transformation and its inverse.

Usage

pivot(x)
pivotinv(y)

Arguments

$x \quad$ A numerical matrix with the compositional data.
$y \quad$ A numerical matrix with data to be closed into the simplex.

Details

The pivot coordinate transformation and its inverse are computed. This means that no zeros are allowed.

Value

A matrix with the alr transformed data (if pivot is used) or with the compositional data (if the pivotinv is used).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Peter Filzmoser, Karel Hron and Matthias Templ (2018). Applied Compositional Data Analysis With Worked Examples in R (pages 49 and 51). Springer.

See Also

alfa, alfainv, alr, green

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
y <- pivot(x)
x1 <- alrinv(y)
```

The SCLS model
Simplicial constrained linear least squares (SCLS) for compositional responses and predictors

Description

Simplicial constrained linear least squares (SCLS) for compositional responses and predictors.

Usage

$\operatorname{scls}(y, x, x n e w=N U L L)$

Arguments

$y \quad$ A matrix with the compositional data (dependent variable). Zero values are allowed.
$x \quad$ A matrix with the compositional predictors. Zero values are allowed.
xnew If you have new data use it, otherwise leave it NULL.

Details

The function performs least squares regression where the beta coefficients are constained to be positive and sum to 1 . We were inspired by the transformation-free linear regression for compositional responses and predictors of Fiksel, Zeger and Datta (2020). Our implementation now uses quadratic programming instead of the function optim, and the solution is more accurate and extremely fast.

Value

A list including:

mse	The mean squared error.
be	The beta coefficients.
est	The fitted of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

cv.scls, tflr, scls.indeptest, scrq

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x <- as.matrix(fgl[, 2:9])
x <- x / rowSums(x)
mod <- scls(y, x)
mod
```

The SCLS model with multiple compositional predictors
The SCLS model with multiple compositional predictors

Description

The SCLS model with multiple compositional predictors.

Usage

scls2(y, x, wei $=$ FALSE, $x n e w=$ NULL)

Arguments

$y \quad$ A matrix with the compositional data (dependent variable). Zero values are allowed.
x
A list of matrices with the compositional predictors. Zero values are allowed.
wei Do you want weights among the different simplicial predictors? The default is FALSE.
xnew If you have new data use it, otherwise leave it NULL.

Details

The function performs least squares regression where the beta coefficients are constained to be positive and sum to 1 . We were inspired by the transformation-free linear regression for compositional responses and predictors of Fiksel, Zeger and Datta (2020). Our implementation now uses quadratic programming instead of the function optim, and the solution is more accurate and extremely fast. This function allows for more than one simplicial predictors and offers the possibility of assigning weights to each simplicial predictor.

Value

A list including:
ini.mse The mean squared error when all simplicial predictors carry equal weight.
ini.be The beta coefficients when all simplicial predictors carry equal weight.
mse The mean squared error when the simplicial predictors carry unequal weights.

weights	The weights in a vector form. A vector of length equal to the number of rows of the matrix of coefficients.
am	The vector of weights, one for each simplicia predictor. The length of the vector
is equal to the number of simplicial predictors.	
est	The fitted of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

> cv.scls, tflr, scls.indeptest

Examples

```
library(MASS)
set.seed(1234)
y <- rdiri(214, runif(4, 1, 3))
x1 <- as.matrix(fgl[, 2:9])
x <- list()
x[[ 1 ]] <- x1 / rowSums(x1)
x[[ 2 ]] <- Compositional::rdiri(214, runif(4))
mod <- scls2(y, x)
mod
```

The TFLR model with multiple compositional predictors
The TFLR model with multiple compositional predictors

Description

The TFLR model with multiple compositional predictors

Usage

$\operatorname{tflr} 2(y, x$, wei $=$ FALSE, $x n e w=$ NULL)

Arguments

y A matrix with the compositional data (dependent variable). Zero values are allowed.
x
A list of matrices with the compositional predictors. Zero values are allowed.
wei Do you want weights among the different simplicial predictors? The default is FALSE.
xnew If you have new data use it, otherwise leave it NULL.

Details

The transformation-free linear regression for compositional responses and predictors is implemented. The function to be minized is $-\sum_{i=1}^{n} y_{i} \log y_{i} /\left(X_{i} B\right)$. This is a self implementation of the function that can be found in the package codalm. This function allows for more than one simplicial predictors and offers the possibility of assigning weights to each simplicial predictor.

Value

A list including:
ini.mse The mean squared error when all simplicial predictors carry equal weight.
ini.be The beta coefficients when all simplicial predictors carry equal weight.
mse The mean squared error when the simplicial predictors carry unequal weights.
weights The weights in a vector form. A vector of length equal to the number of rows of the matrix of coefficients.

The vector of weights, one for each simplicia predictor. The length of the vector is equal to the number of simplicial predictors.
est \quad The fitted of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

cv.scls, tflr, scls.indeptest

Examples

library(MASS)
set.seed(1234)
$y<-\operatorname{rdiri}(214, \operatorname{runif}(4,1,3))$
x1 <- as.matrix(fgl[, 2:9])
x <- list()
$x\left[\left[\begin{array}{ll}1 &]\end{array}\right]<-x 1 / r o w S u m s(x 1)\right.$
x[[2]] <- Compositional::rdiri(214, runif(4))
$\bmod <-\operatorname{tflr} 2(y, x)$
mod

```
The transformation-free linear regression (TFLR) for compositional
responses and predictors
```

Transformation-free linear regression (TFLR) for compositional responses and predictors

Description

Transformation-free linear regression (TFLR) for compositional responses and predictors.

Usage

tflr $(y, x, x n e w=N U L L)$

Arguments

y A matrix with the compositional response. Zero values are allowed.
$x \quad$ A matrix with the compositional predictors. Zero values are in general allowed, but there can be cases when these are problematic.
xnew If you have new data use it, otherwise leave it NULL.

Details

The transformation-free linear regression for compositional responses and predictors is implemented. The function to be minized is $-\sum_{i=1}^{n} y_{i} \log y_{i} /\left(X_{i} B\right)$. This is an efficient self implementation.

Value

A list including:
kl The Kullback-Leibler divergence between the observed and the fitted response compositional data.

be

The beta coefficients.
est
The fitted values of xnew if xnew is not NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Fiksel J., Zeger S. and Datta A. (2022). A transformation-free linear regression for compositional outcomes and predictors. Biometrics, 78(3): 974-987.
Tsagris. M. (2024). Constrained least squares simplicial-simplicial regression. https://arxiv.org/pdf/2403.19835.pdf

See Also

cv.tflr, sclskl.alfaper

Examples

library(MASS)
$y<-r d i r i(214, \operatorname{runif}(3,1,3))$
$x<-$ as.matrix(fgl[, 2:9])
$x<-x / \operatorname{rowSums}(x)$
$\bmod <-\operatorname{tflr}(\mathrm{y}, \mathrm{x}, \mathrm{x})$
mod

Total variability Total variability

Description

Total variability.

Usage

$\operatorname{totvar}(\mathrm{x}, \mathrm{a}=0)$

Arguments

x
a

A numerical matrix with the compositional data.
The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the centred log-ratio transformation is used.

Details

The α-transformation is applied and the sum of the variances of the transformed variables is calculated. This is the total variability. Aitchison (1986) used the centred log-ratio transformation, but we have extended it to cover more geometries, via the α-transformation.

Value

The total variability of the data in a given geometry as dictated by the value of α.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

alfa, \link\{alfainv,\} alfa.profile, alfa.tune

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x / rowSums(x)
totvar(x)
```

Tuning of the alpha-generalised correlations between two compositional datasets

Tuning of the α-generalised correlations between two compositional datasets

Description

Tuning of the alpha-generalised correlations between two compositional datasets.

Usage

acor.tune(y, x, a, type = "dcor")

Arguments

$y \quad$ A matrix with the compositional data.
$x \quad$ A matrix with the compositional data.
a
The range of values of the power transformation to search for the optimal one. If zero values are present it has to be greater than 0 .
type the type of correlation to compute, the distance correlation ("edist"), the canonical correlation type 1 ("cancor1") or the canonical correlation type 2 ("cancor2"). See details for more information.

Details

The α-transformation is applied to each composition and then, if type="dcor" the distance correlation or the canonical correlation is computed. If type = "cancor1" the function returns the value of α that maximizes the product of the eigenvalues. If type $=$ "cancor2" the function returns the value of α that maximizes the the largest eigenvalue.

Value

A list including:

alfa	The optimal value of α.
acor	The maximum value of the acor.
runtime	The runtime of the optimization

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

acor, alfa.profile, alfa, alfainv

Examples

```
y <- rdiri(30, runif(3) )
x <- rdiri(30, runif(4) )
acor(y, x, a = 0.4)
```

Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation

Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation

Description

Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation.

Usage

mkde.tune (x, low $=0.1$, up $=3, s=\operatorname{cov}(x)$)

Arguments

x
low
up
s

A matrix with Euclidean (continuous) data.
The minimum value to search for the optimal bandwidth value.
The maximum value to search for the optimal bandwidth value.
A covariance matrix. By default it is equal to the covariance matrix of the data, but can change to a robust covariance matrix, MCD for example.

Details

Maximum likelihood cross validation is applied in order to choose the optimal value of the bandwidth parameter. No plot is produced.

Value

A list including:
hopt The optimal bandwidth value.
maximum \quad The value of the pseudo-log-likelihood at that given bandwidth value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Arsalane Chouaib Guidoum (2015). Kernel Estimator and Bandwidth Selection for Density and its Derivatives. The kedd R package. http://cran.r-project.org/web/packages/kedd/vignettes/kedd.pdf M.P. Wand and M.C. Jones (1995). Kernel smoothing, pages 91-92.

See Also

```
mkde, comp.kerncontour
```


Examples

```
library(MASS)
mkde.tune(as.matrix(iris[, 1:4]), c(0.1, 3) )
```

Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation

Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the α-transformation

Description

Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the α-transformation.

Usage

klalfapcr.tune (y, x, covar = NULL, nfolds = 10, maxk $=50$, a $=\operatorname{seq}(-1,1$, by $=0.1$), folds $=$ NULL, graph $=$ FALSE, tol $=1 \mathrm{e}-07$, maxiters $=50$, seed $=$ NULL)

Arguments

y A numerical matrix with compositional data with or without zeros.
$x \quad$ A matrix with the predictor variables, the compositional data. Zero values are allowed.
covar If you have other continuous covariates put themn here.
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
maxk The maximum number of principal components to check.
a The value of the power transformation, it has to be between -1 and 1 . If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
graph If graph is TRUE (default value) a plot will appear.
tol The tolerance value to terminate the Newton-Raphson procedure.
maxiters The maximum number of Newton-Raphson iterations.
seed You can specify your own seed number here or leave it NULL.

Details

The M -fold cross validation is performed in order to select the optimal values for α and k , the number of principal components. The α-transformation is applied to the compositional data first, the first k principal component scores are calcualted and used as predictor variables for the KullbackLeibler divergence based regression model. This procedure is performed M times during the M -fold cross validation.

Value
A list including:

mspe	A list with the KL divergence for each value of α and k in every fold.
performance	A matrix with the KL divergence for each value of α averaged over all folds. If graph is set to TRUE this matrix is plotted.
best.perf	The minimum KL divergence.
params	The values of α and k corresponding to the minimum KL divergence.

Author(s)

Initial code by Abdulaziz Alenazi. Modifications by Michail Tsagris.
R implementation and documentation: Abdulaziz Alenazi <a. alenazi@nbu. edu. sa> and Michail Tsagris mtsagris@uoc.gr.

References

Alenazi A. (2019). Regression for compositional data with compositional data as predictor variables with or without zero values. Journal of Data Science, 17(1): 219-238. https://jds-online.org/journal/JDS/article/136/file/pdf
Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. http://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. http://arxiv.org/pdf/1106.1451.pdf

```
See Also
kl.alfapcr, cv.tflr, glm.pcr, alfapcr.tune
```


Examples

```
library(MASS)
y <- rdiri( 214, runif(4, 1, 3) )
x <- as.matrix( fgl[, 2:9] )
x <- x / rowSums(x)
mod <- klalfapcr.tune(y = y, x = x, a = c(0.7, 0.8) )
mod
```

Tuning of the $\mathrm{k}-\mathrm{NN}$ algorithm for compositional data
Tuning of the k - $N N$ algorithm for compositional data

Description

Tuning of the k-NN algorithm for compositional data with and without using the power or the α-transformation. In addition, estimation of the rate of correct classification via K-fold crossvalidation.

Usage

```
compknn.tune(x, ina, nfolds = 10, k = 2:5, mesos = TRUE,
a = seq(-1, 1, by = 0.1), apostasi = "ESOV", folds = NULL,
stratified = TRUE, seed = NULL, graph = FALSE)
alfaknn.tune(x, ina, nfolds = 10, k = 2:5, mesos = TRUE,
a = seq(-1, 1, by = 0.1), apostasi = "euclidean", rann = FALSE,
folds = NULL, stratified = TRUE, seed = NULL, graph = FALSE)
aitknn.tune(x, ina, nfolds = 10, k = 2:5, mesos = TRUE,
a = seq(-1, 1, by = 0.1), apostasi = "euclidean", rann = FALSE,
folds = NULL, stratified = TRUE, seed = NULL, graph = FALSE)
```


Arguments

\(\left.$$
\begin{array}{ll}\mathrm{x} & \begin{array}{l}\text { A matrix with the available compositional data. Zeros are allowed, but you must } \\
\text { be careful to choose strictly positive values of } \alpha \text { or not to set apostasi= "Ait". }\end{array} \\
\text { ina } & \begin{array}{l}\text { A group indicator variable for the available data. }\end{array} \\
\text { nfolds } & \begin{array}{l}\text { The number of folds to be used. This is taken into consideration only if the folds } \\
\text { argument is not supplied. }\end{array} \\
\text { k } & \begin{array}{l}\text { A vector with the nearest neighbours to consider. }\end{array} \\
\text { mesos } & \begin{array}{l}\text { This is used in the non standard algorithm. If TRUE, the arithmetic mean of the } \\
\text { distances is calculated, otherwise the harmonic mean is used (see details). }\end{array}
$$

a A grid of values of \alpha to be used only if the distance chosen allows for it.\end{array}\right\}\)| The type of distance to use. For the compk.knn this can be one of the following: |
| :--- |
| "ESOV", "taxicab", "Ait", "Hellinger", "angular" or "CS". See the references |
| for them. For the alfa.knn this can be either "euclidean" or "manhattan". |

Details

The k-NN algorithm is applied for the compositional data. There are many metrics and possibilities to choose from. The algorithm finds the k nearest observations to a new observation and allocates it to the class which appears most times in the neighbours.

Value

A list including:
per A matrix or a vector (depending on the distance chosen) with the averaged over all folds rates of correct classification for all hyper-parameters (α and k).
performance The estimated rate of correct classification.
best_a The best value of α. This is returned for "ESOV" and "taxicab" only.
best_k The best number of nearest neighbours.
runtime \quad The run time of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris, Michail (2014). The k-NN algorithm for compositional data: a revised approach with and without zero values present. Journal of Data Science, 12(3): 519-534. https://arxiv.org/pdf/1506.05216.pdf
Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin
Tsagris M., Preston S. and Wood A.T.A. (2016). Improved classification for compositional data using the α-transformation. Journal of Classification, 33(2): 243-261. http://arxiv.org/pdf/1106.1451.pdf
Connie Stewart (2017). An approach to measure distance between compositional diet estimates containing essential zeros. Journal of Applied Statistics 44(7): 1137-1152.
Clarotto L., Allard D. and Menafoglio A. (2022). A new class of α-transformations for the spatial analysis of Compositional Data. Spatial Statistics, 47.
Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability distributions. Information Theory, IEEE Transactions on 49, 1858-1860.
Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probability spaces and its applicability in statistics. Annals of the Institute of Statistical Mathematics 55, 639-653.

See Also

comp.knn, alfarda.tune, cv.dda, cv.compnb

Examples

```
x <- as.matrix(iris[, 1:4])
x <- x/ rowSums(x)
ina <- iris[, 5]
mod1 <- compknn.tune(x, ina, a = seq(1, 1, by = 0.1) )
mod2 <- alfaknn.tune(x, ina, a = seq(-1, 1, by = 0.1) )
```

Tuning of the projection pursuit regression for compositional data Tuning of the projection pursuit regression for compositional data

Description

Tuning of the projection pursuit regression for compositional data.

Usage

compppr.tune(y, x, nfolds $=10$, folds $=$ NULL, seed $=$ NULL,
nterms = 1:10, type = "alr", yb = NULL)

Arguments

y A matrix with the available compositional data, but zeros are not allowed.
$x \quad$ A matrix with the continuous predictor variables.
nfolds The number of folds to use.
folds If you have the list with the folds supply it here.
seed You can specify your own seed number here or leave it NULL.
nterms The number of terms to try in the projection pursuit regression.
type Either "alr" or "ilr" corresponding to the additive or the isometric log-ratio transformation respectively.
$\mathrm{yb} \quad$ If you have already transformed the data using a log-ratio transformation put it here. Othewrise leave it NULL.

Details

The function performs tuning of the projection pursuit regression algorithm.

Value

A list including:
kl
The average Kullback-Leibler divergence.
perf The average Kullback-Leibler divergence.
runtime The run time of the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

See Also

comp.ppr, aknnreg.tune, akernreg.tune

Examples

```
y <- as.matrix(iris[, 1:3])
y <- y/ rowSums(y)
x <- iris[, 4]
mod <- compppr.tune(y, x)
```

Tuning of the projection pursuit regression with compositional
predictor variables

Tuning of the projection pursuit regression with compositional predictor variables

Description

Tuning of the projection pursuit regression with compositional predictor variables.

Usage

pprcomp.tune(y, x, nfolds = 10, folds = NULL, seed = NULL,
nterms $=1: 10$, type $=$ "log", graph = FALSE)

Arguments

$y \quad$ A numerical vector with the continuous variable.
$x \quad$ A matrix with the available compositional data, but zeros are not allowed.
nfolds The number of folds to use.
folds If you have the list with the folds supply it here.
seed You can specify your own seed number here or leave it NULL.
nterms The number of terms to try in the projection pursuit regression.
type Either "alr" or "log" corresponding to the additive log-ratio transformation or the logarithm applied to the compositional predictor variables.
graph If graph is TRUE (default value) a filled contour plot will appear.

Details

The function performs tuning of the projection pursuit regression algorithm with compositional predictor variables.

Tuning of the projection pursuit regression with compositional predictor variables using the alpha-transformation227

Value
A list including:
runtime The run time of the cross-validation procedure.
mse The mean squared error of prediction for each number of terms.
opt.nterms The number of terms corresponding to the minimum mean squared error of prediction.
opt.alpha The value of α corresponding to the minimum mean squared error of prediction.
performance The minimum mean squared error of prediction.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

See Also

pprcomp, ice.pprcomp, alfapcr.tune, compppr.tune

Examples

```
x <- as.matrix(iris[, 2:4])
x <- x/ rowSums(x)
y <- iris[, 1]
mod <- pprcomp.tune(y, x)
```

```
Tuning of the projection pursuit regression with compositional
predictor variables using the alpha-transformation
    Tuning of the projection pursuit regression with compositional predic-
    tor variables using the \alpha-transformation
```


Description

Tuning of the projection pursuit regression with compositional predictor variables using the α transformation.

Usage

alfapprcomp.tune (y, x, nfolds $=10$, folds $=$ NULL, seed $=$ NULL,
nterms $=1: 10$, $a=\operatorname{seq}(-1,1$, by $=0.1)$, graph $=$ FALSE)

Arguments

$y \quad$ A numerical vector with the continuous variable.
$x \quad$ A matrix with the available compositional data. Zeros are allowed.
nfolds The number of folds to use.
folds If you have the list with the folds supply it here.
seed You can specify your own seed number here or leave it NULL.
nterms The number of terms to try in the projection pursuit regression.
a
A vector with the values of α for the α-transformation.
graph If graph is TRUE (default value) a filled contour plot will appear.

Details

The function performs tuning of the projection pursuit regression algorithm with compositional predictor variables using the α-transformation.

Value

A list including:
runtime The run time of the cross-validation procedure.
mse The mean squared error of prediction for each number of terms.
opt.nterms The number of terms corresponding to the minimum mean squared error of prediction.
opt.alpha The value of α corresponding to the minimum mean squared error of prediction.
performance The minimum mean squared error of prediction.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American Statistical Association, 76, 817-823. doi: 10.2307/2287576.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.pprcomp, pprcomp.tune, compppr.tune

Examples

```
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
y <- iris[, 1]
mod <- alfapprcomp.tune( y, x, a = c(0, 0.5, 1) )
```

Tuning the number of PCs in the PCR with compositional data using
the alpha-transformation

Tuning the number of PCs in the PCR with compositional data using the α-transformation

Description

This is a cross-validation procedure to decide on the number of principal components when using regression with compositional data (as predictor variables) using the α-transformation.

Usage

alfaper.tune(y, x, model = "gaussian", nfolds = 10, maxk $=50$, $a=\operatorname{seq}(-1,1$, by $=0.1$), folds $=$ NULL, ncores $=1$, graph $=$ TRUE, col.nu $=15$, seed $=$ NULL)

Arguments

$y \quad$ A vector with either continuous, binary or count data.
$x \quad$ A matrix with the predictor variables, the compositional data. Zero values are allowed.
model The type of regression model to fit. The possible values are "gaussian", "binomial" and "poisson".
nfolds The number of folds for the K-fold cross validation, set to 10 by default.
maxk The maximum number of principal components to check.
a A vector with a grid of values of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores How many cores to use. If you have heavy computations or do not want to wait for long time more than 1 core (if available) is suggested. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
graph If graph is TRUE (default value) a filled contour plot will appear.
col.nu A number parameter for the filled contour plot, taken into account only if graph is TRUE.
seed You can specify your own seed number here or leave it NULL.

Details

The α-transformation is applied to the compositional data first and the function "pcr.tune" or "glmpcr.tune" is called.

Value

If graph is TRUE a filled contour will appear. A list including:
mspe \quad The MSPE where rows correspond to the α values and the columns to the number of principal components.
best.par The best pair of α and number of principal components.
performance The minimum mean squared error of prediction.
runtime The time required by the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

Jolliffe I.T. (2002). Principal Component Analysis.

See Also

alfa, profile, alfa.pcr, pcr.tune, glmpcr.tune, glm

Examples

```
library(MASS)
y <- as.vector(fgl[, 1])
x <- as.matrix(fgl[, 2:9])
x <- x/ rowSums(x)
mod <- alfapcr.tune(y, x, nfolds = 10, maxk = 50, a = seq(-1, 1, by = 0.1) )
```

Tuning the principal components with GLMs
Tuning the principal components with GLMs

Description

Tuning the number of principal components in the generalised linear models.

Usage

```
    pcr.tune (y, x, nfolds = 10, maxk \(=50\), folds \(=\) NULL, ncores \(=1\),
    seed \(=\) NULL, graph \(=\) TRUE)
    glmpcr.tune (y, x, nfolds = 10, maxk = 10, folds = NULL, ncores = 1,
    seed \(=\) NULL, graph \(=\) TRUE)
    multinompcr.tune(y, x, nfolds = 10, maxk = 10, folds = NULL, ncores = 1,
    seed \(=\) NULL, graph \(=\) TRUE)
```


Arguments

y A real valued vector for "pcr.tune". A real valued vector for the "glmpcr.tune" with either two numbers, 0 and 1 for example, for the binomial regression or with positive discrete numbers for the poisson. For the "multinompcr.tune" a vector or a factor with more than just two values. This is a multinomial regression.
x
A matrix with the predictor variables, they have to be continuous.
nfolds
The number of folds in the cross validation.
maxk The maximum number of principal components to check.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
ncores The number of cores to use. If more than 1, parallel computing will take place. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE a plot of the performance for each fold along the values of α will appear.

Details

Cross validation is performed to select the optimal number of principal components in the GLMs or the multinomial regression. This is used by alfapcr. tune.

Value

If graph is TRUE a plot of the performance versus the number of principal components will appear. A list including:
msp A matrix with the mean deviance of prediction or mean accuracy for every fold.
mpd A vector with the mean deviance of prediction or mean accuracy, each value corresponds to a number of principal components.
$k \quad$ The number of principal components which minimizes the deviance or maximises the accuracy.
performance The optimal performance, MSE for the linea regression, minimum deviance for the GLMs and maximum accuracy for the multinomial regression.
runtime The time required by the cross-validation procedure.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aguilera A.M., Escabias M. and Valderrama M.J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics \& Data Analysis 50(8): 1905-1924.
Jolliffe I.T. (2002). Principal Component Analysis.

See Also

pcr.tune, glm.pcr, alfa.pcr, alfapcr.tune

Examples

```
library(MASS)
x <- as.matrix(fgl[, 2:9])
y <- rpois(214, 10)
glmpcr.tune(y, x, nfolds = 10, maxk = 20, folds = NULL, ncores = 1)
```

Tuning the value of alpha in the alpha-regression
Tuning the value of α in the α-regression

Description

Tuning the value of α in the α-regression.

Usage

alfareg.tune $(y, x, a=s e q(0.1,1, b y=0.1)$, nfolds = 10,
folds $=$ NULL, $n c=1$, seed $=$ NULL, graph $=$ FALSE)

Arguments

y A matrix with compositional data. zero values are allowed.
$x \quad$ A matrix with the continuous predictor variables or a data frame including categorical predictor variables.
a The value of the power transformation, it has to be between -1 and 1. If zero values are present it has to be greater than 0 . If $\alpha=0$ the isometric log-ratio transformation is applied.
nfolds The number of folds to split the data.
folds If you have the list with the folds supply it here. You can also leave it NULL and it will create folds.
nc The number of cores to use. IF you have a multicore computer it is advisable to use more than 1. It makes the procedure faster. It is advisable to use it if you have many observations and or many variables, otherwise it will slow down th process.
seed You can specify your own seed number here or leave it NULL.
graph If graph is TRUE a plot of the performance for each fold along the values of α will appear.

Details

The α-transformation is applied to the compositional data and the numerical optimisation is performed for the regression, unless $\alpha=0$, where the coefficients are available in closed form.

Value

A plot of the estimated Kullback-Leibler divergences (multiplied by 2) along the values of α (if graph is set to TRUE). A list including:

runtime	The runtime required by the cross-validation.
kula	A matrix with twice the Kullback-Leibler divergence of the observed from the fitted values. Each row corresponds to a fold and each column to a value of α. The average over the columns equal the next argument, "kl".
kl	A vector with twice the Kullback-Leibler divergence of the observed from the fitted values. Every value corresponds to a value of α.
opt	The optimal value of α.
value	The minimum value of twice the Kullback-Leibler.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou gioathineou@gmail.com.

References

Tsagris M. (2015). Regression analysis with compositional data containing zero values. Chilean Journal of Statistics, 6(2): 47-57. https://arxiv.org/pdf/1508.01913v1.pdf
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

See Also

alfa.reg, alfa

Examples

```
library(MASS)
y <- as.matrix(fgl[1:40, 2:4])
y <- y /rowSums(y)
x <- as.vector(fgl[1:40, 1])
mod <- alfareg.tune(y, x, a = seq(0, 1, by = 0.1), nfolds = 5)
```

Two-sample test of high-dimensional means for compositional data Two-sample test of high-dimensional means for compositional data

Description

Two-sample test of high-dimensional means for compositional data.

Usage

hd.meantest2 $\mathrm{y} 1, \mathrm{y} 2, \mathrm{R}=1$)

Arguments

y1 A matrix containing the compositional data of the first group.
y2 A matrix containing the compositional data of the second group.
$\mathrm{R} \quad$ If R is 1 no bootstrap calibration is performed and the asymptotic p -value is returned. If R is greater than 1 , the bootstrap p-value is returned.

Details

A two sample for high dimensional mean vectors of compositional data is implemented. See references for more details.

Value

A vector with the test statistic value and its associated (bootstrap) p-value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Cao Y., Lin W. and Li H. (2018). Two-sample tests of high-dimensional means for compositional data. Biometrika, 105(1): 115-132.

See Also

comp.test

Examples

```
m <- runif(200, 10, 15)
x1 <- rdiri(100, m)
x2 <- rdiri(100, m)
hd.meantest2(x1, x2)
```

Unconstrained GLMs with compositional predictor variables
Unconstrained GLMs with compositional predictor variables

Description

Unconstrained GLMs with compositional predictor variables.

Usage

ulc.glm(y, $x, z=N U L L, ~ m o d e l ~=~ " l o g i s t i c ", ~ x n e w ~=~ N U L L, ~ z n e w ~=~ N U L L) ~$

Arguments

y
x
z
model
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the unconstrained log-contrast logistic or Poisson regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see lc.glm. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value

A list including:
devi The residual deviance of the logistic or Poisson regression model.
be The unconstrained regression coefficients. Their sum does not equal 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Lu J., Shi P., and Li H. (2019). Generalized linear models with linear constraints for microbiome compositional data. Biometrics, 75(1): 235-244.

See Also

lc.glm, lc.glm2, ulc.glm2, lcglm.aov

Examples

```
y <- rbinom(150, 1, 0.5)
x <- rdiri(150, runif(3, 1,3))
mod <- ulc.glm(y, x)
```

Unconstrained linear regression with compositional predictor
variables

Unconstrained linear regression with compositional predictor variables

Description

Unconstrained linear regression with compositional predictor variables.

Usage

ulc.reg(y, $x, z=N U L L, x n e w=$ NULL, znew $=$ NULL)

Arguments

y A numerical vector containing the response variable values. This must be a continuous variable.
$x \quad$ A matrix with the predictor variables, the compositional data. No zero values are allowed.
z A matrix, data.frame, factor or a vector with some other covariate(s).
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the unconstrained log-contrast regression model as opposed to the logcontrast regression described in Aitchison (2003), pg. 84-85. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression model with the zum-to-zero contraints see lc.reg. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value

A list including:
be The unconstrained regression coefficients. Their sum does not equal 0 .
covbe If covariance matrix of the constrained regression coefficients.
va The estimated regression variance.
residuals The vector of residuals.
est If the arguments "xnew" and "znew" were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.

See Also

lc.reg, lcreg.aov, lc.reg2, ulc.reg2, alfa.pcr, alfa.knn.reg

Examples

```
y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x / rowSums(x)
mod1 <- ulc.reg(y, x)
mod2 <- ulc.reg(y, x, z = iris[, 5])
```

Unconstrained linear regression with multiple compositional
predictors

Unconstrained linear regression with multiple compositional predictors

Description

Unconstrained linear regression with multiple compositional predictors.

Usage

ulc.reg2(y, x, z = NULL, xnew = NULL, znew = NULL)

Arguments

y A numerical vector containing the response variable values. This must be a continuous variable.
$x \quad$ A list with multiple matrices with the predictor variables, the compositional data. No zero values are allowed.

A matrix, data.frame, factor or a vector with some other covariate(s).
A matrix containing a list with multiple matrices with compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the unconstrained log-contrast regression model as opposed to the logcontrast regression described in Aitchison (2003), pg. 84-85. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression model with the zum-to-zero contraints see lc.reg2. Extra predictors variables are allowed as well, for instance categorical or continuous. Similarly to lc. reg2 there are multiple compositions treated as predictor variables.

Value

A list including:
be The unconstrained regression coefficients. Their sum for each composition does not equal 0 .
covbe If covariance matrix of the constrained regression coefficients.
va The estimated regression variance.
residuals The vector of residuals.
est If the arguments "xnew" and "znew" were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Xiaokang Liu, Xiaomei Cong, Gen Li, Kendra Maas and Kun Chen (2020). Multivariate LogContrast Regression with Sub-Compositional Predictors: Testing the Association Between Preterm Infants' Gut Microbiome and Neurobehavioral Outcome.

See Also

lc.reg2, ulc.reg, lc.reg, alfa.pcr, alfa.knn.reg

Examples

```
y <- iris[, 1]
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
x[[[ 1 ] ] ] <- x1
x[[ 2 ]] <- rdiri(150, runif(4) )
x[[ 3 ]] <- rdiri(150, runif(5) )
mod <- lc.reg2(y, x)
```

```
Unconstrained logistic or Poisson regression with multiple
compositional predictors
Unconstrained logistic or Poisson regression with multiple compositional predictors
```


Description

Unconstrained logistic or Poisson regression with multiple compositional predictors.

Usage

ulc.glm2(y, x, z = NULL, model = "logistic", xnew = NULL, znew = NULL)

Arguments

$y \quad$ A numerical vector containing the response variable values. This is either a binary variable or a vector with counts.
$\mathrm{x} \quad$ A list with multiple matrices with the predictor variables, the compositional data. No zero values are allowed.
z
A matrix, data.frame, factor or a vector with some other covariate(s).
model
xnew
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the unconstrained log-contrast logistic or Poisson regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see lc.glm2. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value

A list including:
devi The residual deviance of the logistic or Poisson regression model.
be The unconstrained regression coefficients. Their sum does not equal 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Lu J., Shi P., and Li H. (2019). Generalized linear models with linear constraints for microbiome compositional data. Biometrics, 75(1): 235-244.

See Also

lc.glm2, ulc.glm, lc.glm

Examples

```
y <- rbinom(150, 1, 0.5)
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
x[[[ 1 ] ] ] <- x1
x[[ 2 ]] <- rdiri(150, runif(4) )
x[[ 3 ] ] <- rdiri(150, runif(5) )
mod <- ulc.glm2(y, x)
```

```
Unconstrained quantile regression with compositional predictor
variables
```

Unconstrained quantile regression with compositional predictor variables

Description

Unconstrained quantile regression with compositional predictor variables.

Usage

$$
\text { ulc.rq(y, } x, z=N U L L, \text { tau }=0.5 \text {, xnew }=\text { NULL, znew }=\text { NULL })
$$

Arguments

$y \quad$ A numerical vector containing the response variable values.
$x \quad$ A matrix with the predictor variables, the compositional data. No zero values are allowed.
z A matrix, data.frame, factor or a vector with some other covariate(s).
tau The quantile to be estimated, a number between 0 and 1.
xnew A matrix containing the new compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the unconstrained log-contrast quantile regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see lc.rq. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value
A list including:
mod The object as returned by the function quantreg::rq(). This is useful for hypothesis testing purposes.
be The unconstrained regression coefficients. Their sum does not equal 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Koenker R. W. and Bassett G. W. (1978). Regression Quantiles, Econometrica, 46(1): 33-50.
Koenker R. W. and d'Orey V. (1987). Algorithm AS 229: Computing Regression Quantiles. Applied Statistics, 36(3): 383-393.

See Also

lc.glm, lc.glm2, ulc.glm2, lcglm.aov

Examples

```
y <- rnorm(150)
x <- rdiri(150, runif(3, 1,3))
mod <- ulc.rq(y, x)
```

Unconstrained quantile regression with multiple compositional
predictors

Unconstrained quantile regression with multiple compositional predictors

Description

Unconstrained quantile regression with multiple compositional predictors.

Usage

ulc.rq2(y, $x, z=N U L L$, tau $=0.5$, xnew $=$ NULL, znew $=N U L L)$

Arguments

$y \quad$ A numerical vector containing the response variable values.
$x \quad$ A list with multiple matrices with the predictor variables, the compositional data. No zero values are allowed.
$z \quad$ A matrix, data.frame, factor or a vector with some other covariate(s).
tau The quantile to be estimated, a number between 0 and 1.
xnew A matrix containing a list with multiple matrices with compositional data whose response is to be predicted. If you have no new data, leave this NULL as is by default.
znew A matrix, data.frame, factor or a vector with the values of some other covariate(s). If you have no new data, leave this NULL as is by default.

Details

The function performs the unconstrained log-contrast quantile regression model. The logarithm of the compositional predictor variables is used (hence no zero values are allowed). The response variable is linked to the log-transformed data without the constraint that the sum of the regression coefficients equals 0 . If you want the regression without the zum-to-zero contraints see lc.rq2. Extra predictors variables are allowed as well, for instance categorical or continuous.

Value

A list including:
mod The object as returned by the function quantreg::rq(). This is useful for hypothesis testing purposes.
be The unconstrained regression coefficients. Their sum does not equal 0 .
est If the arguments "xnew" and znew were given these are the predicted or estimated values, otherwise it is NULL.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Aitchison J. (1986). The statistical analysis of compositional data. Chapman \& Hall.
Koenker R. W. and Bassett G. W. (1978). Regression Quantiles, Econometrica, 46(1): 33-50.
Koenker R. W. and d'Orey V. (1987). Algorithm AS 229: Computing Regression Quantiles. Applied Statistics, 36(3): 383-393.

See Also

ulc.rq, lc.rq

Examples

```
y <- rnorm(150)
x <- list()
x1 <- as.matrix(iris[, 2:4])
x1 <- x1 / rowSums(x1)
x[[[ 1 ] ] < <- x1
x[[ 2 ]] <- rdiri(150, runif(4) )
x[[[ 3 ] ] <- rdiri(150, runif(5) )
mod <- ulc.rq2(y, x)
```

Unit-Weibull regression models for proportions
Unit-Weibull regression models for proportions

Description

Unit-Weibull regression models for proportions.

Usage

unitweib.reg(y, x, tau $=0.5$)

Arguments

$y \quad$ A numerical vector proportions. 0s and 1s are allowed.
$x \quad$ A matrix or a data frame with the predictor variables.
tau The quantile to be used for estimation. The default value is 0.5 yielding the median.

Details

See the reference paper.

Value

A list including:
loglik The loglikelihood of the regression model.
info A matrix with all estimated parameters, their standard error, their Wald-statistic and its associated p-value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Mazucheli J., Menezes A. F. B., Fernandes L. B., de Oliveira R. P. and Ghitany M. E. (2020). The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of Applied Statistics, 47(6): 954-974.

See Also

```
propreg, beta.reg
```


Examples

```
y<- exp( - rweibull(100, 1, 1) )
x <- matrix( rnorm(100 * 2), ncol = 2 )
a <- unitweib.reg(y, x)
```

```
Zero adjusted Dirichlet regression
    Zero adjusted Dirichlet regression
```


Description

Zero adjusted Dirichlet regression.

Usage

zadr (y, x, con = TRUE, $B=1$, ncores $=2$, xnew = NULL)
zadr2(y, x, con = TRUE, B = 1, ncores = 2, xnew = NULL)

Arguments

$y \quad$ A matrix with the compositional data (dependent variable). The number of observations (vectors) with no zero values should be more than the columns of the predictor variables. Otherwise, the initial values will not be calculated.
x
The predictor variable(s), they can be either continnuous or categorical or both.
con If this is TRUE (default) then the constant term is estimated, otherwise the model includes no constant term.
B
If B is greater than 1 bootstrap estimates of the standard error are returned. If you set this greater than 1 , then you must define the number of clusters in order to run in parallel.
ncores The number of cores to use when $\mathrm{B}>1$. This is to be used for the case of bootstrap. If $\mathrm{B}=1$, this is not taken into consideration. If this does not work then you might need to load the doParallel yourselves.
xnew If you have new data use it, otherwise leave it NULL.

Details

A zero adjusted Dirichlet regression is being fittd. The likelihood conists of two components. The contributions of the non zero compositional values and the contributions of the compositional vectors with at least one zero value. The second component may have many different sub-categories, one for each pattern of zeros. The function "zadr2()" links the covariates to the alpha parameters of the Dirichlet distribution, i.e. it uses the classical parametrization of the distribution. This means, that there is a set of regression parameters for each component.

Value

A list including:

runtime	The time required by the regression.
loglik	The value of the log-likelihood.
phi	The precision parameter.
be	The beta coefficients.
seb	The standard error of the beta coefficients.
sigma	Th covariance matrix of the regression parameters (for the mean vector and the phi parameter).
est	The fitted or the predicted values (if xnew is not NULL).

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

References

Tsagris M. and Stewart C. (2018). A Dirichlet regression model for compositional data with zeros. Lobachevskii Journal of Mathematics,39(3): 398-412.
Preprint available from https://arxiv.org/pdf/1410.5011.pdf

See Also

zad.est, diri.reg, kl.compreg, ols.compreg, alfa.reg

Examples

```
x <- as.vector(iris[, 4])
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.reg(y, x)
y[sample(1:450, 15) ] <- 0
mod2 <- zadr(y, x)
```


Index

* Additive log-ratio-transformation

The additive log-ratio transformation and its inverse, 188

* Bhattacharyya distance

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 99

* Compositional data

Compositional-package, 7

* Contour plots

Compositional-package, 7

* Dirichelt mean vector

Log-likelihood ratio test for a Dirichlet mean vector, 114

* Dirichlet distribution

Contour plot of the Dirichlet distribution in $\mathrm{S}^{\wedge} 2,20$
Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2$, 21

Contour plot of the generalised Dirichlet distribution in $\mathrm{S}^{\wedge} 2$, 23
Density values of a Dirichlet distribution, 59
Density values of a generalised Dirichlet distribution, 60
Dirichlet random values simulation, 63
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 99
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal, 116
MLE of the Dirichlet distribution, 123
MLE of the Dirichlet distribution
via Newton-Rapshon, 124

* Dirichlet regression

Dirichlet regression, 64

* Discriminant analysis

Compositional-package, 7

* Euclidean distance

The alpha-distance, 189
The alpha-IT-distance, 192
The k-nearest neighbours using the alpha-distance, 206

* Frechet mean

Helper Frechet mean for compositional data, 87
The Frechet mean for compositional data, 204

* GLM

Tuning the principal components with GLMs, 231

* Gaussian mixture models

Density of compositional data from Gaussian mixture models, 55
Density of the folded normal distribution, 57
Simulation of compositional data from Gaussian mixture models, 176
Simulation of compositional data from the folded normal distribution, 180

* Gaussianmixture model

Contour plot of the Gaussian mixture model in $\mathrm{S}^{\wedge} 2,22$

* Generalised Dirichlet distribution

Generalised Dirichlet random values simulation, 84

* Kullback-Lebler divergence

Helper functions for the Kullback-Leibler regression, 89

* Kullback-Leibler divergence

Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 99

* Log-likelihood ratio test

Log-likelihood ratio test for a Dirichlet mean vector, 114
Log-likelihood ratio test for a symmetric Dirichlet distribution, 115

* MLE

Compositional-package, 7

* Manhattan distance

The alpha-distance, 189
The alpha-IT-distance, 192
The k-nearest neighbours using the alpha-distance, 206

* Multiplicative log-ratio-transformation

The multiplicative log-ratio transformation and its inverse, 210

* Multivariate analysis of variance

Two-sample test of high-dimensional means for compositional data, 234

* Multivariate hypothesis testing

Hypothesis testing for two or more compositional mean vectors, 90

* Newton-Raphson

MLE of the Dirichlet distribution via Newton-Rapshon, 124

* Regression

Compositional-package, 7

* Regularised discriminant analysis

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 36
Regularised and flexible discriminant analysis for compositional data using the alpha-transformation, 168
Tuning of the k-NN algorithm for compositional data, 222

* Ridge regression

Cross validation for the ridge regression, 38

* Unequality of the covariance matrices

Two-sample test of high-dimensional means for compositional data, 234

* bandwidth tuning

Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation, 219

* bivariate normal distribution

Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2,17$
Contour plot of the alpha-folded model in $\mathrm{S}^{\wedge} 2,18$
Contour plot of the normal distribution in S^2, 26

* bivariate skew skewnormal distribution

Contour plot of the skew skew-normal distribution in S^2, 27

* bivariate t distribution

Contour plot of the t distribution in $\mathrm{S}^{\wedge} 2,28$

* compositional data

Hypothesis testing for two or more compositional mean vectors, 90

* contour plot

Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2,17$
Contour plot of the alpha-folded model in $\mathrm{S}^{\wedge} 2,18$
Contour plot of the Dirichlet distribution in $\mathrm{S}^{\wedge} 2,20$
Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2$, 21
Contour plot of the Gaussian mixture model in $\mathrm{S}^{\wedge} 2,22$
Contour plot of the generalised Dirichlet distribution in $\mathrm{S}^{\wedge} 2$, 23
Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2,24$
Contour plot of the normal distribution in $\mathrm{S}^{\wedge} 2,26$
Contour plot of the skew skew-normal distribution in $S^{\wedge} 2,27$

Contour plot of the t distribution in $\mathrm{S}^{\wedge} 2,28$

* cross-validation

Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 36

* density values

Density values of a Dirichlet distribution, 59
Density values of a generalised Dirichlet distribution, 60

* inverse transformation

Inverse of the alpha-transformation, 97

* kernel density estimate

Multivariate kernel density estimation, 128

* kernel density

Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2,24$
Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation, 219

* location and scatter

Estimating location and scatter parameters for compositional data, 74

* maximum likelihood cross validation

Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation, 219

* maximum likelihood estimation

Estimation of the value of alpha in the folded model, 76
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal, 116
MLE of the Dirichlet distribution, 123
MLE of the Dirichlet distribution via Newton-Rapshon, 124
MLE of the folded model for a given value of alpha, 125

* maximum log-likelihood estimation

Fast estimation of the value of alpha, 79

* mixtures of normal distributions

Mixture model selection via BIC, 117

* model selection Mixture model selection via BIC, 117
* multivariate kernel

Multivariate kernel density estimation, 128

* multivariate linear regression Multivariate linear regression, 130
* multivariate normal distribution Multivariate normal random values simulation on the simplex, 131
* multivariate regression

Dirichlet regression, 64
Helper functions for the Kullback-Leibler regression, 89
Non linear least squares regression for compositional data, 141
Spatial median regression, 181

* multivariate rgression

Multivariate regression with compositional data, 134

* multivariate skew normal distribution

Multivariate skew normal random values simulation on the simplex, 136

* multivariate \mathbf{t} distribution

MLE for the multivariate t distribution, 120
Multivariate t random values simulation on the simplex, 137

* non parametric test

Hypothesis testing for two or more compositional mean vectors, 90

* ordinary least squares

Non linear least squares regression for compositional data, 141

* orthogonal matrix

The Helmert sub-matrix, 205

* parameters tuning

Cross validation for the ridge
regression with compositional data as predictor using the alpha-transformation, 40

* plot

Ridge regression plot, 171
Ridge regression with the alpha-transformation plot, 174

* principal components regression

Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation, 133
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 229

* principal components

Tuning the principal components with GLMs, 231

* profile log-likelihood

Estimation of the value of alpha via the profile log-likelihood, 78

* random values simulation

Dirichlet random values simulation, 63
Generalised Dirichlet random values simulation, 84
Multivariate normal random values simulation on the simplex, 131
Multivariate skew normal random values simulation on the simplex, 136
Multivariate t random values simulation on the simplex, 137

* random vectors simulation

Density of compositional data from Gaussian mixture models, 55
Density of the folded normal distribution, 57
Simulation of compositional data from Gaussian mixture models, 176
Simulation of compositional data from the folded normal distribution, 180

* ridge regression

Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation, 40
Ridge regression plot, 171
Ridge regression with compositional data in the covariates side using the alpha-transformation, 172
Ridge regression with the alpha-transformation plot, 174

* robust estimation

Estimating location and scatter parameters for compositional data, 74

* spatial median regression

Multivariate regression with compositional data, 134
Spatial median regression, 181

* symmetric Dirichlet distribution

Log-likelihood ratio test for a symmetric Dirichlet distribution, 115

* ternary plot

Ternary diagram, 182
Ternary diagram of regression models, 183
$*$ tuning
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 229

* visualisation

Ternary diagram, 182
Ternary diagram of regression models, 183
a.est, 58, 76, 126, 180, 200
a.est (Estimation of the value of alpha in the folded model), 76
a.mle, 200
a.mle (MLE of the folded model for a given value of alpha), 125
acor, 73, 163, 219
acor (Alpha-generalised correlations between two compositional datasets), 10
acor.tune, 11, 73
acor.tune (Tuning of the
alpha-generalised correlations between two compositional datasets), 218
aeqdist.etest, 11
aeqdist.etest (Energy test of equality of distributions using the alpha-transformation), 72
ait, 193
ait (The alpha-IT transformation), 190
ait.knn, 191
ait.knn (The k-NN algorithm for compositional data), 208
ait.test (Aitchison's test for two mean vectors and/or covariance matrices), 8
Aitchison's test for two mean vectors and/or covariance matrices, 8
aitdist, 191
aitdist (The alpha-IT-distance), 192
aitdista (The alpha-IT-distance), 192
aitknn.tune (Tuning of the k-NN
algorithm for compositional data), 222
akern.reg, 33, 35, 99, 159, 194
akern.reg (The alpha-kernel regression with compositional response data), 196
akernreg.tune, 33, 197, 226
akernreg.tune (Cross validation for the alpha-kernel regression with compositional response data), 33
aknn.reg, 33, 35, 36, 88, 99, 159, 195, 197
aknn.reg (The alpha-k-NN regression for compositional response data), 193
aknnreg. tune, $30,35,36,194,197,226$
aknnreg.tune (Cross validation for the alpha-k-NN regression with compositional response data), 32
alef (The alpha-transformation), 199
alfa, $10,11,73,76-78,80,84,87,88,98$, $120,126,143,151,169,180$, 189-191, 193, 202, 204-207, 209-211, 218, 219, 230, 234
alfa (The alpha-transformation), 199
alfa.contour, 19
alfa.contour (Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2$), 17
alfa.fda, 31, 33, 35
alfa.fda (Regularised and flexible discriminant analysis for compositional data using the alpha-transformation), 168
alfa.knn, 63, 82, 84, 120, 139, 141, 169, 195, 207
alfa.knn (The k-NN algorithm for compositional data), 208
alfa.knn.reg, 13, 44, 102, 104, 112, 113, 237, 239
alfa.knn.reg (The alpha-k-NN regression with compositional predictor variables), 194
alfa.lasso, 44
alfa.lasso (LASSO with compositional predictors using the alpha-transformation), 103
alfa.mds, 157
alfa.mds (Principal coordinate analysis using the alpha-distance), 155
alfa.mix.norm, 82, 120
alfa.mix.norm (Gaussian mixture models for compositional data using the alpha-transformation), 82
alfa.nb, 53, 169, 207, 209
alfa.nb (Naive Bayes classifiers for compositional data using the alpha-transformation), 140
alfa.pca, 152, 156, 157
alfa.pca (Principal component analysis using the alpha-transformation), 153
alfa.pcr, 13, 93, 97, 102, 112, 113, 152, 154, $155,160,195,230,232,237,239$
alfa.pcr (Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation), 133
alfa.pprcomp, 228
alfa.pprcomp (Projection pursuit regression with compositional predictor variables using the
alpha-transformation), 160
alfa.profile, $11,73,77,79,80,126,200$, 218, 219
alfa.profile (Estimation of the value of alpha via the profile log-likelihood), 78
alfa.rda, $31,33,35,38,63,82,84,120,139$, 141, 207, 209
alfa.rda (Regularised and flexible discriminant analysis for compositional data using the alpha-transformation), 168
alfa.reg, 66, 142, 159, 182, 190, 194, 197, 234, 246
alfa.reg (Regression with compositional data using the alpha-transformation), 166
alfa.reg2 (Regression with compositional data using the alpha-transformation), 166
alfa.reg3 (Regression with compositional data using the alpha-transformation), 166
alfa.ridge, 41, 170-172, 175, 195
alfa.ridge (Ridge regression with compositional data in the covariates side using the alpha-transformation), 172
alfa.tune, 78, 200, 218
alfa.tune (Fast estimation of the value of alpha), 79
alfadist, 98, 193, 203
alfadist (The alpha-distance), 189
alfadista (The alpha-distance), 189
alfafda.tune (Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation), 36
alfainv, 77, 78, 80, 88, 126, 189, 190, 200, 205-207, 211, 219
alfainv (Inverse of the alpha-transformation), 97
alfaknn.tune (Tuning of the k-NN algorithm for compositional data), 222
alfaknnreg.tune (Cross validation for the alpha-k-NN regression with
compositional predictor variables), 30
alfalasso.tune, 104
alfalasso.tune (Cross-validation for LASSO with compositional predictors using the alpha-transformation), 43
alfanb.tune, 38,48
alfanb.tune (Cross-validation for the naive Bayes classifiers for compositional data using the alpha-transformation), 52
alfann (The k-nearest neighbours using the alpha-distance), 206
alfaper.tune, $71,134,155,222,227,231$, 232
alfapcr.tune (Tuning the number of PCs in the PCR with compositional data using the alpha-transformation), 229
alfapprcomp.tune, 161
alfapprcomp.tune (Tuning of the projection pursuit regression with compositional predictor variables using the alpha-transformation), 227
alfarda. tune, 48, 53, 169, 224
alfarda. tune (Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation), 36
alfareg.tune, $135,167,168$
alfareg.tune (Tuning the value of alpha in the alpha-regression), 232
alfaridge.plot, 172, 173
alfaridge.plot (Ridge regression with the alpha-transformation plot), 174
alfaridge.tune, 39, 173
alfaridge.tune (Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation), 40
All pairwise additive log-ratio transformations, 9
Alpha-generalised correlations between
two compositional datasets, 10
alpha.mle, 76, 77, 180, 200
alpha.mle (MLE of the folded model for
a given value of alpha), 125
alr, 10, 50, 102, 163, 191, 200-204, 210, 211
alr (The additive log-ratio
transformation and its
inverse), 188
alr.all (All pairwise additive log-ratio transformations), 9
alrinv (The additive log-ratio transformation and its inverse), 188
ANOVA for the log-contrast GLM versus the uncostrained GLM, 12
ANOVA for the log-contrast regression versus the uncostrained linear regression, 13
ascls, 46
ascls (The alpha-SCLS model), 197
atflr, 47
atflr (The alpha-TFLR model), 198
bc, 189, 200, 204
bc (The Box-Cox transformation applied
to ratios of components), 201
Beta regression, 14
beta.est, $14,16,166$
beta.est (MLE of distributions defined
in the (0,1) interval), 121
beta.reg, 67, 165, 245
beta.reg (Beta regression), 14
bic.alfamixnorm, 84, 118
bic.alfamixnorm (Mixture model selection with the alpha-transformation using BIC), 118
bic.mixcompnorm, 23, 56, 82, 84, 177
bic.mixcompnorm (Mixture model selection via BIC), 117
bivt. contour, 18, 19, 22, 25, 26, 28, 120, 121
bivt. contour (Contour plot of the t distribution in $\mathrm{S}^{\wedge} 2$), 28
colbeta.est, 166
colbeta.est (Column-wise MLE of some univariate distributions), 15
collogitnorm.est (Column-wise MLE of some univariate
distributions), 15
Column-wise MLE of some univariate distributions, 15
colunitweibull.est (Column-wise MLE of some univariate distributions), 15
colzilogitnorm.est (Column-wise MLE of some univariate distributions), 15
comp. den, 120, 121, 132, 137, 138
comp.den (Estimating location and scatter parameters for compositional data), 74
comp.kern (Multivariate kernel density estimation for compositional data), 129
comp.kerncontour, 17, 20, 22, 24, 129, 130, 220
comp.kerncontour (Contour plot of the kernel density estimate in S^2), 24
comp.knn, 63, 72, 139, 141, 203, 224
comp.knn (The k-NN algorithm for compositional data), 208
comp.nb, 52, 63, 82, 84, 120, 141, 169, 207, 209
comp.nb (Naive Bayes classifiers for compositional data), 138
comp.ppr, 93, 160, 161, 194, 197, 226
comp.ppr (Projection pursuit regression for compositional data), 158
comp.reg, 30, 51, 66, 69, 90, 103, 131, 142, 150, 159, 168, 181, 182, 194, 197
comp.reg (Multivariate regression with compositional data), 134
comp.test, 9, 162, 235
comp.test (Hypothesis testing for two or more compositional mean vectors), 90
compknn. tune, $38,48,53,86,209$
compknn.tune (Tuning of the $k-N N$ algorithm for compositional data), 222
compnorm. contour, 17-20, 22, 24, 25, 28, 29
compnorm. contour (Contour plot of the normal distribution in $\mathrm{S}^{\wedge} 2$), 26
Compositional-package, 7
compppr.tune, 30, 159, 227, 228
compppr.tune (Tuning of the projection pursuit regression for compositional data), 225
Contour plot of mixtures of Dirichlet distributions in $\mathrm{S}^{\wedge} 2,16$
Contour plot of the alpha multivariate normal in $\mathrm{S}^{\wedge} 2,17$
Contour plot of the alpha-folded model in $\mathrm{S}^{\wedge} 2,18$
Contour plot of the Dirichlet distribution in $\mathrm{S}^{\wedge} 2,20$
Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2,21$
Contour plot of the Gaussian mixture model in $\mathrm{S}^{\wedge} 2,22$
Contour plot of the generalised Dirichlet distribution in $\mathrm{S}^{\wedge} 2$, 23
Contour plot of the kernel density estimate in $\mathrm{S}^{\wedge} 2,24$
Contour plot of the normal distribution in $\mathrm{S}^{\wedge} 2,26$
Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2,27$
Contour plot of the t distribution in $\mathrm{S}^{\wedge} 2,28$
Cross validation for some compositional regression models, 29
Cross validation for the alpha-k-NN regression with compositional predictor variables, 30
Cross validation for the alpha-k-NN regression with compositional response data, 32
Cross validation for the alpha-kernel regression with compositional response data, 33
Cross validation for the kernel regression with Euclidean response data, 35
Cross validation for the regularised and flexible discriminant analysis with compositional data using the alpha-transformation, 36
Cross validation for the ridge
regression, 38
Cross validation for the ridge regression with compositional data as predictor using the alpha-transformation, 40
Cross validation for the TFLR model, 42
Cross-validation for LASSO with compositional predictors using the alpha-transformation, 43
Cross-validation for the alpha-SCLS model, 45
Cross-validation for the alpha-TFLR model, 46
Cross-validation for the Dirichlet discriminant analysis, 47
Cross-validation for the LASSO Kullback-Leibler divergence based regression, 48
Cross-validation for the LASSO log-ratio regression with compositional response, 50
Cross-validation for the naive Bayes classifiers for compositional data, 51
Cross-validation for the naive Bayes classifiers for compositional data using the alpha-transformation, 52
Cross-validation for the SCLS model, 54
cv.ascls, 47, 198
cv.ascls (Cross-validation for the alpha-SCLS model), 45
cv.atflr, 46, 199
cv.atflr (Cross-validation for the alpha-TFLR model), 46
cv.comp.reg (Cross validation for some compositional regression models), 29
cv. compnb, 38, 48, 53, 139, 224
cv.compnb (Cross-validation for the naive Bayes classifiers for compositional data), 51
cv.dda, 38, 53, 63, 224
cv.dda (Cross-validation for the Dirichlet discriminant analysis), 47
cv.lasso. compreg, 49, 103, 150
cv.lasso. compreg (Cross-validation for
the LASSO log-ratio regression with compositional response), 50
cv.lasso.klcompreg, 44, 51, 102-104, 150
cv.lasso.klcompreg (Cross-validation for the LASSO Kullback-Leibler divergence based regression), 48
cv.scls, 43, 212, 214, 215
cv.scls (Cross-validation for the SCLS model), 54
cv.tflr, 55, 217, 222
cv.tflr (Cross validation for the TFLR model), 42
dda, $17,48,59,61,66,117,124,125,139$
dda (Dirichlet discriminant analysis), 62
ddiri, 61, 115, 117, 124, 125
ddiri (Density values of a Dirichlet distribution), 59
Density of compositional data from Gaussian mixture models, 55
Density of the Flexible Dirichlet distribution, 56
Density of the folded normal distribution, 57
Density values of a Dirichlet distribution, 59
Density values of a generalised Dirichlet distribution, 60
Density values of a mixture of Dirichlet distributions, 61
dfd, 179
dfd (Density of the Flexible Dirichlet distribution), 56
dfolded (Density of the folded normal distribution), 57
dgendiri, 59
dgendiri (Density values of a
generalised Dirichlet distribution), 60
diri.contour, 17-19, 23-26, 28, 29, 59, 61, $64,85,117,124,125,183,184,187$
diri.contour (Contour plot of the Dirichlet distribution in s^2), 20
diri.est, 8, 59, 61, 64, 85, 100, 115, 116, 122, 125
diri.est (MLE of the Dirichlet distribution), 123
diri.nr, 17, 59, 64, 66, 85, 100, 115-117, 124, 127
diri.nr (MLE of the Dirichlet distribution via Newton-Rapshon), 124
diri.reg, $7,14,63,69,90,117,124,131$, $135,142,168,182,246$
diri.reg (Dirichlet regression), 64
diri.reg2 (Dirichlet regression), 64
diri.reg3 (Dirichlet regression), 64
Dirichlet discriminant analysis, 62
Dirichlet random values simulation, 63
Dirichlet regression, 64
dirimean.test, 8,116
dirimean.test (Log-likelihood ratio test for a Dirichlet mean vector), 114
Distance based regression models for proportions, 66
divergence (Divergence matrix of compositional data), 71
Divergence based regression for compositional data, 67
Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation, 69
Divergence matrix of compositional data, 71
dmix. compnorm (Density of compositional data from Gaussian mixture models), 55
dmixdiri (Density values of a mixture of Dirichlet distributions), 61
dptest, 92
dptest (Projections based test for distributional equality of two groups), 162

Energy test of equality of distributions using the alpha-transformation, 72
es (The ESOV-distance), 202
esov, 190, 209
esov (The ESOV-distance), 202
esov.mds, 156
esov.mds (Principal coordinate analysis using the Jensen-Shannon divergence), 157
esova (The ESOV-distance), 202
Estimating location and scatter parameters for compositional data, 74
Estimation of the probability left outside the simplex when using the alpha-transformation, 75
Estimation of the value of alpha in the folded model, 76
Estimation of the value of alpha via the profile log-likelihood, 78

Fast estimation of the value of alpha, 79
fd.contour (Contour plot of the Flexible Dirichlet distribution in $\mathrm{S}^{\wedge} 2$), 21
folded.contour, 18, 22, 58
folded. contour (Contour plot of the alpha-folded model in $\mathrm{S}^{\wedge} 2$), 18
fp, 189, 200, 202
fp (The folded power transformation), 203
frechet (The Frechet mean for compositional data), 204
frechet2 (Helper Frechet mean for compositional data), 87

Gaussian mixture models for compositional data, 80
Gaussian mixture models for compositional data using the alpha-transformation, 82
gendiri. contour, 17, 20
gendiri.contour (Contour plot of the generalised Dirichlet distribution in $\mathrm{S}^{\wedge} 2$), 23
Generalised Dirichlet random values simulation, 84
Generate random folds for cross-validation, 85
glm, 230
glm. pcr, 71, 134, 222, 232
glm.pcr (Principal component
generalised linear models), 154
glmpcr.tune, 230
glmpcr.tune (Tuning the principal components with GLMs), 231
green, 189, 191, 200, 202, 204, 210, 211
green (Greenacre's power transformation), 86
Greenacre's power transformation, 86
hd.meantest2, 92
hd.meantest2 (Two-sample test of high-dimensional means for compositional data), 234
helling.prop.reg (Distance based regression models for proportions), 66
helm (The Helmert sub-matrix), 205
Helper Frechet mean for compositional data, 87
Helper functions for the Kullback-Leibler regression, 89
hsecant01.est (MLE of distributions defined in the (0, 1) interval), 121
Hypothesis testing for two or more compositional mean vectors, 90
ibeta.est (MLE of distributions defined in the (0,1) interval), 121
ICE plot for projection pursuit regression with compositional predictor variables, 92
ICE plot for the alpha-k-NN regression, 93
ICE plot for the alpha-kernel regression, 95
ICE plot for univariate kernel regression, 96
ice. akernreg, 94
ice.akernreg (ICE plot for the alpha-kernel regression), 95
ice.aknnreg, 96
ice.aknnreg (ICE plot for the alpha-k-NN regression), 93
ice.kernreg, 93, 99
ice.kernreg (ICE plot for univariate kernel regression), 96
ice.pprcomp, 94, 96, 97, 160, 227
ice.pprcomp (ICE plot for projection pursuit regression with
compositional predictor variables), 92
Inverse of the alpha-transformation, 97
js.compreg, 7, 66, 72, 90, 131, 135, 142, 168, 182, 203
js.compreg (Divergence based regression for compositional data), 67
kern.reg, 36
kern.reg (Kernel regression with a numerical response vector or matrix), 98
Kernel regression with a numerical response vector or matrix, 98
kernreg. tune, 97, 99
kernreg. tune (Cross validation for the kernel regression with Euclidean response data), 35
kl.alfapcr, 152, 154, 217, 222
kl.alfapcr (Divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation), 69
kl.compreg, 7, 8, 30, 49, 66, 89, 102, 131, $142,150,159,168,194,197,246$
kl. compreg (Divergence based regression for compositional data), 67
kl.compreg2 (Helper functions for the Kullback-Leibler regression), 89
kl.diri (Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions), 99
kl.diri.normal (Minimized Kullback-Leibler divergence between Dirichlet and logistic normal), 116
klalfapcr.tune, 43, 55, 71
klalfapcr.tune (Tuning of the divergence based regression for compositional data with compositional data in the covariates side using the alpha-transformation), 221
klcompreg.boot (Helper functions for the Kullback-Leibler regression), 89
Kullback-Leibler divergence and Bhattacharyya distance between two Dirichlet distributions, 99
kumar.est (MLE of distributions defined in the (0,1) interval), 121

LASSO Kullback-Leibler divergence based regression, 100
LASSO log-ratio regression with compositional response, 102
LASSO with compositional predictors using the alpha-transformation, 103
lasso. compreg, 44, 49, 51, 102, 104, 150
lasso. compreg (LASSO log-ratio regression with compositional response), 102
lasso.klcompreg, 49, 51, 103, 150
lasso.klcompreg (LASSO Kullback-Leibler divergence based regression), 100
lassocoef.plot, 49, 51, 102, 103
lassocoef.plot (Plot of the LASSO coefficients), 149
lc.glm, 8, 12, 107, 236, 241, 242
lc.glm (Log-contrast GLMs with compositional predictor variables), 105
lc.glm2, 106, 236, 240-242
lc.glm2 (Log-contrast logistic or Poisson regression with with multiple compositional predictors), 106
lc.reg, 13, 93, 97, 113, 160, 237, 239
lc.reg (Log-contrast regression with compositional predictor variables), 111
lc.reg2, 112, 237-239
lc.reg2 (Log-contrast regression with multiple compositional predictors), 112
lc.rq, 110, 241, 243
lc.rq (Log-contrast quantile regression with compositional predictor variables), 108
lc.rq2, 109, 243
lc.rq2 (Log-contrast quantile regression with with multiple compositional predictors), 109
lcglm. aov, 106, 236, 242
lcglm.aov (ANOVA for the log-contrast GLM versus the uncostrained GLM), 12
lcreg.aov, 112, 113, 237
lcreg.aov (ANOVA for the log-contrast regression versus the uncostrained linear regression), 13
lm, 131
Log-contrast GLMs with compositional predictor variables, 105
Log-contrast logistic or Poisson regression with with multiple compositional predictors, 106
Log-contrast quantile regression with compositional predictor variables, 108
Log-contrast quantile regression with with multiple compositional predictors, 109
Log-contrast regression with compositional predictor variables, 111
Log-contrast regression with multiple compositional predictors, 112
Log-likelihood ratio test for a Dirichlet mean vector, 114
Log-likelihood ratio test for a symmetric Dirichlet distribution, 115
logitnorm.est (MLE of distributions defined in the (0,1) interval), 121
logpca, 154
logpca (Principal component analysis), 152
makefolds (Generate random folds for cross-validation), 85
Minimized Kullback-Leibler divergence between Dirichlet and logistic normal, 116
mix.compnorm, 22, 23, 56, 63, 84, 118, 120, $139,141,169,177,209$
mix.compnorm (Gaussian mixture models for compositional data), 80
mix. compnorm. contour, 17-20, 22, 24-26, 28, 29, 82, 84, 118, 120
mix.compnorm. contour (Contour plot of the Gaussian mixture model in $\mathrm{S}^{\wedge} 2$), 22
mixdiri.contour, 20, 24, 62, 178
mixdiri.contour (Contour plot of mixtures of Dirichlet distributions in $\mathrm{S}^{\wedge} 2$), 16
Mixture model selection via BIC, 117
Mixture model selection with the alpha-transformation using BIC, 118
mkde, 7, 130, 220
mkde (Multivariate kernel density estimation), 128
mkde.tune, 129
mkde.tune (Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation), 219
MLE for the multivariate t distribution, 120
MLE of distributions defined in the (0,1) interval, 121
MLE of the Dirichlet distribution, 123
MLE of the Dirichlet distribution via Newton-Rapshon, 124
MLE of the folded model for a given value of alpha, 125
MLE of the zero adjusted Dirichlet distribution, 127
mlr(The multiplicative log-ratio transformation and its inverse), 210
mlrinv (The multiplicative log-ratio transformation and its inverse), 210
multinompcr.tune (Tuning the principal components with GLMs), 231
Multivariate kernel density estimation, 128
Multivariate kernel density estimation for compositional data, 129
Multivariate linear regression, 130
Multivariate normal random values
simulation on the simplex, 131
Multivariate or univariate regression with compositional data in the covariates side using the alpha-transformation, 133
Multivariate regression with compositional data, 134
Multivariate skew normal random values simulation on the simplex, 136
Multivariate t random values simulation on the simplex, 137
multivreg, 135, 182
multivreg (Multivariate linear regression), 130
multivt, 75
multivt (MLE for the multivariate t distribution), 120

Naive Bayes classifiers for compositional data, 138
Naive Bayes classifiers for compositional data using the alpha-transformation, 140
Non linear least squares regression for compositional data, 141
Non-parametric zero replacement strategies, 142
ols.compreg, $66,69,90,102,131,165,168$, 246
ols.compreg (Non linear least squares regression for compositional data), 141
ols.prop.reg (Distance based regression models for proportions), 66
optim, 212, 213
optimize, 167
pcc (Proportionality correlation coefficient matrix), 163
pcr.tune, 230, 232
pcr.tune (Tuning the principal components with GLMs), 231
Permutation linear independence test in the SCLS model, 144
Permutation linear independence test in the TFLR model, 145

Permutation test for the matrix of coefficients in the SCLS model, 146
Permutation test for the matrix of coefficients in the TFLR model, 147
perturbation, 143, 151
perturbation (Perturbation operation), 148
Perturbation operation, 148
pivot, 189, 200, 210
pivot (The pivot coordinate transformation and its inverse), 211
pivotinv (The pivot coordinate transformation and its inverse), 211
Plot of the LASSO coefficients, 149 pow (Power operation), 151
power, 149
Power operation, 151
pprcomp, 92, 93, 161, 227
pprcomp (Projection pursuit regression with compositional predictor variables), 159
pprcomp.tune, 93, 160, 228
pprcomp. tune (Tuning of the projection pursuit regression with compositional predictor variables), 226
Principal component analysis, 152
Principal component analysis using the alpha-transformation, 153
Principal component generalised linear models, 154
Principal coordinate analysis using the alpha-distance, 155
Principal coordinate analysis using the Jensen-Shannon divergence, 157
probout (Estimation of the probability left outside the simplex when using the alpha-transformation), 75
profile, 88, 205, 230
Projection pursuit regression for compositional data, 158
Projection pursuit regression with
compositional predictor variables, 159
Projection pursuit regression with compositional predictor variables using the alpha-transformation, 160
Projections based test for distributional equality of two groups, 162
Proportionality correlation coefficient matrix, 163
propreg, 14, 67, 245
propreg (Quasi binomial regression for proportions), 164
propregs (Quasi binomial regression for proportions), 164

Quasi binomial regression for proportions, 164

Random values generation from some univariate distributions defined on the (0,1) interval, 165
rbeta1 (Random values generation from some univariate distributions defined on the (0,1) interval), 165
rcompnorm, 137, 138
rcompnorm(Multivariate normal random values simulation on the simplex), 131
rcompsn, 132
rcompsn (Multivariate skew normal random values simulation on the simplex), 136
rcompt, 132
rcompt (Multivariate t random values simulation on the simplex), 137
rdiri, 59, 61, 84, 85, 115-117, 124, 125, 132, 137, 138, 166
rdiri (Dirichlet random values simulation), 63
Regression with compositional data using the alpha-transformation, 166
Regularised and flexible discriminant analysis for compositional
data using the
alpha-transformation, 168
rfd, 57
rfd (Simulation of compositional data from the Flexible Dirichlet distribution), 178
rfolded, 58, 76
rfolded (Simulation of compositional data from the folded normal distribution), 180
rgendiri, 61, 64
rgendiri (Generalised Dirichlet random values simulation), 84
Ridge regression, 170
Ridge regression plot, 171
Ridge regression with compositional data in the covariates side using the alpha-transformation, 172
Ridge regression with the alpha-transformation plot, 174
ridge.plot, 171, 175
ridge. plot (Ridge regression plot), 171
ridge.reg, 39, 172, 173
ridge.reg (Ridge regression), 170
ridge.tune, 41, 171, 172
ridge.tune (Cross validation for the ridge regression), 38
rlogitnorm (Random values generation from some univariate distributions defined on the $(0,1)$ interval), 165
rmixcomp, $82,84,118,120,178$
rmixcomp (Simulation of compositional data from Gaussian mixture models), 176
rmixdiri, 62
rmixdiri (Simulation of compositional data from mixtures of Dirichlet distributions), 177
runitweibull (Random values generation from some univariate distributions defined on the $(0,1)$ interval), 165
scls, 55, 144, 146-148, 176, 186-188, 198, 199, 217
scls (The SCLS model), 212
scls.betest, 144
scls.betest (Permutation test for the matrix of coefficients in the SCLS model), 146
scls.indeptest, 147, 148, 176, 212, 214, 215
scls.indeptest (Permutation linear independence test in the SCLS model), 144
scls2, 144, 147
scls2 (The SCLS model with multiple compositional predictors), 213
scrq, 212
scrq(Simplicial constrained median regression for compositional responses and predictors model), 175
Simplicial constrained median regression for compositional responses and predictors model, 175
Simulation of compositional data from Gaussian mixture models, 176
Simulation of compositional data from mixtures of Dirichlet distributions, 177
Simulation of compositional data from the Flexible Dirichlet distribution, 178
Simulation of compositional data from the folded normal distribution, 180
skewnorm. contour, 18, 19, 26, 29
skewnorm. contour (Contour plot of the skew skew-normal distribution in $\mathrm{S}^{\wedge} 2$), 27
Spatial median regression, 181
spatmed.reg, 75, 135
spatmed.reg (Spatial median regression), 181
sym.test, 115
sym.test (Log-likelihood ratio test for a symmetric Dirichlet distribution), 115
symkl.compreg (Divergence based regression for compositional data), 67
ternary, 184, 186-188
ternary (Ternary diagram), 182
Ternary diagram, 182

Ternary diagram of regression models, 183
Ternary diagram with confidence region for the matrix of coefficients of the SCLS or the TFLR model, 185
Ternary diagram with confidence region for the mean, 186
Ternary diagram with the coefficients of the simplicial-simplicial regression models, 187
ternary.coef (Ternary diagram with the coefficients of the simplicial-simplicial regression models), 187
ternary.coefcr (Ternary diagram with confidence region for the matrix of coefficients of the SCLS or the TFLR model), 185
ternary.mcr, 183, 184, 186
ternary.mcr (Ternary diagram with confidence region for the mean), 186
ternary.reg, 183, 187, 188
ternary.reg (Ternary diagram of regression models), 183
tflr, 43, 71, 144-148, 176, 186, 187, 198, 199, 212, 214, 215
tflr (The transformation-free linear regression (TFLR) for compositional responses and predictors), 216
tflr.betest, 146
tflr.betest (Permutation test for the matrix of coefficients in the TFLR model), 147
tflr.indeptest, 147, 148
tflr.indeptest (Permutation linear independence test in the TFLR model), 145
tflr2 (The TFLR model with multiple compositional predictors), 214
The additive log-ratio transformation and its inverse, 188
The alpha-distance, 189
The alpha-IT transformation, 190
The alpha-IT-distance, 192
The alpha-k-NN regression for
compositional response data, 193
The alpha-k-NN regression with compositional predictor variables, 194
The alpha-kernel regression with compositional response data, 196
The alpha-SCLS model, 197
The alpha-TFLR model, 198
The alpha-transformation, 199
The Box-Cox transformation applied to ratios of components, 201
The ESOV-distance, 202
The folded power transformation, 203
The Frechet mean for compositional data, 204
The Helmert sub-matrix, 205
The k-nearest neighbours using the alpha-distance, 206
The k-NN algorithm for compositional data, 208
The multiplicative log-ratio transformation and its inverse, 210
The pivot coordinate transformation and its inverse, 211
The SCLS model, 212
The SCLS model with multiple compositional predictors, 213
The TFLR model with multiple compositional predictors, 214
The transformation-free linear regression (TFLR) for compositional responses and predictors, 216
Total variability, 217
totvar (Total variability), 217
Tuning of the alpha-generalised correlations between two compositional datasets, 218
Tuning of the bandwidth h of the kernel using the maximum likelihood cross validation, 219
Tuning of the divergence based regression for compositional data with compositional data
in the covariates side using the alpha-transformation, 221
Tuning of the k-NN algorithm for compositional data, 222
Tuning of the projection pursuit regression for compositional data, 225
Tuning of the projection pursuit regression with compositional predictor variables, 226
Tuning of the projection pursuit regression with compositional predictor variables using the alpha-transformation, 227
Tuning the number of PCs in the PCR with compositional data using the alpha-transformation, 229
Tuning the principal components with GLMs, 231
Tuning the value of alpha in the alpha-regression, 232
tv. compreg (Divergence based regression for compositional data), 67
Two-sample test of high-dimensional means for compositional data, 234
ulc.glm, 12, 105-107, 241
ulc.glm(Unconstrained GLMs with compositional predictor variables), 235
ulc.glm2, 106, 107, 236, 242
ulc.glm2 (Unconstrained logistic or Poisson regression with multiple compositional predictors), 239
ulc.reg, 13, 111-113, 239
ulc.reg (Unconstrained linear regression with compositional predictor variables), 236
ulc.reg2, 113, 237
ulc.reg2 (Unconstrained linear regression with multiple compositional predictors), 238
ulc.rq, 108-110, 243
ulc.rq (Unconstrained quantile regression with compositional predictor variables), 241
ulc.rq2, 110
ulc.rq2 (Unconstrained quantile regression with multiple compositional predictors), 242
Unconstrained GLMs with compositional predictor variables, 235
Unconstrained linear regression with compositional predictor variables, 236
Unconstrained linear regression with multiple compositional predictors, 238
Unconstrained logistic or Poisson regression with multiple compositional predictors, 239
Unconstrained quantile regression with compositional predictor variables, 241
Unconstrained quantile regression with multiple compositional predictors, 242
Unit-Weibull regression models for proportions, 244
unitweib.reg (Unit-Weibull regression models for proportions), 244
unitweibull.est (MLE of distributions defined in the (0,1) interval), 121
zad.est, 246
zad.est (MLE of the zero adjusted Dirichlet distribution), 127
zadr, 8, 63, 127
zadr (Zero adjusted Dirichlet regression), 245
zadr2 (Zero adjusted Dirichlet regression), 245
Zero adjusted Dirichlet regression, 245
zeroreplace, 127
zeroreplace (Non-parametric zero replacement strategies), 142
zilogitnorm.est, 127
zilogitnorm.est (MLE of distributions defined in the (0, 1)
interval), 121

