
Package ‘diversityForest’
September 16, 2024

Type Package

Title Innovative Complex Split Procedures in Random Forests Through
Candidate Split Sampling

Version 0.5.0

Date 2024-09-16

Maintainer Roman Hornung <hornung@ibe.med.uni-muenchen.de>

Description Implementations of three diversity forest (DF) (Hornung, 2022,
<doi:10.1007/s42979-021-00920-1>) variants.
The DF algorithm is a split-finding approach that allows complex split procedures to
be realized in random forest variants.
The three DF variants implemented are:
1. interaction forests (IFs) (Hornung & Boulesteix, 2022, <doi:10.1016/j.csda.2022.107460>):
Model quantitative and qualitative interaction effects using bivariable splitting.
Come with the Effect Importance Measure (EIM), which can be used to identify variable
pairs that have well-interpretable quantitative and qualitative interaction effects
with high predictive relevance.
2. multi forests (MuFs) (Hornung & Hapfelmeier, 2024, <doi:10.48550/arXiv.2409.08925>):

Model multi-class outcomes using multi-way and binary splitting. Come with two
variable importance measures (VIMs): The multi-class VIM measures the degree to which
the variables are specifically associated with one or more outcome classes, and the
discriminatory VIM, similar to conventional VIMs, measures the overall influence
strength of the variables.

3. the basic form of diversity forests that uses conventional univariable, binary
splitting (Hornung, 2022).

Except for multi forests, which are tailored for multi-class outcomes, all included
diversity forest variants support categorical, metric, and survival outcomes.
The package also includes plotting functions that make it possible to learn about the
forms of the effects identified using IFs and MuFs.
This is a fork of the R package 'ranger' (main author: Marvin N. Wright), which
implements random forests using an efficient C++ implementation.

SystemRequirements C++17

Encoding UTF-8

License GPL-3

1

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.48550/arXiv.2409.08925

2 Contents

Imports Rcpp (>= 0.11.2), Matrix, ggplot2, ggpubr, scales, nnet,
sgeostat, rms, MapGAM, gam, rlang, grDevices, RColorBrewer,
RcppEigen, survival, patchwork

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.5)

Suggests testthat, BOLTSSIRR

Additional_repositories https://romanhornung.github.io/drat

RoxygenNote 7.3.1

NeedsCompilation yes

Author Roman Hornung [aut, cre],
Marvin N. Wright [ctb, cph]

Repository CRAN

Date/Publication 2024-09-16 15:00:08 UTC

Contents

diversityForest-package . 3
ctg . 4
divfor . 6
hars . 12
importance.divfor . 13
interactionfor . 14
multifor . 22
plot.interactionfor . 28
plot.multifor . 31
plotEffects . 33
plotMcl . 39
plotPair . 42
plotVar . 45
predict.divfor . 47
predict.interactionfor . 49
predict.multifor . 51
predictions.divfor . 53
predictions.divfor.prediction . 54
stock . 54
tunedivfor . 55
zoo . 57

Index 59

https://romanhornung.github.io/drat

diversityForest-package 3

diversityForest-package

Diversity Forests

Description

The diversity forest algorithm is a split-finding approach that allows complex split procedures to be
realized in random forest variants. This is achieved by drastically reducing the numbers of candidate
splits that need to be evaluated for each split. The algorithm also avoids the well-known variable
selection bias in conventional random forests that has the effect that variables with many possible
splits are selected too frequently for splitting (Strobl et al., 2007). For details, see Hornung (2022).

Details

This package currently features three types of diversity forests:

• the basic form of diversity forests that uses univariable, binary splitting, which is also used in
conventional random forests

• interaction forests (IFs) (Hornung & Boulesteix, 2022), which use bivariable splitting to
model quantitative and qualitative interaction effects. IFs feature the Effect Importance Mea-
sure (EIM), which ranks the variable pairs with respect to the predictive importance of their
quantitative and qualitative interaction effects. The individual variables can be ranked as well
using EIM. For details, see Hornung & Boulesteix (2022).

• multi forests (MuFs) (Hornung & Hapfelmeier, 2024), a diversity forest-variant for multi-
class outcomes. MuFs use both multi-way and binary splitting. The latter form the basis for
the multi-class variable importance measure (VIM) and the discriminatory VIM associated
with MuFs. The multi-class VIM measures the degree to which the variables are specifically
associated with one or several of the outcome classes. In contrast, the discriminatory VIM,
similar to conventional VIMs, measures the general influence of the variables regardless of
their specific association with individual classes.

Diversity forests with univariable, binary splitting can be constructed using the function divfor, in-
teraction forests using the function interactionfor, and multi forests using the function multifor.
Except for multi forests, which are tailored for multi-class outcomes, all included diversity forest
variants support categorical, metric, and survival outcomes.

This package is a fork of the R package ’ranger’ that implements random forests using an efficient
C++ implementation. The documentation is in large parts taken from ’ranger’, where some parts of
the documentation may not apply to (the current version of) the ’diversityForest’ package.

Details on further functionalities of the code that are not presented in the help pages of ’diversity-
Forest’ are found in the help pages of ’ranger’, version 0.11.0, because ’diversityForest’ is based on
the latter version of ’ranger’. The code in the example sections can be used as a template for all
basic application scenarios with respect to classification, regression and survival prediction.

4 ctg

References

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

• Hornung, R., Hapfelmeier, A. (2024). Multi forests: Variable importance for multi-class out-
comes. arXiv:2409.08925, <doi:10.48550/arXiv.2409.08925>.

• Strobl, C., Boulesteix, A.-L., Zeileis, A., Hothorn, T. (2007). Bias in random forest vari-
able importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8:25,
<doi:10.1186/14712105825>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

ctg Data on automatic analysis of cardiotocograms

Description

This data set contains measurements from 2126 fetal cardiotocograms (CTGs). The CTGs were
automatically processed and the respective diagnostic features measured. The CTGs were also
classified by three expert obstetricians and a consensus classification label assigned to each of them.
This description is taken from the UC Irvine Machine Learning Repository, where this data set was
downloaded from. The outcome CLASS is categorical with ten classes that correspond to different
fetal heart rate patterns. See the ’Details’ section below for further information.

Format

A data frame with 2126 observations, 25 covariates and one 10-class outcome variable

Details

The variables are as follows:

• b. numeric. Start instant

• e. numeric. End instant

• LBE. numeric. Fetal heart rate (FHR) baseline value assessed by medical expert (beats per
minute)

• LB. numeric. FHR baseline value assessed by SisPorto (beats per minute)

• AC. numeric. Number of accelerations per second

• FM. numeric. Number of fetal movements per second

• UC. numeric. Number of uterine contractions per second

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.48550/arXiv.2409.08925
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

ctg 5

• DL. numeric. Number of light decelerations per second

• DS. numeric. Number of severe decelerations per second

• DP. numeric. Number of prolonged decelerations per second

• DR. numeric. Number of repetitive decelerations per second

• ASTV. numeric. Percentage of time with abnormal short term variability

• MSTV. numeric. Mean value of short term variability

• ALTV. numeric. Percentage of time with abnormal long term variability

• MLTV. numeric. Mean value of long term variability

• Width. numeric. Width of FHR histogram

• Min. numeric. Minimum value of FHR histogram

• Max. numeric. Maximum value of FHR histogram

• Nmax. numeric. Number of histogram peaks

• Nzeros. numeric. Number of histogram zeros

• Mode. numeric. Mode of the histogram

• Mean. numeric. Mean of the histogram

• Median. numeric. Median of the histogram

• Variance. numeric. Variance of the histogram

• Tendency. factor. Histogram tendency (-1 for left asymmetric; 0 for symmetric; 1 for right
asymmetric)

• CLASS. factor. FHR pattern class

The classes of the outcome CLASS are as follows:

• A. Calm sleep

• B. REM sleep

• C. Calm vigilance

• D. Active vigilance

• SH. Shift pattern (A or Susp with shifts)

• AD. Accelerative/decelerative pattern (stress situation)

• DE. Decelerative pattern (vagal stimulation)

• LD. Largely decelerative pattern

• FS. Flat-sinusoidal pattern (pathological state)

• SUSP. SUSP suspect pattern

This is a pre-processed version of the "Cardiotocography" data set published in the UC Irvine
Machine Learning Repository. The raw data contained four additional variables Date, FileName,
SegFile, and NSP, which were removed in this version of the data.

Source

UC Irvine Machine Learning Repository, link: https://archive.ics.uci.edu/dataset/193/
cardiotocography/ (Accessed: 29/08/2024)

https://archive.ics.uci.edu/dataset/193/cardiotocography/
https://archive.ics.uci.edu/dataset/193/cardiotocography/

6 divfor

References

• Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de-Sá, J., Pereira-Leite, L. (2000).
SisPorto 2.0: a program for automated analysis of cardiotocograms. J Matern Fetal Med.
9(5):311-318, <doi:10.1002/15206661(200009/10)9:5<311::AIDMFM12>3.0.CO;29>.

• Dua, D., Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of
California, School of Information and Computer Science. https://archive.ics.uci.edu/
ml/.

Examples

Load data:
data(ctg)

Numbers of observations per outcome class:
table(ctg$CLASS)

Dimension of data:
dim(ctg)

First rows of data:
head(ctg)

divfor Construct a basic diversity forest prediction rule that uses univariable,
binary splitting.

Description

Implements the most basic form of diversity forests that uses univariable, binary splitting. Currently,
categorical, metric, and survival outcomes are supported.

Usage

divfor(
formula = NULL,
data = NULL,
num.trees = 500,
mtry = NULL,
importance = "none",
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
max.depth = NULL,
replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632),
case.weights = NULL,

https://doi.org/10.1002/1520-6661%28200009/10%299%3A5%3C311%3A%3AAID-MFM12%3E3.0.CO%3B2-9
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/

divfor 7

class.weights = NULL,
splitrule = NULL,
num.random.splits = 1,
alpha = 0.5,
minprop = 0.1,
split.select.weights = NULL,
always.split.variables = NULL,
respect.unordered.factors = NULL,
scale.permutation.importance = FALSE,
keep.inbag = FALSE,
inbag = NULL,
holdout = FALSE,
quantreg = FALSE,
oob.error = TRUE,
num.threads = NULL,
save.memory = FALSE,
verbose = TRUE,
seed = NULL,
dependent.variable.name = NULL,
status.variable.name = NULL,
classification = NULL,
nsplits = 30,
proptry = 1

)

Arguments

formula Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.

data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

num.trees Number of trees. Default is 500.

mtry Artefact from ’ranger’. NOT needed for diversity forests.

importance Variable importance mode, one of ’none’, ’impurity’, ’impurity_corrected’, ’per-
mutation’. The ’impurity’ measure is the Gini index for classification, the vari-
ance of the responses for regression and the sum of test statistics (see splitrule)
for survival. NOTE: Currently, only "permutation" (and "none") work for diver-
sity forests.

write.forest Save divfor.forest object, required for prediction. Set to FALSE to reduce
memory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012). NOTE: Not yet imple-
mented for diversity forests!

min.node.size Minimal node size. Default 1 for classification, 5 for regression, 3 for survival,
and 5 for probability.

max.depth Maximal tree depth. A value of NULL or 0 (the default) corresponds to unlim-
ited depth, 1 to tree stumps (1 split per tree).

8 divfor

replace Sample with replacement.
sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.632 for sampling without replacement. For classification, this can be a
vector of class-specific values.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

class.weights Weights for the outcome classes (in order of the factor levels) in the splitting
rule (cost sensitive learning). Classification and probability prediction only. For
classification the weights are also applied in the majority vote in terminal nodes.

splitrule Splitting rule. For classification and probability estimation "gini" or "extratrees"
with default "gini". For regression "variance", "extratrees" or "maxstat" with de-
fault "variance". For survival "logrank", "extratrees", "C" or "maxstat" with de-
fault "logrank". NOTE: For diversity forests currently only the default splitting
rules are supported.

num.random.splits

Artefact from ’ranger’. NOT needed for diversity forests.

alpha For "maxstat" splitrule: Significance threshold to allow splitting. NOT needed
for diversity forests.

minprop For "maxstat" splitrule: Lower quantile of covariate distribution to be considered
for splitting. NOT needed for diversity forests.

split.select.weights

Numeric vector with weights between 0 and 1, representing the probability to
select variables for splitting. Alternatively, a list of size num.trees, containing
split select weight vectors for each tree can be used.

always.split.variables

Currently not useable. Character vector with variable names to be always se-
lected.

respect.unordered.factors

Handling of unordered factor covariates. One of ’ignore’ and ’order’ (the option
’partition’ possible in ’ranger’ is not (yet) possible with diversity forests). De-
fault is ’ignore’. Alternatively TRUE (=’order’) or FALSE (=’ignore’) can be
used.

scale.permutation.importance

Scale permutation importance by standard error as in (Breiman 2001). Only
applicable if permutation variable importance mode selected.

keep.inbag Save how often observations are in-bag in each tree.

inbag Manually set observations per tree. List of size num.trees, containing inbag
counts for each observation. Can be used for stratified sampling.

holdout Hold-out mode. Hold-out all samples with case weight 0 and use these for
variable importance and prediction error.

quantreg Prepare quantile prediction as in quantile regression forests (Meinshausen 2006).
Regression only. Set keep.inbag = TRUE to prepare out-of-bag quantile predic-
tion.

divfor 9

oob.error Compute OOB prediction error. Set to FALSE to save computation time, e.g. for
large survival forests.

num.threads Number of threads. Default is number of CPUs available.

save.memory Use memory saving (but slower) splitting mode. No effect for survival and
GWAS data. Warning: This option slows down the tree growing, use only if you
encounter memory problems. NOT needed for diversity forests.

verbose Show computation status and estimated runtime.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed.

dependent.variable.name

Name of outcome variable, needed if no formula given. For survival forests this
is the time variable.

status.variable.name

Name of status variable, only applicable to survival data and needed if no for-
mula given. Use 1 for event and 0 for censoring.

classification Only needed if data is a matrix. Set to TRUE to grow a classification forest.

nsplits Number of candidate splits to sample for each split. Default is 30.

proptry Parameter that restricts the number of candidate splits considered for small
nodes. If nsplits is larger than proptry times the number of all possible splits,
the number of candidate splits to draw is reduced to the largest integer smaller
than proptry times the number of all possible splits. Default is 1, which corre-
sponds to always using nsplits candidate splits.

Value

Object of class divfor with elements

forest Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.varIDs object do not necessarily represent the column number in R.

predictions Predicted classes/values, based on out-of-bag samples (classification and regres-
sion only).

variable.importance

Variable importance for each independent variable.
prediction.error

Overall out-of-bag prediction error. For classification this is the fraction of miss-
classified samples, for probability estimation the Brier score, for regression the
mean squared error and for survival one minus Harrell’s C-index.

r.squared R squared. Also called explained variance or coefficient of determination (re-
gression only). Computed on out-of-bag data.

confusion.matrix

Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

unique.death.times

Unique death times (survival only).

chf Estimated cumulative hazard function for each sample (survival only).

10 divfor

survival Estimated survival function for each sample (survival only).

call Function call.

num.trees Number of trees.
num.independent.variables

Number of independent variables.

min.node.size Value of minimal node size used.

treetype Type of forest/tree. classification, regression or survival.
importance.mode

Importance mode used.

num.samples Number of samples.

splitrule Splitting rule.

replace Sample with replacement.

nsplits Value of nsplits used.

proptry Value of proptry used.

Author(s)

Roman Hornung, Marvin N. Wright

References

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

• Breiman, L. (2001). Random forests. Machine Learning 45:5-32, <doi:10.1023/A:1010933404324>.

• Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
of Information in Medicine 51:74-81, <doi:10.3414/ME00010052>.

• Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

See Also

predict.divfor

Examples

Not run:

Load package:
library("diversityForest")

Set seed to obtain reproducible results:

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.3414/ME00-01-0052

divfor 11

set.seed(1234)

Diversity forest with default settings (NOT recommended)
Classification:
divfor(Species ~ ., data = iris, num.trees = 20)
Regression:
iris2 <- iris; iris2$Species <- NULL; iris2$Y <- rnorm(nrow(iris2))
divfor(Y ~ ., data = iris2, num.trees = 20)
Survival:
library("survival")
divfor(Surv(time, status) ~ ., data = veteran, num.trees = 20, respect.unordered.factors = "order")
NOTE: num.trees = 20 is specified too small for practical
purposes - the prediction performance of the resulting
forest will be suboptimal!!
In practice, num.trees = 500 (default value) or a
larger number should be used.

Diversity forest with specified values for nsplits and proptry (NOT recommended)
divfor(Species ~ ., data = iris, nsplits = 10, proptry = 0.4, num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.

Applying diversity forest after optimizing the values of nsplits and proptry (recommended)
tuneres <- tunedivfor(formula = Species ~ ., data = iris, num.trees.pre = 20)
NOTE: num.trees.pre = 20 is specified too small for practical
purposes - the out-of-bag error estimates of the forests
constructed during optimization will be much too variable!!
In practice, num.trees.pre = 500 (default value) or a
larger number should be used.
divfor(Species ~ ., data = iris, nsplits = tuneres$nsplitsopt,

proptry = tuneres$proptryopt, num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.

Prediction
train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx,]
iris.test <- iris[-train.idx,]
tuneres <- tunedivfor(formula = Species ~ ., data = iris.train, num.trees.pre = 20)
NOTE again: num.trees.pre = 20 is specified too small for practical purposes.
rg.iris <- divfor(Species ~ ., data = iris.train, nsplits = tuneres$nsplitsopt,

proptry = tuneres$proptryopt, num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.
pred.iris <- predict(rg.iris, data = iris.test)
table(iris.test$Species, pred.iris$predictions)

Variable importance
rg.iris <- divfor(Species ~ ., data = iris, importance = "permutation", num.trees = 20)
NOTE again: num.trees = 20 is specified too small for practical purposes.
rg.iris$variable.importance

End(Not run)

12 hars

hars Data on human activity recognition using smartphones

Description

This data set contains sensor data from 30 volunteers aged 19-48 years, performing six activities
while wearing Samsung Galaxy S II smartphones on their waists. The sensors recorded 3-axial
linear acceleration and angular velocity at 50Hz. The experiments were video-recorded to label
the data manually. The outcome Activity is categorical with six classes that differentiate the six
activities.
This is an updated version of the Human Activity Recognition Using Smartphones data set pub-
lished in the UC Irvine Machine Learning Repository. This updated version published on OpenML
includes both raw sensor signals and updated activity labels, with aggregated measurements for
each individual and activity.

Format

A data frame with 180 observations (activities), 66 covariates and one 6-class outcome variable

Details

The classes of the outcome Activity are as follows: LAYING, SITTING, STANDING, WALKING,
WALKING_DOWNSTAIRS, WALKING_UPSTAIRS.
The OpenML data set contained one additional variable Person that was removed because it has
too many factors to use it as a covariate in prediction.

Source

• Updated version: OpenML: data.name: Smartphone-Based_Recognition_of_Human_Activities,
data.id: 4153, link: https://www.openml.org/d/4153/ (Accessed: 29/08/2024)

• Original version: UC Irvine Machine Learning Repository, link: https://archive.ics.
uci.edu/dataset/240/human+activity+recognition+using+smartphones/ (Accessed:
29/08/2024)

References

• Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., Anguita, D. (2016). Transition-aware
human activity recognition using smartphones. Neurocomputing, 171:754-767, <doi:10.1016/
j.neucom.2015.07.085>.

• Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013). OpenML: networked science in
machine learning. SIGKDD Explorations 15(2):49-60, <doi:10.1145/2641190.2641198>.

• Dua, D., Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of
California, School of Information and Computer Science. https://archive.ics.uci.edu/
ml/.

https://www.openml.org/d/4153/
https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones/
https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones/
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.1145/2641190.2641198
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/

importance.divfor 13

Examples

Load data:
data(hars)

Numbers of observations per outcome class:
table(hars$Activity)

Dimension of data:
dim(hars)

First rows of (subset) data:
head(hars[,1:5])

importance.divfor Diversity Forest variable importance

Description

Extract variable importance of divfor object.

Usage

S3 method for class 'divfor'
importance(x, ...)

Arguments

x divfor object.

... Further arguments passed to or from other methods.

Value

Variable importance measures.

Author(s)

Marvin N. Wright

See Also

divfor

14 interactionfor

interactionfor Construct an interaction forest prediction rule and calculate EIM val-
ues as described in Hornung & Boulesteix (2022).

Description

Implements interaction forests as described in Hornung & Boulesteix (2022). Currently, categori-
cal, metric, and survival outcomes are supported. Interaction forests feature the effect importance
measure (EIM), which can be used to rank the covariate variable pairs with respect to the impact
of their interaction effects on prediction. This allows to identify relevant interaction effects. In-
teraction forests focus on well interpretable interaction effects. See the ’Details’ section below for
more details. In addition, we strongly recommend to consult Section C of Supplementary Material
1 of Hornung & Boulesteix (2022), which uses detailed examples of interaction forest analyses with
code to illustrate how interaction forests can be used in applications: Link.

Usage

interactionfor(
formula = NULL,
data = NULL,
importance = "both",
num.trees = NULL,
simplify.large.n = TRUE,
num.trees.eim.large.n = NULL,
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
max.depth = NULL,
replace = FALSE,
sample.fraction = ifelse(replace, 1, 0.7),
case.weights = NULL,
class.weights = NULL,
splitrule = NULL,
always.split.variables = NULL,
keep.inbag = FALSE,
inbag = NULL,
holdout = FALSE,
quantreg = FALSE,
oob.error = TRUE,
num.threads = NULL,
verbose = TRUE,
seed = NULL,
dependent.variable.name = NULL,
status.variable.name = NULL,
npairs = NULL,
classification = NULL

)

https://ars.els-cdn.com/content/image/1-s2.0-S0167947322000408-mmc1.pdf

interactionfor 15

Arguments

formula Object of class formula or character describing the model to fit.

data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

importance Effect importance mode. One of the following: "both" (the default), "qualita-
tive", "quantitative", "mainonly", "none". See the ’Details’ section below for
explanation.

num.trees Number of trees. The default number is 20000, if EIM values should be com-
puted and 2000 otherwise. Note that if simplify.large.n = TRUE (default),
the number of observations is larger than 1000, and EIM values should be cal-
culated two forests are constructed, one for calculating the EIM values and one
for prediction (cf. ’Details’ section). In such cases, the default number of trees
used for the forest for EIM value calculation is 20000 and the default number of
trees used for the forest for prediction is 2000.

simplify.large.n

Should restricted tree depths be used, when calculating EIM values for large data
sets? See the ’Details’ section below for more information. Default is TRUE.

num.trees.eim.large.n

Number of trees in the forest used for calculating the EIM values for large data
sets. If num.trees is provided, but not num.trees.eim.large.n, the value
given by num.trees will be used. The default number is 20000. Only used
when simplify.large.n = TRUE.

write.forest Save interaction.forest object, required for prediction. Set to FALSE to re-
duce memory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012).

min.node.size Minimal node size. Default 1 for classification, 5 for regression, 3 for survival,
and 5 for probability.

max.depth Maximal tree depth. A value of NULL or 0 (the default) corresponds to unlim-
ited depth, 1 to tree stumps (1 split per tree).

replace Sample with replacement. Default is FALSE.
sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.7 for sampling without replacement. For classification, this can be a vector
of class-specific values.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

class.weights Weights for the outcome classes (in order of the factor levels) in the splitting
rule (cost sensitive learning). Classification and probability prediction only. For
classification the weights are also applied in the majority vote in terminal nodes.

splitrule Splitting rule. For classification and probability estimation "gini" or "extratrees"
with default "gini". For regression "variance", "extratrees" or "maxstat" with
default "variance". For survival "logrank", "extratrees", "C" or "maxstat" with
default "logrank". NOTE: For interaction forests currently only the default split-
ting rules are supported.

16 interactionfor

always.split.variables

Currently not useable. Character vector with variable names to be always se-
lected.

keep.inbag Save how often observations are in-bag in each tree.

inbag Manually set observations per tree. List of size num.trees, containing inbag
counts for each observation. Can be used for stratified sampling.

holdout Hold-out mode. Hold-out all samples with case weight 0 and use these for vari-
able importance and prediction error. NOTE: Currently, not useable for interac-
tion forests.

quantreg Prepare quantile prediction as in quantile regression forests (Meinshausen 2006).
Regression only. Set keep.inbag = TRUE to prepare out-of-bag quantile predic-
tion. NOTE: Currently, not useable for interaction forests.

oob.error Compute OOB prediction error. Set to FALSE to save computation time, e.g. for
large survival forests.

num.threads Number of threads. Default is number of CPUs available.

verbose Show computation status and estimated runtime.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed.

dependent.variable.name

Name of outcome variable, needed if no formula given. For survival forests this
is the time variable.

status.variable.name

Name of status variable, only applicable to survival data and needed if no for-
mula given. Use 1 for event and 0 for censoring.

npairs Number of variable pairs to sample for each split. Default is the square root of
the number of independent variables divided by 2 (this number is rounded up).

classification Only needed if data is a matrix. Set to TRUE to grow a classification forest.

Details

The effect importance measure (EIM) of interaction forests distinguishes quantitative and qualita-
tive interaction effects (Peto, 1982). This is a common distinction as these two types of interaction
effects are interpreted in different ways (see below). For both of these types, EIM values for each
variable pair are obtained: the quantitative and qualitative EIM values.
Interaction forests target easily interpretable types of interaction effects. These can be communi-
cated clearly using statements of the following kind: "The strength of the positive (negative) effect
of variable A on the outcome depends on the level of variable B" for quantitative interactions, and
"for observations with small values of variable B, the effect of variable A is positive (negative),
but for observations with large values of B, the effect of A is negative (positive)" for qualitative
interactions.
In addition to calculating EIM values for variable pairs, importance values for the individual vari-
ables are calculated as well, the univariable EIM values. These measure the variable importance as
in the case of classical variable importance measures of random forests.
The effect importance mode can be set via the importance argument: "qualitative": Calculate
only qualitative EIM values; "quantitative": Calculate only quantitative EIM values; "both"

interactionfor 17

(the default): Calculate qualitative and quantitative EIM values; "mainonly": Calculate only uni-
variable EIM values.
The top variable pairs with largest quantitative and qualitative EIM values likely have quantitative
and qualitative interactions, respectively, which have a considerable impact on prediction. The top
variables with largest univariable EIM values likely have a considerable impact on prediction. Note
that it is currently not possible to test the EIM values for statistical significance using the interac-
tion forests algorithm itself. However, the p-values shown in the plots obtained with plotEffects
(which are obtained using bivariable models) can be adjusted for multiple testing using the Bonfer-
roni procedure to obtain practical p-values. See the end of the ’Details’ section of plotEffects for
explanation and guidance.
If the number of variables is larger than 100, not all possible variable pairs are considered, but, using
a screening procedure, the 5000 variable pairs with the strongest indications of interaction effects
are pre-selected.
NOTE: To make interpretations, it is crucial to investigate (visually) the forms the interaction ef-
fects of variable pairs with large quantitative and qualitative EIM values take. This can be done
using the plot function plot.interactionfor (first overview) and plotEffects.
NOTE ALSO: As described in Hornung & Boulesteix (2022), in the case of data with larger num-
bers of variables (larger than 100, but more seriously for high-dimensional data), the univariable
EIM values can be biased. Therefore, it is strongly recommended to interpret the univariable EIM
values with caution, if the data are high-dimensional. If it is of interest to measure the univariable
importance of the variables for high-dimensional data, an additional conventional random forest
(e.g., using the ranger package) should be constructed and the variable importance measure values
of this random forest be used for ranking the univariable effects.
For large data sets with many observations the calculation of the EIM values can become very
costly - when using fully grown trees. Therefore, when calculating EIM values for data sets with
more than 1000 observations we use the following maximum tree depths by default (argument:
simplify.large.n = TRUE):

• if n ≤ 1000: Use fully grown trees.

• if 1000 < n ≤ 2000: Use tree depth 10.

• if 2000 < n ≤ 5000: Use tree depth 7.

• if n > 5000: Use tree depth 5.

Extensive analyses in Hornung & Boulesteix (2022) suggest that by restricting the tree depth in
this way, the EIM values that would result when using fully grown trees are approximated well.
However, the prediction performance suffers, when using restricted trees. Therefore, we restrict the
tree depth only when calculating the EIM values (if n > 1000), but construct a second interaction
forest with unrestricted tree depth, which is then used for prediction purposes.

Value

Object of class interactionfor with elements

predictions Predicted classes/values, based on out-of-bag samples (classification and regres-
sion only).

num.trees Number of trees.
num.independent.variables

Number of independent variables.

18 interactionfor

unique.death.times

Unique death times (survival only).

min.node.size Value of minimal node size used.

npairs Number of variable pairs sampled for each split.
eim.univ.sorted

Univariable EIM values sorted in decreasing order.

eim.univ Univariable EIM values.
eim.qual.sorted

Qualitative EIM values sorted in decreasing order.

eim.qual Qualitative EIM values.
eim.quant.sorted

Quantitative EIM values sorted in decreasing order.
The labeling of these values provides the information on the type of quantita-
tive interactions the respective variable pairs feature. For example, consider a
variable pair A and B and say the label reads "A large AND B small". This
would mean that if the value of A is large and, at the same time, the value of B
is small, the expected value of the outcome variable is (considerably) different
from all other cases. For this type of quantitative interaction, the effect of B is
weak for small values of A and strong for large values of A. See Hornung &
Boulesteix (2022) for more information on the types of quantitative interaction
effects targeted by interaction forest.

eim.quant Quantitative EIM values. These values are labeled analoguously as those in
eim.quant.sorted.

prediction.error

Overall out-of-bag prediction error. For classification this is the fraction of mis-
classified samples, for probability estimation the Brier score, for regression the
mean squared error and for survival one minus Harrell’s C-index. This is ’NA’
for data sets with more than 100 covariate variables, because for such data sets
we pre-select the 5000 variable pairs with strongest indications of interaction
effects. This pre-selection cannot be taken into account in the out-of-bag error
estimation, which is why the out-of-bag error estimates would be (much) too
optimistic for data sets with more than 100 covariate variables.

forest Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.multvarIDs object do not necessarily represent the column number in
R.

confusion.matrix

Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

chf Estimated cumulative hazard function for each sample (survival only).

survival Estimated survival function for each sample (survival only).

splitrule Splitting rule.

treetype Type of forest/tree. classification, regression or survival.

r.squared R squared. Also called explained variance or coefficient of determination (re-
gression only). Computed on out-of-bag data.

call Function call.

interactionfor 19

importance.mode

Importance mode used.
num.samples Number of samples.
replace Sample with replacement.
eim.quant.rawlists

List containing the four vectors of un-adjusted ’raw’ quantitative EIM values
and the four vectors of adjusted EIM values. These are usually not required by
the user.
For each of the four types of quantitative splits there exists a separate vector
of raw quantitative EIM values. For example, eim.quant.large.small.raw
contains the raw quantitative EIM values of the quantitative split type associated
with quantitative interaction effects for which the expected values of the out-
come variable are different, if the value of variable A is large and, at the same
time, the value of variable B is small. The list entries of the un-adjusted ’raw’
quantitative EIM values are labeled with the suffix .raw, while the list entries of
the adjusted quantitative EIM values miss this suffix. See Hornung & Boulesteix
(2022) for details on the raw and adjusted EIM values.

promispairs List giving the indices of the variables in the pre-selected variable pairs. If the
number of variables is at most 100, all variable pairs are considered.

plotres List ob objects needed by the plot functions: eim.univ.order contains the sort-
ing of the univariable EIM values in descending order, where the first element
gives the index of the variable with largest EIM value, the second element the
index of the variable with second-largest EIM value and so on; eim.qual.order
/ eim.quant.order contains the sorting in descending order of the qualitative /
quantitative EIM values for the (pre-selected) variable pairs given by the object
promispairs above. The first element gives the index of the (pre-selected) vari-
able pair with largest qualitative / quantitative EIM value, the second element
the index of the variable pair with second-largest qualitative / quantitative EIM
value; data contains the data; yvarname is the name of the outcome variable
(survival time for survival); statusvarname is the name of the status variable.

Author(s)

Roman Hornung, Marvin N. Wright

References

• Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Peto, R., (1982) Statistical aspects of cancer trials. In: K.E. Halnam (Ed.), Treatment of
Cancer. Chapman & Hall: London.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

20 interactionfor

• Breiman, L. (2001). Random forests. Machine Learning 45:5-32, <doi:10.1023/A:1010933404324>.

• Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
of Information in Medicine 51:74-81, <doi:10.3414/ME00010052>.

• Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

See Also

predict.divfor, plot.interactionfor, plotEffects

Examples

Not run:

Load package:

library("diversityForest")

Set seed to make results reproducible:

set.seed(1234)

Construct interaction forests and calculate EIM values:

Binary outcome:
data(zoo)
modelcat <- interactionfor(dependent.variable.name = "type", data = zoo,

num.trees = 20)

Metric outcome:
data(stock)
modelcont <- interactionfor(dependent.variable.name = "company10", data = stock,

num.trees = 20)

Survival outcome:
library("survival")
mgus2$id <- NULL # 'mgus2' data set is contained in the 'survival' package

categorical variables need to be of factor format - important!!
mgus2$sex <- factor(mgus2$sex)
mgus2$pstat <- factor(mgus2$pstat)

Remove the second time variable 'ptime':
mgus2$ptime <- NULL

https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.3414/ME00-01-0052

interactionfor 21

Remove missing values:
mgus2 <- mgus2[complete.cases(mgus2),]

Take subset to make the calculations less computationally
expensive for the example (in actual applications, we would of course
use the whole data set):
mgus2sub <- mgus2[sample(1:nrow(mgus2), size=500),]

Apply 'interactionfor':
modelsurv <- interactionfor(formula = Surv(futime, death) ~ ., data=mgus2sub, num.trees=20)

NOTE: num.trees = 20 (in the above) would be much too small for practical
purposes. This small number of trees was simply used to keep the
runtime of the example short.
The default number of trees is num.trees = 20000 if EIM values are calculated
and num.trees = 2000 otherwise.

Inspect the rankings of the variables and variable pairs with respect to
the univariable, quantitative, and qualitative EIM values:

Univariable EIM values:
modelcat$eim.univ.sorted

Pairs with top quantitative EIM values:
modelcat$eim.quant.sorted[1:5]

Pairs with top qualitative EIM values:
modelcat$eim.qual.sorted[1:5]

Investigate visually the forms of the interaction effects of the variable pairs with
largest quantitative and qualitative EIM values:

plot(modelcat)
plotEffects(modelcat, type="quant") # type="quant" is default.
plotEffects(modelcat, type="qual")

Prediction:

Separate 'zoo' data set randomly in training
and test data:

data(zoo)
train.idx <- sample(nrow(zoo), 2/3 * nrow(zoo))
zoo.train <- zoo[train.idx,]
zoo.test <- zoo[-train.idx,]

22 multifor

Construct interaction forest on training data:
NOTE again: num.trees = 20 is specified too small for practical purposes.
modelcattrain <- interactionfor(dependent.variable.name = "type", data = zoo.train,

importance = "none", num.trees = 20)
NOTE: Because we are only interested in prediction here, we do not
calculate EIM values (by setting importance = "none"), because this
speeds up calculations.

Predict class values of the test data:
pred.zoo <- predict(modelcattrain, data = zoo.test)

Compare predicted and true class values of the test data:
table(zoo.test$type, pred.zoo$predictions)

End(Not run)

multifor Construct a multi forest prediction rule and calculate multi-class and
discriminatory variable importance scores as described in Hornung &
Hapfelmeier (2024).

Description

Implements multi forests, a random forest variant tailored for multi-class outcomes (Hornung &
Hapfelmeier, 2024). Multi forests feature the multi-class variable importance measure (VIM) and
the discriminatory VIM.
The multi-class VIM measures the degree to which the variables are specifically associated with
one or more classes. In contrast, conventional VIMs, such as the permutation VIM or the Gini im-
portance, measure the overall influence of variables regardless of their class-association. Therefore,
these measures rank not only class-associated variables high, but also variables that only discrim-
inate well between groups of classes. This is problematic, if only class-associated variables are to
be identified.
Similar to conventional VIMs, the discriminatory VIM measures the general influence of the vari-
ables.

NOTE: To learn about the shapes of the influences of the variables with the largest multi-class
VIM values on the multi-class outcome, it is crucial to apply the plot.multifor function to the
multifor object. Two further plot functions are plotMcl and plotVar.

NOTE also: The purpose of the multi forest algorithm is mainly to calculate the multi-class VIM
values. A large-scale real data comparison study in Hornung & Hapfelmeier (2024) revealed that
multi forests often have a slightly lower predictive performance than conventional random forests.
This was especially true with respect to calibration and for data sets with many outcome classes.
Therefore, if it is important to maximize the predictive performance or for data sets with many
classes, for prediction other classifiers than multi forests (e.g. conventional random forests) should
be explored.

multifor 23

Usage

multifor(
formula = NULL,
data = NULL,
num.trees = ifelse(nrow(data) <= 5000, 5000, 1000),
importance = "both",
write.forest = TRUE,
probability = TRUE,
min.node.size = NULL,
max.depth = NULL,
replace = FALSE,
sample.fraction = ifelse(replace, 1, 0.7),
case.weights = NULL,
keep.inbag = FALSE,
inbag = NULL,
holdout = FALSE,
oob.error = TRUE,
num.threads = NULL,
verbose = TRUE,
seed = NULL,
dependent.variable.name = NULL,
mtry = NULL,
npervar = 5

)

Arguments

formula Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.

data Training data of class data.frame, or matrix, dgCMatrix (Matrix).

num.trees Number of trees. Default is 5000 for datasets with a maximum of 5000 obser-
vations and 1000 for datasets with more than 5000 observations.

importance Variable importance mode, one of the following: "both" (the default), "multi-
class", "discriminatory", "none". If "multiclass", multi-class VIM values are
computed, if "discriminatory", discriminatory VIM values are computed, and if
"both", both multi-class and discriminatory VIM values are computed. See the
’Details’ section below for details.

write.forest Save multifor.forest object, required for prediction. Set to FALSE to reduce
memory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012). Using this option (default
is TRUE), class probability predictions are obtained.

min.node.size Minimal node size. Default 5 for probability and 1 for classification.

max.depth Maximal tree depth. A value of NULL or 0 (the default) corresponds to unlim-
ited depth, 1 to tree stumps (1 split per tree).

replace Sample with replacement. Default is FALSE.

24 multifor

sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.7 for sampling without replacement. This can be a vector of class-specific
values.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

keep.inbag Save how often observations are in-bag in each tree.

inbag Manually set observations per tree. List of size num.trees, containing inbag
counts for each observation. Can be used for stratified sampling.

holdout Hold-out mode. Hold-out all samples with case weight 0 and use these for
variable importance and prediction error.

oob.error Compute OOB prediction error. Default is TRUE.

num.threads Number of threads. Default is number of CPUs available.

verbose Show computation status and estimated runtime.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed.

dependent.variable.name

Name of outcome variable, needed if no formula given.

mtry Number of candidate variables to sample for each split. Default is the (rounded
down) square root of the number variables.

npervar Number of splits to sample per candidate variable. Default is 5.

Details

The multi-class VIM is only calculated for variables that feature at least as many unique values as
there are outcome classes.
Before learning the multi forest, the categories of unordered categorical variables are ordered using
an approach by Coppersmith et al. (1999), which ensures that close categories feature similar
outcome class distributions. This approach is also used in the ranger R package, when using the
option respect.unordered.factors="order".

Value

Object of class multifor with elements

predictions Predicted classes (for probability=FALSE) or class probabilities (for probability=TRUE),
based on out-of-bag samples.

num.trees Number of trees.
num.independent.variables

Number of independent variables.

min.node.size Value of minimal node size used.

mtry Number of candidate variables sampled for each split.

multifor 25

var.imp.multiclass

Multi-class VIM values. Only computed for independent variables that feature
at least as many unique values as the outcome variable has classes. For other
variables, the entries in the vector var.imp.multiclass will be NA.

var.imp.discr Discriminatory VIM values for all independent variables.
prediction.error

Overall out-of-bag prediction error. For classification this is the fraction of miss-
classified samples and for probability estimation the Brier score.

confusion.matrix

Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

forest Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.varIDs object do not necessarily represent the column number in R.

treetype Type of forest/tree. Classification or probability.

call Function call.
importance.mode

Importance mode used.

num.samples Number of samples.

replace Sample with replacement.

plotres List ob objects needed by the plot functions: data contains the data; yvarname
is the name of the outcome variable.

Author(s)

Roman Hornung, Marvin N. Wright

References

• Hornung, R., Hapfelmeier, A. (2024). Multi forests: Variable importance for multi-class out-
comes. arXiv:2409.08925, <doi:10.48550/arXiv.2409.08925>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

• Breiman, L. (2001). Random forests. Machine Learning 45:5-32, <doi:10.1023/A:1010933404324>.

• Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
of Information in Medicine 51:74-81, <doi:10.3414/ME00010052>.

• Coppersmith, D., Hong, S. J., Hosking, J. R. (1999). Partitioning nominal attributes in deci-
sion trees. Data Mining and Knowledge Discovery 3:197-217, <doi:10.1023/A:1009869804967>.

See Also

predict.multifor

https://doi.org/10.48550/arXiv.2409.08925
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.3414/ME00-01-0052
https://doi.org/10.1023/A%3A1009869804967

26 multifor

Examples

Not run:

Load package:

library("diversityForest")

Set seed to make results reproducible:

set.seed(1234)

Load the "ctg" data set:

data(ctg)

Construct a multi forest:

model <- multifor(dependent.variable.name = "CLASS", data = ctg,
num.trees = 20)

NOTE: num.trees = 20 (in the above) would be much too small for practical
purposes. This small number of trees was simply used to keep the
runtime of the example short.
The default number of trees is num.trees = 5000 for datasets with a maximum of
5000 observations and num.trees = 1000 for datasets larger than that.

The out-of-bag estimated Brier score (note that by default
'probability = TRUE' is used in 'multifor'):

model$prediction.error

Inspect the multi-class and the discriminatory VIM values:

model$var.imp.multiclass

--> Note that there are no multi-class VIM values for some of the variables.
These are those for which there are fewer unique values than outcome classes.
See the "Details" section above.

model$var.imp.discr

multifor 27

Inspect the 5 variables with the largest multi-class VIM values and the
5 variables with the largest discriminatory VIM values:

sort(model$var.imp.multiclass, decreasing = TRUE)[1:5]

sort(model$var.imp.discr, decreasing = TRUE)[1:5]

Instead of passing the name of the outcome variable through the
'dependent.variable.name' argument as above, the formula interface can also
be used. Below, we fit a multi forest with only the first five variables
from the 'ctg' data set:

model <- multifor(CLASS ~ b + e + LBE + LB + AC, data=ctg, num.trees = 20)

As expected, the out-of-bag estimated prediction error is much larger
for this model:

model$prediction.error

NOTE: Visual exploration of the results of the multi-class VIM analysis
is crucial.
Therefore, in practice the next step would be to apply the
'plot.multifor' function to the object 'model'.

plot(model)

Prediction:

Separate 'ctg' data set randomly in training
and test data:

data(ctg)
train.idx <- sample(nrow(ctg), 2/3 * nrow(ctg))
ctg.train <- ctg[train.idx,]
ctg.test <- ctg[-train.idx,]

Construct multi forest on training data:
NOTE again: num.trees = 20 is specified too small for practical purposes.
model_train <- multifor(dependent.variable.name = "CLASS", data = ctg.train,

importance = "none", probability = FALSE,
num.trees = 20)

NOTE: Because we are only interested in prediction here, we do not
calculate VIM values (by setting importance = "none"), because this

28 plot.interactionfor

speeds up calculations.
NOTE also: Because we are interested in class label prediction here
rather than class probability prediction we specified 'probability = FALSE'
above.

Predict class values of the test data:
pred.ctg <- predict(model_train, data = ctg.test)

Compare predicted and true class values of the test data:
table(ctg.test$CLASS, pred.ctg$predictions)

Repeat the analysis for class probability prediction
(default 'probability = TRUE'):

model_train <- multifor(dependent.variable.name = "CLASS", data = ctg.train,
importance = "none", num.trees = 20)

Predict class probabilities in the test data:
pred.ctg <- predict(model_train, data = ctg.test)

The predictions are now a matrix of class probabilities:
head(pred.ctg$predictions)

Obtain class predictions by choosing the classes with the maximum predicted
probabilities (the function 'which.is.max' chooses one class randomly if
there are several classes with maximum probability):
library("nnet")
classes <- levels(ctg.train$CLASS)
pred_classes <- factor(classes[apply(pred.ctg$predictions, 1, which.is.max)],

levels=classes)

Compare predicted and true class values of the test data:
table(ctg.test$CLASS, pred_classes)

End(Not run)

plot.interactionfor Plot method for interactionfor objects

Description

Plot function for interactionfor objects that allows to obtain a first overview of the result of
the interaction forest analysis. This function visualises the distributions of the EIM values and
the estimated forms of the bivariable influences of the variable pairs with largest quantitative and
qualitative EIM values. Further visual exploration of the result of the interaction forest analysis
should be conducted using plotEffects.

plot.interactionfor 29

Usage

S3 method for class 'interactionfor'
plot(x, numpairsquant = 2, numpairsqual = 2, ...)

Arguments

x Object of class interactionfor.

numpairsquant The number of pairs with largest quantitative EIM values to plot. Default is 2.

numpairsqual The number of pairs with largest qualitative EIM values to plot. Default is 2.

... Further arguments passed to or from other methods.

Details

For details on the plots of the estimated forms of the bivariable influences of the variable pairs see
plotEffects.

NOTE: The p-values shown in the plots are generally much too optimistic and MUST NOT be
reported as the result of a statistical test for significance of interaction. To obtain adjusted p-values
that would correspond to valid tests, it would be possible to multiply these p-values by the number of
possible variable pairs, which would correspond to Bonferroni-adjusted p-values. See the ’Details’
section of plotEffects for further explanation and guidance. Note, however, that these Bonferroni-
adjusted p-values should be interpreted with caution because, stemming from bivariable models,
these p-values do not take the multivariable nature of the data into account.

NOTE ALSO: As described in Hornung & Boulesteix (2022), in the case of data with larger num-
bers of variables (larger than 100, but more seriously for high-dimensional data), the univariable
EIM values can be biased. Therefore, it is strongly recommended to interpret the univariable EIM
values with caution, if the data are high-dimensional. If it is of interest to measure the univariable
importance of the variables for high-dimensional data, an additional conventional random forest
(e.g., using the ranger package) should be constructed and the variable importance measure values
of this random forest be used for ranking the univariable effects.

Value

A ggplot2 plot.

Author(s)

Roman Hornung

References

• Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

30 plot.interactionfor

See Also

plotEffects

Examples

Not run:

Load package:

library("diversityForest")

Set seed to make results reproducible:

set.seed(1234)

Construct interaction forest and calculate EIM values:

data(stock)
model <- interactionfor(dependent.variable.name = "company10", data = stock,

num.trees = 20)

NOTE: num.trees = 20 (in the above) would be much too small for practical
purposes. This small number of trees was simply used to keep the
runtime of the example short.
The default number of trees is num.trees = 20000 if EIM values are calculated
and num.trees = 2000 otherwise.

When using the plot() function without further specifications,
by default the estimated bivariable influences of the two pairs with largest quantitative
and qualitative EIM values are shown:

plot(model)

It is, however, also possible to change the numbers of
pairs with largest quantitative and qualitative EIM values
to be shown:

plot(model, numpairsquant = 4, numpairsqual = 3)

End(Not run)

plot.multifor 31

plot.multifor Plot method for multifor objects

Description

Plot function for multifor objects that allows to obtain a first overview of the result of the multi-
class VIM analysis. This function visualises the distribution of the multi-class VIM values together
with that of the corresponding discriminatory VIM values and the estimated dependency structures
of the multi-class outcome on the variables with largest multi-class VIM values. These estimated
dependency structures are visualised using density plots and/or boxplots.

Usage

S3 method for class 'multifor'
plot(x, plot_type = c("both", "density", "boxplot")[1], num_best = 5, ...)

Arguments

x Object of class multifor.

plot_type Plot type, one of the following: "both" (the default), "density", "boxplot". If
"density", "density" plots are produced, if "boxplot", "boxplot" plots are pro-
duced, and if "both", both "density" plots and "boxplot" plots are produced.
See the ’Details’ section of plotMcl for details.

num_best The number of variables with largest multi-class VIM values to plot. Default is
5.

... Further arguments passed to or from other methods.

Details

In the plot showing the distribution of the multi-class VIM values along with that of the discrim-
inatory VIM values, the discriminatory VIM values are normalized to make them comparable to
the multi-class VIM values. This is achieved by dividing the discriminatory VIM values by their
mean and multiplying it by that of the multi-class VIM values. Although the discriminatory VIM
values are computed for all variables, only those variables for which the multi-class VIM values
were computed are included in this analysis (i.e., all variables that have at least as many unique
values as there are classes in the outcome variable).
For details on the plots of the estimated dependency structures of the multi-class outcome on the
variables, see plotMcl. The latter function allows to visualise these estimated dependency struc-
tures for arbitrary variables in the data.

Value

A ggplot2 plot.

Author(s)

Roman Hornung

32 plot.multifor

References

• Hornung, R., Hapfelmeier, A. (2024). Multi forests: Variable importance for multi-class out-
comes. arXiv:2409.08925, <doi:10.48550/arXiv.2409.08925>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plotMcl

Examples

Not run:

Load package:

library("diversityForest")

Set seed to make results reproducible:

set.seed(1234)

Construct multi forest and calculate multi-class and discriminatory VIM values:

data(hars)
model <- multifor(dependent.variable.name = "Activity", data = hars,

num.trees = 100, probability=TRUE)

NOTE: num.trees = 100 (in the above) would be likely too small for practical
purposes. This small number of trees was simply used to keep the
runtime of the example short.
The default number of trees is num.trees = 5000 for datasets with a maximum of
5000 observations and num.trees = 1000 for datasets larger than that.

By default the estimated class-specific distributions of the num_best=5
variables with the largest multi-class VIM values are plotted:

plot(model)

Consider only the 2 variables with the largest multi-class VIM values:

plot(model, num_best = 2)

Show only the density plots or only the boxplots:

https://doi.org/10.48550/arXiv.2409.08925
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

plotEffects 33

plot(model, plot_type = "density", num_best = 2)
plot(model, plot_type = "boxplot", num_best = 2)

Show only the plot of the distributions of the multi-class and
discriminatory VIM values:

plot(model, num_best = 0)

End(Not run)

plotEffects Interaction forest plots: exploring interaction forest results through
visualisation

Description

This function allows to visualise the (estimated) bivariable influences of pairs of variables (with
large quantitative and qualitative EIM values) on the outcome. This step is crucial, because to in-
terpret interaction effects between variable pairs with large quantitative and qualitative EIM values,
it is necessary to learn about the forms these interaction effects take.

Usage

plotEffects(
intobj,
type = "quant",
numpairs = 5,
indpairs = NULL,
pairs = NULL,
allwith = NULL,
pvalues = TRUE,
twoplots = TRUE,
addtitles = TRUE,
plotit = TRUE

)

Arguments

intobj Object of class interactionfor.

type This can be either "quant" or "qual" and determines whether the plotted pairs
are sorted according to either the quantitative or qualitative EIM values in de-
creasing order. Default is "quant".

numpairs The number of pairs to plot (default: 5). This is overwritten by indpairs.

34 plotEffects

indpairs Optional. The indices of the pairs in the sorted lists of quantitative (type="quant")
or qualitative EIM values to plot (type="qual"). This overwrites the numpairs
argument.

pairs This can be used to specify the pairs to plot. It is an optional list of charac-
ter string vectors, where each of these vectors has length two. Each list ele-
ment corresponds to one pair, where the first character string gives the name of
the first member of the respective pair to plot and the second character string
gives the name of the second member. This argument overwrites numpairs and
indpairs.

allwith This is an optional character string that can be set to the name of one of the
variables. If provided, only variable pairs will be considered that feature the
variable specified by this argument allwith. These pairs are again sorted in
decreasing order according to the quantitative (type="quant") or qualitative
(type="qual") EIM values and their number is restricted to the value given
by numpairs. This argument allwith can be used, if it is of interest to learn
whether a specific variable (e.g., sex or age) interacts with other variables in the
data set and if so, which forms these interactions take.

pvalues Set to TRUE (default) to add to the plots p-values from tests for interaction effect
obtained using classical parametric regression approaches. For categorical out-
comes logistic regression is used, for metric outcomes linear regression and for
survival outcomes Cox regression. NOTE: These p-values are generally much
too optimistic and MUST NOT be reported as the result of a statistical test for
significance of interaction. See the ’Details’ section below for further details.

twoplots Set to TRUE / FALSE if for each plot page the results of two / one pair(s) of
variables should be shown. Default is TRUE.

addtitles Set to TRUE (default) to add headings providing the names of the variables in
each pair. If type="quant", these headings also give information on the type
of quantitative interaction effect. Setting addtitles to FALSE is, for example,
useful, when the produced plots are intended for use in a publication, where
these headings might not be desirable.

plotit This states whether the plots are actually plotted or merely returned as ggplot
objects. Default is TRUE.

Details

For each considered pair the bivariable influence of both pair members on the outcome estimated
using a two-dimensional flexible function is shown. Such visualisations make it possible to learn
about the forms of the interaction effects between variable pairs with large EIM values. Moreover,
these visualisations reveal (pathological) cases in which variable pairs do not show indications of
interaction effects despite featuring large EIM values.
For binary outcomes the probabilities for the second class are estimated, for categorical outcomes
with more than two classes the probabilities for the largest class (i.e., the class with the most obser-
vations) are estimated (using the function plotPair, a different class can be selected instead), for
metric outcomes the means of the outcome are estimated, and for survival outcomes the log hazards
ratio values compared to the median effect are estimated.
The kinds of estimates shown differ also according to whether both pair members are metric or only
one of the two members is metric and the other one categorical or both pair members are categorical:

plotEffects 35

• If both pair members are metric and the outcome is categorical or metric we use two-dimensional
LOESS regression, where in the case of categorical outcomes, to obtain probability estimates
for the first class (or largest class for multi-class outcomes), we use the value ’1’ for the first
class (largest class for multi-class outcomes) and the value ’0’ for the second class (all other
classes for multi-class outcomes).

• If both pair members are metric and the outcome is survival we use a Cox proportional
hazard additive model with a two-dimensional LOESS smooth (gamcox function from the
’MapGAM’ package (version 1.2-5)) and in the rare cases for which the latter fails, we use
classical Cox regression with an interaction term between the two covariates.

• If one pair member is metric and the other one categorical and the outcome is categorical or
metric, we use LOESS regression between the outcome (coded as ’0’ and ’1’ in the case of
categorical outcomes as described above) and the values of the metric variable separately for
each category of the categorical variable. In the rare cases in which the LOESS regression
fails we use classical linear regression.

• If one pair member is metric and the other one categorical and the outcome is survival, we use
Cox regression with a linear tail-restricted cubic spline with four knots (univariable LOESS
regression for survival outcomes does not seem to be available yet in R) separately for each
category of the categorical variable. In cases in which the fitting of this spline regression fails
we use classical Cox regression.

• If both pair members are categorical and the outcome is categorical or metric, we simply
calculate the mean of the outcome (coded as ’0’ and ’1’ in the case of categorical outcomes as
described above) for each possible combination of the categories of the two variables.

• If both pair members are categorical and the outcome is survival, we use classical Cox re-
gression with an interaction term between the two variables (there is no need for any flexible
modelling in this setting, because the Cox model with two categorical variables plus interac-
tion term is saturated).

As described above (function argument: pvalues), there is an option to add p-values from tests
for interaction effect to the plots. If at least one of the variables in the considered variable pair
is categorical and features more than two categories, there are more than one interaction terms in
the regression approaches used for testing, because the categorical variables are dummy-coded.
Therefore, in these cases we obtain a p-value for each interaction term. to obtain a single p-value
for the test for interaction we adjust these multiple p-values using the Holm-Bonferroni procedure
and take the minimum of the adjusted p-values.

NOTE: These p-values are generally much too optimistic, in particular for small data sets and large
numbers of variables. The reason for this overoptimism is that these p-values are not adjusted for the
fact that we already used the data to find the variable pairs with strongest indications of interaction
effects. This is similar to a multiple testing problem. Therefore, these p-values should only be seen
as a rough guide to be interpreted very cautiously and MUST NOT be reported as the results of a
statistical test for significance of interaction. To obtain adjusted p-values that would correspond to
valid tests, it would be possible to multiply these p-values by the number of possible pairs, which
would correspond to Bonferroni-adjusted p-values. For example, assume that we have 30 covariate
variables. In that case the number of possible pairs would be ’choose(30, 2) = 435’, which is why
we would need to multiply each p-value by 435 to obtain an adjusted p-value (or keep the original
p-values and divide the significance level 0.05 by 435). Note, however, that Bonferroni-adjusted p-
values deliver quite conservative results, that is, weaker effects might not be detected using these p-
values, while, however, effects for which these p-values are small (< 0.05) are most likely relevant.

36 plotEffects

Note further that these Bonferroni-adjusted p-values should be interpreted with caution because,
stemming from bivariable models, these p-values do not take the multivariable nature of the data
into account.

Value

A list of ggplot2 plots returned invisibly.

Author(s)

Roman Hornung

References

• Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plot.interactionfor, plotPair

Examples

Not run:

Load package:

library("diversityForest")

Set seed to make results reproducible:

set.seed(1234)

Construct interaction forest and calculate EIM values:

data(stock)
model <- interactionfor(dependent.variable.name = "company10", data = stock,

num.trees = 20)

NOTE: num.trees = 20 (in the above) would be much too small for practical
purposes. This small number of trees was simply used to keep the
runtime of the example short.
The default number of trees is num.trees = 20000 if EIM values are calculated

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

plotEffects 37

and num.trees = 2000 otherwise.

Obtain a first overview by applying the plot() function for
interactionfor obects:

plot(model)

Several possible application cases of the plotEffects() function:

Visualise the estimated bivariable influences of the five variable pairs with the
largest quantitative EIM values:

plotEffects(model) # type="quant" is default.

Visualise the estimated bivariable influences of the five pairs with the
largest qualitative EIM values:

plotEffects(model, type="qual")

Visualise the estimated bivariable influences of all (eight) pairs that involve
the variable "company7" sorted in decreasing order according to the
qualitative EIM values:

plotEffects(model, allwith="company7", type="qual", numpairs=8)

Visualise the estimated bivariable influences of the pairs with third and fifth
largest qualitative EIM values:

plotEffects(model, type="qual", indpairs=c(3,5))

Visualise the estimated bivariable influences of the pairs ("company3", "company5") and
("company1", "company9"):

plotEffects(model, pairs=list(c("company3", "company5"), c("company1", "company9")))

Saving of plots generated with the plotEffects() function (e.g., for use in publications):

Apply plotEffects() to obtain plots for the five variable pairs
with the largest qualitative EIM values and store these plots in
an object 'ps':

ps <- plotEffects(model, type="qual", pvalues=FALSE, twoplots=FALSE, addtitles=FALSE, plotit=FALSE)

38 plotEffects

pvalues = FALSE states that no p-values should be shown in the plots,
because these might not be desired in plots meant for publication.
twoplots = FALSE ensures that we get one plot for each page instead of two plots per page.
addtitles = FALSE removes the automatically generated titles, because these are likely
not desired in publications.
plotit = FALSE ensures that the plots are not displayed, but only returned (invisibly)
by plotEffects().

Save the plot with second largest qualitative EIM value:

p1 <- ps[[2]]

Add title:
library("ggpubr")
p1 <- annotate_figure(p1, top = text_grob("My descriptive plot title 1", face = "bold", size = 14))
p1

Save as PDF:
library("ggplot2")
ggsave(file="mypathtofolder/FigureXY1.pdf", width=14, height=6)

Save the plot with fifth largest qualitative EIM value:

p2 <- ps[[5]]

Add title:
p2 <- annotate_figure(p2, top = text_grob("My descriptive plot title 2", face = "bold", size = 14))
p2

Save as PDF:
ggsave(file="mypathtofolder/FigureXY1.pdf", width=14, height=6)

Combine both of the above plots:
p <- ggarrange(p1, p2, nrow = 2)
p

Save the combined plot:
ggsave(file="mypathtofolder/FigureXYcombined.pdf", width=14, height=11)

NOTE: Using plotEffects() it is not possible to change the plots
themselves (by e.g., increasing the label sizes or changing the
axes ranges). However, the function plotPair() can be used to change
the plots themselves.

End(Not run)

plotMcl 39

plotMcl Plots of the (estimated) within-class distributions of variables

Description

This function allows to visualise the (estimated) distributions of one or several variables for each
of the classes of the outcomes. This allows to study how exactly variables of interest influence
the outcome, which is crucial for interpretive purposes. Two types of visualisations are available:
density plots and boxplots. See the ’Details’ section below for further explanation.

Usage

plotMcl(
data,
yvarname,
varnames,
plot_type = c("both", "density", "boxplot")[1],
addtitles = TRUE,
plotit = TRUE

)

Arguments

data Data frame containing the variables.

yvarname Name of outcome variable.

varnames Names of the variables for which plots should be created.

plot_type Plot type, one of the following: "both" (the default), "density", "boxplot". If
"density", "density" plot are produced, if "boxplot", "boxplot" plots are pro-
duced, and if "both", both "density" plots and "boxplot" plots are produced.
See the ’Details’ section below for details.

addtitles Set to TRUE (default) to add headings providing the names of the respective vari-
ables to the plots.

plotit This states whether the plots are actually plotted or merely returned as ggplot
objects. Default is TRUE.

Details

For the "density" plots, kernel density estimates (obtained using the density() function from
base R) of the within-class distributions are plotted in the same plot using different colors and,
depending on the number of classes, different line types. To account for the different number of
observations per class, each density is multiplied by the proportion of observations from that class.
The resulting scaled densities can be interpreted in terms of the local density of the observations
from each class relative to those from the other classes. For example, if a scaled density has the
largest value in a particular region, this can be interpreted as the respective class being the most
frequent in that region. Another example: If the scaled density of class "A" is twice as large as the

40 plotMcl

scaled density of class "B" in a particular region, this can be interpreted to mean that there are twice
as many observations of class "A" as of class "B" in that region.

In the "density" plots, only classes represented by at least two observations are considered. If the
number of classes is greater than 7, the different classes are distinguished using both colors and line
styles. To indicate the absolute numbers of observations in the different regions, the locations of the
observations from the different classes are visualized using a rug plot on the x-axis, using the same
colors and line types as for the density plots. If the number of observations is greater than 1,000, a
random subset of 1,000 observations is shown in the rug plot instead of all observations for visual
clarity.

The "boxplot" plots show the (estimated) within-class distributions side by side using boxplots.
All classes are considered, even those represented by only a single observation. For the plot_type="both"
option, which displays both "density" and "boxplot" plots, the boxplots are displayed using the
same colors and (if applicable) line styles as the kernel density estimates, for clarity. Boxplots of
classes for which no kernel density estimates were obtained (i.e., those of the classes represented
by single observations) are shown in grey.

Note that plots are only generated for those variables in varnames that have at least as many unique
values as there are outcome classes. For categorical variables, the category labels are printed on the
x- or y-axis of the "density" or "boxplot" plots, respectively. The rug plots of the "density"
plots are produced only for numeric variables.

Value

A list of ggplot2 plots returned invisibly.

Author(s)

Roman Hornung

References

• Hornung, R., Hapfelmeier, A. (2024). Multi forests: Variable importance for multi-class out-
comes. arXiv:2409.08925, <doi:10.48550/arXiv.2409.08925>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plot.multifor, plotVar

Examples

Not run:

Load package:

library("diversityForest")

https://doi.org/10.48550/arXiv.2409.08925
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

plotMcl 41

Plot "density" and "boxplot" plots (default: plot_type = "both") for the
first three variables in the "hars" dataset:

data(hars)
plotMcl(data = hars, yvarname = "Activity", varnames = c("tBodyAcc.mean...X",

"tBodyAcc.mean...Y",
"tBodyAcc.mean...Z"))

Plot only the "density" plots for these variables:

plotMcl(data = hars, yvarname = "Activity",
varnames = c("tBodyAcc.mean...X", "tBodyAcc.mean...Y",

"tBodyAcc.mean...Z"), plot_type = "density")

Plot the "density" plots for these variables, but without titles of the
plots:

plotMcl(data = hars, yvarname = "Activity", varnames =
c("tBodyAcc.mean...X", "tBodyAcc.mean...Y", "tBodyAcc.mean...Z"),

plot_type = "density", addtitles = FALSE)

Make density plots for these variables, but only save them in a list "ps"
without plotting them ("plotit = FALSE"):

ps <- plotMcl(data = hars, yvarname = "Activity", varnames =
c("tBodyAcc.mean...X", "tBodyAcc.mean...Y",

"tBodyAcc.mean...Z"), plot_type = "density",
addtitles = FALSE, plotit = FALSE)

The plots can be manipulated later by using ggplot2 functionalities:

library("ggplot2")
p1 <- ps[[1]] + ggtitle("First variable in the dataset") +

labs(x="Variable values", y="my scaled density")

p2 <- ps[[3]] + ggtitle("Third variable in the dataset") +
labs(x="Variable values", y="my scaled density")

Combine both of the above plots:

library("ggpubr")
p <- ggarrange(p1, p2, ncol = 2)
p

Save as PDF:
ggsave(file="mypathtofolder/FigureXY1.pdf", width=14, height=6)

42 plotPair

End(Not run)

plotPair Plot of the (estimated) simultaneous influence of two variables

Description

This function allows to visualise the (estimated) bivariable influence of a single specific pair of vari-
ables on the outcome. The estimation and plotting is performed in the same way as in plotEffects.
However, plotPair does not require an interactionfor object and can thus be used also without
a constructed interaction forest.

Usage

plotPair(
pair,
yvarname,
statusvarname = NULL,
data,
levelsorder1 = NULL,
levelsorder2 = NULL,
categprob = NULL,
pvalue = TRUE,
returnseparate = FALSE,
intobj = NULL

)

Arguments

pair Character string vector of length two, where the first character string gives the
name of the first member of the respective pair to plot and the second character
string gives the name of the second member. Note that the order of the two pair
members in pair determines how the results are visualised: The estimated in-
fluence of the second pair member is visualised conditionally on different values
of the first pair member.

yvarname Name of outcome variable.

statusvarname Name of status variable, only applicable to survival data.

data Data frame containing the variables.

levelsorder1 Optional. Order the categories of the first variable should have in the plot (if it
is categorical). Character string vector, where the i-th entry contains the name
of the category that should take the i-th place in the ordering of the categories of
the first variable.

levelsorder2 Optional. Order the categories of the second variable should have in the plot
(if it is categorical). Character string vector specified in an analogous way as
levelsorder1.

plotPair 43

categprob Optional. Only relevant for categorical outcomes with more than two classes.
Name of the class for which probabilities should be estimated. As described in
plotEffects, for categorical outcomes with more than two classes, by default
the probabilities for the largest class (i.e., the class with the most observations)
are estimated when visualising the bivariable influence of the variables. Using
categprob a different class can be specified for the class for which probabilities
should be estimated.

pvalue Set to TRUE (default) to add to the plot a p-value from a test for interaction
effect obtained using a classical parametric regression approach. For categorical
outcomes logistic regression is used, for metric outcomes linear regression and
for survival outcomes Cox regression. See the ’Details’ section of plotEffects
for further details.

returnseparate Set to TRUE to return invisibly the two generated ggplot plots separately in the
form of a list. The latter option is useful, because it allows to manipulate the
resulting plots (label size etc.) and makes it possible to consider only one of the
two plots. The default is FALSE, which results in the two plots being returned
together in the form of a ggarrange object.

intobj Optional. Object of class interactionfor. If this is provided, the ordering of
the categories obtained when constructing the interaction forest will be used for
categorical variables. See Hornung & Boulesteix (2022) for details.

Details

See the ’Details’ section of plotEffects.

Value

A ggplot2 plot.

Author(s)

Roman Hornung

References

• Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plotEffects, plot.interactionfor

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

44 plotPair

Examples

Not run:

Load package:

library("diversityForest")

Visualise the estimated bivariable influence of 'toothed' and 'feathers' on
the probability of type="mammal":

data(zoo)
plotPair(pair = c("toothed", "feathers"), yvarname="type", data = zoo)

Visualise the estimated bivariable influence of 'creat' and 'hgb' on
survival (more precisely, on the log hazards ratio compared to the
median effect):

library("survival")
mgus2compl <- mgus2[complete.cases(mgus2),]
plotPair(pair=c("creat", "hgb"), yvarname="futime", statusvarname = "death", data=mgus2compl)

Problem: The outliers in the left plot make it difficult to see what is going
on in the region with creat values smaller than about two even though the
majority of values lie there.

--> Solution: We re-run the above line setting returnseparate = TRUE, because
this allows to get the two ggplot plots separately, which can then be manipulated
to change the x-axis range in order to remove the outliers:

ps <- plotPair(pair=c("creat", "hgb"), yvarname="futime", statusvarname = "death",
data=mgus2compl, returnseparate = TRUE)

Change the x-axis range:
library("ggplot2")
ps[[1]] + xlim(c(0.5,2))
Save the plot:
ggsave(file="mypathtofolder/FigureXY1.pdf", width=7, height=6)

We can, for example, also change the label sizes of the second plot:
With original label sizes:
ps[[2]]
With larger label sizes:
ps[[2]] + theme(axis.title=element_text(size=15))
Save the plot:
library("ggplot2")
ggsave(file="mypathtofolder/FigureXY2.pdf", width=7, height=6)

plotVar 45

End(Not run)

plotVar Plot of the (estimated) dependency structure of a variable x on a cat-
egorical variable y

Description

This function allows to visualise the (estimated) distributions of a variable x for each of the cate-
gories of a categorical variable y. This allows to study the dependency structure of y on x. Two
types of visualisations are available: density plots and boxplots.

Usage

plotVar(
x,
y,
plot_type = c("both", "density", "boxplot")[1],
x_label = "",
y_label = "",
plot_title = ""

)

Arguments

x Metric variable or ordered categorical variable that has at least as many unique
values as y

y Factor variable with at least three categories.

plot_type Plot type, one of the following: "both" (the default), "density", "boxplot". If
"density", a "density" plot is produced, if "boxplot", a "boxplot" is produced,
and if "both", both a "density" plot and a "boxplot" are produced. See the
’Details’ section of plotMcl for details.

x_label Optional. The label of the x-axis.

y_label Optional. The label (heading) of the legend that differentiates the categories of
y.

plot_title Optional. The title of the plot.

Details

See the ’Details’ section of plotMcl.

Value

A ggplot2 plot.

46 plotVar

Author(s)

Roman Hornung

References

• Hornung, R., Hapfelmeier, A. (2024). Multi forests: Variable importance for multi-class out-
comes. arXiv:2409.08925, <doi:10.48550/arXiv.2409.08925>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

See Also

plotMcl, plot.multifor

Examples

Not run:

Load package:

library("diversityForest")

Load the "ctg" data set:

data(ctg)

Set seed to make results reproducible (this is necessary because
the rug plot produced by 'plotVar' does not show all observations, but
only a random subset of 1000 observations):

set.seed(1234)

Using a "density" plot and a "boxplot", visualise the (estimated)
distributions of the variable "Mean" for each of the categories of the
variable "Tendency":

plotVar(x = ctg$Mean, y = ctg$Tendency)

Re-create this plot with labels:

plotVar(x = ctg$Mean, y = ctg$Tendency, x_label = "Mean of the histogram ('Mean')",
y_label = "Histogram tendency ('Tendency')",
plot_title = "Relationship between 'Mean' and 'Tendency'")

https://doi.org/10.48550/arXiv.2409.08925
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1

predict.divfor 47

Re-create this plot, but only show the "density" plot:

plotVar(x = ctg$Mean, y = ctg$Tendency, plot_type = "density",
x_label = "Mean of the histogram ('Mean')",
y_label = "Histogram tendency ('Tendency')",
plot_title = "Relationship between 'Mean' and 'Tendency'")

Use ggplot2 and RColorBrewer functionalities to change the line colors and
the labels of the categories of "Tendency":

library("ggplot2")
library("RColorBrewer")
p <- plotVar(x = ctg$Mean, y = ctg$Tendency, plot_type = "density",

x_label = "Mean of the histogram ('Mean')",
y_label = "Histogram tendency ('Tendency')",
plot_title = "Relationship between 'Mean' and 'Tendency'") +

scale_color_manual(values = brewer.pal(n = 3, name = "Set2"),
labels = c("left asymmetric", "symmetric",

"right asymmetric")) +
scale_linetype_manual(values = rep(1, 3),

labels = c("left asymmetric", "symmetric",
"right asymmetric"))

p

Save as PDF:
ggsave(file="mypathtofolder/FigureXY1.pdf", width=10, height=7)

End(Not run)

predict.divfor Diversity Forest prediction

Description

Prediction with new data and a saved forest from divfor.

Usage

S3 method for class 'divfor'
predict(
object,
data = NULL,
predict.all = FALSE,
num.trees = object$num.trees,
type = "response",
se.method = "infjack",

48 predict.divfor

quantiles = c(0.1, 0.5, 0.9),
seed = NULL,
num.threads = NULL,
verbose = TRUE,
...

)

Arguments

object divfor object.

data New test data of class data.frame or gwaa.data (GenABEL).

predict.all Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification and regression, a 3d
array for probability estimation (sample x class x tree) and survival (sample x
time x tree).

num.trees Number of trees used for prediction. The first num.trees in the forest are used.

type Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with
default ’response’. See below for details.

se.method Method to compute standard errors. One of ’jack’, ’infjack’ with default ’inf-
jack’. Only applicable if type = ’se’. See below for details.

quantiles Vector of quantiles for quantile prediction. Set type = 'quantiles' to use.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed. The seed is used in case of ties in classification mode.

num.threads Number of threads. Default is number of CPUs available.

verbose Verbose output on or off.

... further arguments passed to or from other methods.

Details

This package is a fork of the R package ’ranger’ that implements random forests using an effi-
cient C++ implementation. More precisely, ’diversityForest’ was written by modifying the code of
’ranger’, version 0.11.0. Therefore, details on further functionalities of the code that are not pre-
sented in the help pages of ’diversityForest’ are found in the help pages of ’ranger’ (version 0.11.0).
The code in the example sections of divfor and tunedivfor can be used as a template for all com-
mon application scenarios with respect to classification, regression and survival prediction using
univariable, binary splitting. Some function arguments adopted from the ’ranger’ package may not
be useable with diversity forests (for the current package version).

Value

Object of class divfor.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).
chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).

predict.interactionfor 49

num.trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num.samples Number of samples.

Author(s)

Marvin N. Wright

References

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

• Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The
Jackknife and the Infinitesimal Jackknife. Journal of Machine Learning Research 15:1625-
1651.

• Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

See Also

divfor

predict.interactionfor

Interaction Forest prediction

Description

Prediction with new data and a saved interaction forest from interactionfor.

Usage

S3 method for class 'interactionfor'
predict(
object,
data = NULL,
predict.all = FALSE,
num.trees = object$num.trees,
type = "response",
se.method = "infjack",
quantiles = c(0.1, 0.5, 0.9),

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

50 predict.interactionfor

seed = NULL,
num.threads = NULL,
verbose = TRUE,
...

)

Arguments

object interactionfor object.

data New test data of class data.frame or gwaa.data (GenABEL).

predict.all Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification and regression, a 3d
array for probability estimation (sample x class x tree) and survival (sample x
time x tree).

num.trees Number of trees used for prediction. The first num.trees in the forest are used.

type Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with
default ’response’. See below for details.

se.method Method to compute standard errors. One of ’jack’, ’infjack’ with default ’inf-
jack’. Only applicable if type = ’se’. See below for details.

quantiles Vector of quantiles for quantile prediction. Set type = 'quantiles' to use.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed. The seed is used in case of ties in classification mode.

num.threads Number of threads. Default is number of CPUs available.

verbose Verbose output on or off.

... further arguments passed to or from other methods.

Details

Note that his package is a fork of the R package ’ranger’ that implements random forests using
an efficient C++ implementation. The documentation is in large parts taken from ’ranger’, where
some parts of the documentation may not apply to (the current version of) the ’diversityForest’
package. Details on further functionalities of the code that are not presented in the help pages of
’diversityForest’ are found in the help pages of ’ranger’ (version 0.11.0).

Value

Object of class interaction.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).
chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).
num.trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num.samples Number of samples.

predict.multifor 51

Author(s)

Marvin N. Wright, Roman Hornung

References

• Hornung, R., Boulesteix, A.-L. (2022). Interaction forests: Identifying and exploiting in-
terpretable quantitative and qualitative interaction effects. Computational Statistics & Data
Analysis 171:107460, <doi:10.1016/j.csda.2022.107460>.

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

• Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The
Jackknife and the Infinitesimal Jackknife. Journal of Machine Learning Research 15:1625-
1651.

• Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

See Also

interactionfor

predict.multifor Multi forest prediction

Description

Prediction with new data and a saved forest from multifor.

Usage

S3 method for class 'multifor'
predict(
object,
data = NULL,
predict.all = FALSE,
num.trees = object$num.trees,
type = "response",
seed = NULL,
num.threads = NULL,
verbose = TRUE,
...

)

https://doi.org/10.1016/j.csda.2022.107460
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

52 predict.multifor

Arguments

object multifor object.

data New test data of class data.frame.

predict.all Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification, a 3d array for proba-
bility estimation (sample x class x tree).

num.trees Number of trees used for prediction. The first num.trees in the forest are used.

type Type of prediction. If "response" (default), the predicted classes (classification)
or predicted probabilities (probability estimation) are returned. If "terminalN-
odes", the IDs of the terminal node in each tree for each observation in the given
dataset are returned.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed. The seed is used in case of ties in classification mode.

num.threads Number of threads. Default is number of CPUs available.

verbose Verbose output on or off.

... further arguments passed to or from other methods.

Details

This package is a fork of the R package ’ranger’ that implements random forests using an effi-
cient C++ implementation. More precisely, ’diversityForest’ was written by modifying the code of
’ranger’, version 0.11.0.

Value

Object of class multifor.prediction with elements

predictions Predicted classes/values (only for classification and regression)
num.trees Number of trees.
num.independent.variables Number of independent variables.
num.samples Number of samples.
treetype Type of forest/tree. Classification or probability.

Author(s)

Marvin N. Wright

References

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

predictions.divfor 53

• Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The
Jackknife and the Infinitesimal Jackknife. Journal of Machine Learning Research 15:1625-
1651.

• Meinshausen (2006). Quantile Regression Forests. Journal of Machine Learning Research
7:983-999.

See Also

multifor

predictions.divfor Diversity Forest predictions

Description

Diversity Forest predictions

Usage

S3 method for class 'divfor'
predictions(x, ...)

Arguments

x divfor object.

... Further arguments passed to or from other methods.

Value

Predictions: Classes for Classification forests, Numerical values for Regressions forests and the
estimated survival functions for all individuals for Survival forests.

Author(s)

Marvin N. Wright

See Also

divfor

54 stock

predictions.divfor.prediction

Diversity Forest predictions

Description

Diversity Forest predictions

Usage

S3 method for class 'divfor.prediction'
predictions(x, ...)

Arguments

x divfor.prediction object.

... Further arguments passed to or from other methods.

Value

Predictions: Classes for Classification forests, Numerical values for Regressions forests and the
estimated survival functions for all individuals for Survival forests.

Author(s)

Marvin N. Wright

See Also

divfor

stock Data on stock prices of aerospace companies

Description

This data set contains 950 daily stock prices from January 1988 through October 1991, for ten
aerospace companies. The names of the companies are anonymised and the stock prices for one of
these companies (company10) were flagged as the outcome variable. Thus, for this data set, both
the outcome and the covariates were metric.

Format

A data frame with 950 observations, nine covariates and one metric outcome variable

tunedivfor 55

Details

The variables are as follows: covariates: company1, ..., company9, outcome variable: company10.

Source

OpenML: data.name: stock, data.id: 223, link: https://www.openml.org/d/223/

References

• Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013). OpenML: networked science in
machine learning. SIGKDD Explorations 15(2):49-60, <doi:10.1145/2641190.2641198>.

Examples

Load data:
data(stock)

Dimension of data:
dim(stock)

First rows of data:
head(stock)

tunedivfor Optimization of the values of the tuning parameters nsplits and
proptry

Description

First, both for nsplits and proptry a grid of possible values may be provided, where default grids
are used if no grids are provided. Second, for each pairwise combination of values from these
two grids a forest is constructed. Third, that pair of nsplits and proptry values is used as the
optimized set of parameter values that is associated with the smallest out-of-bag prediction error. If
several pairs of parameter values are associated with the same smallest out-of-bag prediction error,
the pair with the smallest (parameter) values is used.

Usage

tunedivfor(
formula = NULL,
data = NULL,
nsplitsgrid = c(2, 5, 10, 30, 50, 100, 200),
proptrygrid = c(0.05, 1),
num.trees.pre = 500

)

https://www.openml.org/d/223/
https://doi.org/10.1145/2641190.2641198

56 tunedivfor

Arguments

formula Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.

data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

nsplitsgrid Grid of values to consider for nsplits. Default grid: 2, 5, 10, 30, 50, 100, 200.

proptrygrid Grid of values to consider for proptry. Default grid: 0.05, 1.

num.trees.pre Number of trees used for each forest constructed during tuning parameter opti-
mization. Default is 500.

Value

List with elements

nsplitsopt Optimized value of nsplits.

proptryopt Optimized value of proptry.

tunegrid Two-dimensional data.frame, where each row contains one pair of values con-
sidered for nsplits (first entry) and proptry (second entry).

ooberrs The out-of-bag prediction errors obtained for each pair of values considered for
nsplits and proptry, where the ordering of pairs of values is the same as in
tunegrid (see above).

Author(s)

Roman Hornung

References

• Hornung, R. (2022). Diversity forests: Using split sampling to enable innovative complex
split procedures in random forests. SN Computer Science 3(2):1, <doi:10.1007/s42979021-
009201>.

• Wright, M. N., Ziegler, A. (2017). ranger: A fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software 77:1-17, <doi:10.18637/
jss.v077.i01>.

See Also

divfor

Examples

Load package:

library("diversityForest")

Set seed to obtain reproducible results:

https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.1007/s42979-021-00920-1
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01

zoo 57

set.seed(1234)

Tuning parameter optimization for the iris data set:

tuneres <- tunedivfor(formula = Species ~ ., data = iris, num.trees.pre = 20)
NOTE: num.trees.pre = 20 is specified too small for practical
purposes - the out-of-bag error estimates of the forests
constructed during optimization will be much too variable!!
In practice, num.trees.pre = 500 (default value) or a
larger number should be used.

tuneres

tuneres$nsplitsopt
tuneres$proptryopt
tuneres$tunegrid
tuneres$ooberrs

zoo Data on biological species

Description

This data set describes 101 different biological species using 16 simple attributes, where 15 of these
are binary and one is metric (the number of legs). The outcome "mammal vs. other" (type) is
binary.

Format

A data frame with 101 observations, 16 covariates and one binary outcome variable

Details

The variables are as follows:

• hair. factor. Presence of hairs (true = yes; false = no)

• feathers. factor. Presence of feathers (true = yes; false = no)

• eggs. factor. Does the species lay eggs? (true = yes; false = no)

• milk. factor. Does the species give milk? (true = yes; false = no)

• airborne. factor. Does the species fly? (true = yes; false = no)

• aquatic. factor. Does the species live in the water? (true = yes; false = no)

• predator. factor. Is the species a predator? (true = yes; false = no)

• toothed. factor. Presence of teeth (true = yes; false = no)

• backbone. factor. Presence of backbone (true = yes; false = no)

58 zoo

• breathes. factor. Does the species breathe with lungs? (true = yes; false = no)

• venomous. factor. Is the species venomous? (true = yes; false = no)

• fins. factor. Presence of fins (true = yes; false = no)

• legs. metric. Number of legs

• tail. factor. Presence of tail (true = yes; false = no)

• domestic. factor. Is the species domestic? (true = yes; false = no)

• catsize. factor. Is the species large? (true = yes; false = no)

• type. factor. Binary outcome variable - type of species (’mammal’ vs. ’other’)

The original openML dataset contains an additional variable animal, which is removed in this
version of the data set. This variable provided the names of all species.

Source

OpenML: data.name: zoo, data.id: 965, link: https://www.openml.org/d/965/ (Accessed: 29/08/2024)

References

• Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013). OpenML: networked science in
machine learning. SIGKDD Explorations 15(2):49-60, <doi:10.1145/2641190.2641198>.

• Dua, D., Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of
California, School of Information and Computer Science. https://archive.ics.uci.edu/
ml/.

Examples

##' Load data:
data(zoo)

##' Numbers of observations in the two classes:
table(zoo$type)

##' Dimension of data:
dim(zoo)

##' First rows of data:
head(zoo)

https://www.openml.org/d/965/
https://doi.org/10.1145/2641190.2641198
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/

Index

ctg, 4

diversityForest
(diversityForest-package), 3

diversityForest-package, 3
divfor, 3, 6, 13, 47–49, 53, 54, 56

hars, 12

importance (importance.divfor), 13
importance.divfor, 13
interactionfor, 3, 14, 49, 51

multifor, 3, 22, 51, 53

plot.interactionfor, 17, 20, 28, 36, 43
plot.multifor, 22, 31, 40, 46
plotEffects, 17, 20, 28–30, 33, 42, 43
plotMcl, 22, 31, 32, 39, 45, 46
plotPair, 34, 36, 42
plotVar, 22, 40, 45
predict.divfor, 10, 20, 47
predict.interactionfor, 49
predict.multifor, 25, 51
predictions

(predictions.divfor.prediction),
54

predictions.divfor, 53
predictions.divfor.prediction, 54

stock, 54

tunedivfor, 48, 55

zoo, 57

59

	diversityForest-package
	ctg
	divfor
	hars
	importance.divfor
	interactionfor
	multifor
	plot.interactionfor
	plot.multifor
	plotEffects
	plotMcl
	plotPair
	plotVar
	predict.divfor
	predict.interactionfor
	predict.multifor
	predictions.divfor
	predictions.divfor.prediction
	stock
	tunedivfor
	zoo
	Index

