DoX — Doc, only eXtended*

Didier Verna
mailto:didier@lrde.epita.fr
http://www.lrde.epita.fr/"didier/

v2.1 (2009/09/28)

Abstract

The doc package provides IHTEX developers with means to describe the
usage and the definition of new commands and environments. However,
there is no simple way to extend this functionality to other items (options
or counters for instance). DoX is designed to circumvent this limitation, and
provides some improvements over the existing functionality as well.

The DoX package is Copyright (© 2009 Didier Verna, and distributed
under the terms of the LPPL license.

Contents

1

Installation

1.1 Extraction
1.2 TDS-compliant layout
1.3 AUC-TEX supporto v it

Usage

2.1 Inmitialization o
2.1.1 Requirements Lo
2.1.2 Loading the package

2.2 Creating new documentation items
221 Example.
222 Details.
2.2.3 Options to \doxitem

2.3 Improvements over doc’s original API
2.3.1 Additional (optional) argument
2.3.2 Availableoptions Lo
2.3.3 Globaleffect o

AUC-TEX support for new documentation items
Conclusion

History

*DoX homepage: http://wuw.lrde.epita.fr/"didier/software/latex.php#dox

NN NN

CUR B S W W W W NN

S

DoX v2.1 (2009,/09/28)

6 Implementation 6
6.1 Preamble 6
6.2 DoXoptions L 6
6.3 DoXenvironments 6
6.4 DoX descriptions 7
6.5 API construction 8
6.6 Docoverrides 9

6.6.1 Macro facilitieso 9
6.6.2 Environment facilities 9
6.7 APIcreation 9
6.8 Finale 10

1 Installation

1.1 Extraction

If you are building DoX from the tarball you need to execute the following steps
in order to extract the necessary files:

[pdf]llatex dox.ins
[pdf]llatex dox.dtx
[pdf]latex dox.dtx

After that, you need to install the generated documentation and style files to a
location where WTEX can find them.

1.2 TDS-compliant layout

For a TDS-compliant layout, the following locations are suggested:

[TEXMF]/tex/latex/dox/dox.sty
[TEXMF] /doc/latex/dox/dox. [pdf |dvi]

1.3 AUC-TgX support

AUC-TEX is a powerful major mode for editing TEX documents in [X]Emacs. In
particular, it provides automatic completion of command names once they are
known. DoX supports AUC-TEX by providing a style file named dox.el which
contains AUC-TEX definitions for the relevant commands. This file should be
installed in a place where AUC-TEX can find it. Please refer to the AUC-TEX
documentation for more information on this. See also section 3.

2 Usage

2.1 Initialization
2.1.1 Requirements

In order to work properly, DoX requires the presence of some I4TEX packages. You
don’t have to load them explicitly though. As long as WTEX can locate them, they
will be used automatically. DoX currently depends on kvoptions.

DoX v2.1 (2009,/09/28)

\doxitem

2.1.2 Loading the package

In order to load DoX, simply say \usepackage [(options)]{dox} in the preamble
of your document. The package options will be discussed when appropriate.

2.2 Creating new documentation items

Note: we assume that you know about doc’s \DescribeMacro,
\DescribeEnv and all other associated commands and environments.

[{options)1{{name) X (envname)}{(idzcat)}

DoX provides a command named \doxitem to create new documentation items
with functionalities equivalent to what doc provides for commands and environ-
ments. A whole API is created for every new item.

2.2.1 Example

Perhaps the simplest way to describe what it does is to give an example. Suppose
you would like to describe package options. Here is what you need to do:

\usepackage{dox}
\doxitem{Option}{option}{options}
DoX then creates the following API for you:
e \DescribeOption

e the option environment

\PrintDescribeOption

\PrintOptionName
e \SpecialMainOptionIndex
e \SpecialOptionIndex

In order to comply with doc’s original behavior, the commands
\PrintDescribeOption and \PrintOptionName will only be defined if they
do not already exist.

2.2.2 Detalils

Here is a more precise description of the arguments to \doxitem.

e (name) (Option in our example) is used to construct the names of the com-
mands in the new API. It usually starts with an upcase letter.

e (envname) (option in our example) is the name of the created environ-
ment. Be sure to avoid name clashes here! If you start experimenting odd
behavior, you've probably overridden an existing command with your new
environment.!

11t is a pity that IATEX use the same namespace for commands and environments. The
opening command for environment env should be named \beginenv and not just \env

DoX v2.1 (2009,/09/28)

e (idzcat) (options in our example) is the index category under which your
items will appear. For example, all indexed options will be listed in the
“options:” index entry.

2.2.3 Options to \doxitem

The first (optional) argument to \doxitem may contain a comma-separated list of
options. Currently, there is only one supported option: idxtype.

We saw earlier that individual items appear under the idxcat index entry,
but items also appear as standalone index entries, alphabetically sorted with their
type in parenthesis. For instance, the final option would appear like this under
the F index entry: “final (option)”.

By default, the index type is the same as the environment’s name (the
(envname) argument). However, you can change this by providing a value to
the idxtype option.

For instance, you may find the word “environment” too long for an index type.
In that case, you may redefine the environment API like this:

\doxitem[idxtype=env.]{Env}{environment}{environments}

2.3 Improvements over doc’s original api

Please note that the improvements described in this section are also
available in doc’s original command and environment API’s, because
DoX redefines them.

2.3.1 Additional (optional) argument

Compared to doc, the API’s created by \doxitem are extended with a first optional
argument containing a comma-separated list of options, such that, continuing with
our initial example, the real prototypes are in fact the following;:

\DescribeOption[opt, . ..]{name}

\begin{option}[opt,...]{name}
W .
\end{option}

2.3.2 Available options

The options currently supported are:

noprint Avoid printing (name) in the margin
noindex Avoid indexing (name)

These options are useful if you don’t want printing or indexing locally for one
particular item. Without them, one would need to locally \let the relevant com-
mands to \@gobble which is very inconvenient.

There is also another advantage in using the noprint option: in doc’s original
implementation, a margin paragraph will still be created just to be empty, hence

DoX v2.1 (2009,/09/28)

wasting float resources. If you're referencing a lot of items close to each other, this
may lead to a “Too many unprocessed floats” error. With DoX, the \marginpar
is avoided altogether.

2.3.3 Global effect

All options described in the previous section are also available to \usepackage.
Their effect then becomes global. Because these options are boolean, it is still
possible to counteract their global effect locally. For instance, one could do:

\usepackage [noprint] {dox}

and then later:

\DescribeOption[noprint=false]{french}

3 AUC-TEX support for new documentation items

Recent versions of AUC-TEX (in fact, docTEX mode) are aware of the macro and
environment environments and give them a fixed indentation level of 0, meaning
no indentation at all even when they are nested. This is considered more conve-
nient than the usual indentation for environments when editing dtx files. If you
have created new documentation items for your package, you may want to let them
behave the same way. For that, the DoX style file provides two Lisp functions to let
AUC-TEX know of your new environments: doxitem and doxitems. The first one
registers a new environment by name with AUC-TEX, and the second one takes
an arbitrary number of environment names and does the same with them. The
environment names can in fact be a regular expression, allowing you to combine
several names together or build complex ones.

Since these functions are located in the style file itself, a good place to use
them is in TeX-update-style-hook which will be called after the file is parsed
and the relevant style files applied. Note that the effect of calling these functions
is always buffer-local.

Here is an example to make all of this clearer. The following code sample
is what I have at the end of fixme.dxt (another package of mine), in the local
variables section:

(add-hook ’TeX-update-style-hook

(lambda () (doxitems "option" "counter" "lang" "face" "color")) nil t)
(add-hook ’TeX-update-style-hook

(lambda () (doxitem "\\(env\\|target\\)?layout")) nil t)

4 Conclusion

If you want to see DoX in action, take a look at the documentation of the FiXme
package (version 4.0 or later). In fact, I wrote DoX for it in the first place.

DoX v2.1 (2009,/09/28)

\@@doxenv

5 History

v2.1 New lisp functions doxitem[s] to register new documentation environments

with AUC-TEX.

v2.0 Optional argument to \doxitem (idxtype option to change the item’s index
type).
Optional argument to \Describe(Item) and the (item) environment (noprint
to avoid marginal printing and noindex to avoid indexing).
Extend \DescribeMacro, \DescribeEnv and their corresponding environ-
ments with the same features.

v1.0 First public version

6 Implementation

6.1 Preamble

1 (dox)\NeedsTeXFormat{LaTeX2e}

2 (xheader)

3 \ProvidesPackage{dox}[2009/09/28 v2.1 Extensions to the doc package]
4

5 (/header)

6 (xdox)

7 \RequirePackage{kvoptions}

8 \SetupKeyvalOptions{family=dox,prefix=dox@}

9

6.2 DoX options

These two options are available for use in \usepackage or in the generated item
API’s:

10 \DeclareBoolOption{noprint}

11 \DeclareBoolOption{noindex}

This one is for \doxitem only:

12 \DeclareStringOption{idxtype}
13

6.3 DoX environments
{(item)}{(name)}

In doc.sty, the macro and environment environments go through the \m@cro@
macro which implements specific parts by testing a boolean condition as its first
argument. This mechanism is not extensible, so I have to hack away a more generic
version that would work for any new dox item, only which looks pretty much like
the original one.

14 \long\def\@@doxenv#1#2{%

15 \endgroup’

16 \topsep\MacroTopsep/

17 \trivlist}

18 \edef\saved@macroname{\string#2}/

19 \def\makelabel##1{\1lap{##1}}%

DoX v2.1 (2009,/09/28)

\@doxenv

\@@doxdescribe

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

\if@inlabell,
\let\@tempa\@empty?,
\count@\macro@cnty
\loop\ifnum\count@>\z@%
\edef\@tempa{\@tempa\hbox{\strut}}\advance\count@\m@ne?,
\repeat
\edef\makelabel##1{\1llap{\vtop to\baselineskip{\@tempa\hbox{##1}\vss}}}/
\advance\macro@cnt\@ne
\else%
\macro@cnt\@ne,
\fi%
\ifdox@noprint
\item
\else’
\edef\@tempa{’
\noexpand\item[%

Apart from dependency on options, the first modification to the original macro
involves dynamically constructing the name of the print macro:

36
37
38
39
40

\expandafter\noexpand\csname Print#1Name\endcsname{\saved@macronamel}]}%
\@tempa’,
\fi%
\ifdox@noindex\else},
\global\advance\c@CodelineNo\@ne}

and the second one involves dynamically constructing the name of the index macro:

41 \@nameuse{SpecialMain#1Index}{#2}\nobreak
42 \globalladvance\c@CodelineNo\m@ne}

43 \fi%

44 \ignorespaces}

{(item)} [{options)]

Handle optional arguments and call \@@doxenv. Because environments can be
nested, we can’t rely on grouping for getting options default values. Hence, we
need to reset the options at every call.

45 \def\@doxenv#1 [#2]{%

46
47
48
49
50
51
52
53

\@nameuse{dox@noprint\dox@noprintdefault}y,
\@nameuse{dox@noindex\dox@noindexdefault}y,
\setkeys{dox}{#2}}
\begingroup/

\catcode ‘\\12%,

\MakePrivateLetters?,

\@@doxenv{#1}}

6.4 DoX descriptions
{(item)}{{name)}

The first closed group was the one opened to parse the (name) argument. The
second one was opened to handle local options.

54 \def\@@doxdescribe#1#2{%

55
56
57

\endgroup’
\ifdox@noprint\else,
\marginpar{\raggedleft\@nameuse{PrintDescribe#1}{#2}}%

DoX v2.1 (2009,/09/28)

\@doxdescribe

\@doxcreatespecialmainindex

\@doxcreatespecialindex

\@doxcreatedescribe

\@doxcreateenv

58 \£fif

59 \ifdox@noindex\else,

60 \@nameuse{Special#1Index}{#2}/
61 \£fif

62 \endgroup’,

63 \Q@esphack\ignorespaces}

{{item)} [{options)]

Handle optional arguments and call \@@doxdescribe.
64 \def\Q@doxdescribe#1 [#2]{%

65
66
67
68
69
70
71

\leavevmode\@bsphack
\begingroup,
\setkeys{dox}{#2}/,
\begingroup%
\MakePrivateLetters’,
\@@doxdescribe{#1}}

6.5 API construction

{(item) H{ (idztype) H (idzcat)}
72 \def\@doxcreatespecialmainindex#1#2#3{%

\expandafter\def\csname SpecialMain#1Index\endcsname##1{J,
\@bsphacky,
\special@index{Y%
##1\actualchar{\string\ttfamily\space##1} (#2)\encapchar main}j,
\special@index{/
#3:\levelchar##1\actualchar?,
{\string\ttfamily\space##1}\encapchar main}y,
\@esphack}}

{(item)}{ (idztype) H (idxcat)}
82 \def\@doxcreatespecialindex#1#2#3{%

83 \expandafter\def\csname Special#1Index\endcsname##1{J,

84 \@bsphack,

85 \index{##1\actualchar{\protect\ttfamily##1}

86 (#2) \encapchar usagel’

87 \index{#3:\levelchar##1\actualchar{\protect\ttfamily##1}\encapchar
88 usagel}’

89 \@esphack}}

90

{(item)}

91 \def\@doxcreatedescribe#1{}

92 \expandafter\def\csname Describe#l\endcsname{’
93 \@ifnextchar [%]

94 {\@doxdescribe{#1}}{\@doxdescribe{#1}[]1}}}
95

{(item)}H(envname)}

96 \def\@doxcreateenv#i1#2{},

97

\expandafter\def\csname #2\endcsname{%

DoX v2.1 (2009,/09/28)

\doxitem

\Print...Name

\SpecialMain. . .Index

98 \@ifnextchar [%]

99 {\edoxenv{#1}}{\@doxenv{#1}[1}}

100 \expandafter\let\csname end#2\endcsname\endtrivlist}
101

6.6 Doc overrides
6.6.1 Macro facilities

Making \DescribeMacro work the DoX way is straightforward. The only precau-
tion we need is to to provide an alias to \SpecialUsageIndex because it should
really be named \SpecialMacroIndex.

102 \let\SpecialMacroIndex\SpecialUsageIndex

103 \@doxcreatedescribe{Macro}
104

Making the macro environment work the DoX way is straightforward. The only
precaution we need is to to provide a \SpecialMainMacroIndex macro that does
the job originally done in doc’s \m@cro@.

105 \def\SpecialMainMacroIndex#1{/

106 \SpecialMainIndex{#1}\nobreaky

107 \DoNotIndex{#1}}

108 \@doxcreateenv{Macro}{macro}
109

6.6.2 Environment facilities

Making \DescribeEnv and the environment environment work the DoX way is
straightforward.

110 \@doxcreatedescribe{Env}
111 \@doxcreateenv{Env}{environment}
112

6.7 API creation

The whole user interface is created in one macro call.

[(options)1{{name)H{ (envname) }{(idzcat)}

113 \newcommand\doxitem[4] [1{%
114 \def\dox@idxtype{#3}/,
115 \setkeys{dox}{#1}

{(name)}

116 \@ifundefined{Print#2Namel}{/

117 \expandafter\def\csname Print#2Name\endcsname##1{%
118 \strut\MacroFont##1\ }}{}

{(name)}
119 \def\@doxexpr{\@doxcreatespecialmainindex{#23}}%
120 \expandafter\@doxexpr\expandafter{\doxQ@idxtype}{#41}%

DoX v2.1 (2009,/09/28)

\PrintDescribe. .. {(name)}
121 \@ifundefined{PrintDescribe#2}{%
122 \expandafter\def\csname PrintDescribe#2\endcsname##1{J,
123 \strut\MacroFont##1\ }}{}

\Special...Index {(name)}

124 \def\@doxexpr{\@doxcreatespecialindex{#2}}/,
125 \expandafter\@doxexpr\expandafter{\doxQidxtype}{#41}%

\Describe... [{options)]{{name)}
126 \@doxcreatedescribe{#2}

item [(options)]{(name)}

127 \@doxcreateenv{#2}{#3}}
128

6.8 Finale

We need to save the default value for every option because DoX environments need
to reset them at every call.

129 \ProcessKeyvalOptions*

130 \ifdox@noprint

131 \def\dox@noprintdefault{true}
132 \else

133 \def\dox@noprintdefault{false}
134 \fi

135 \ifdox@noindex

136 \def\dox@noindexdefault{true}
137 \else

138 \def\dox@noindexdefault{false}
139 \fi

140

141 (/dox)

Copyright © 2009 Didier Verna.

10

