
The eqparbox package∗

Scott Pakin
scott+eqp@pakin.org

January 2, 2010

Abstract

The eqparbox package makes it easy to define a group of boxes (such as
those produced by \parbox or \makebox) whose members all have the same
width, the natural width of the widest member. A document can contain
any number of groups, and each group can contain any number of members.
This simple, equal-width mechanism can be used for a variety of alignment
purposes, as is evidenced by the examples in this document.

1 Motivation

Let’s start with a little test. How would you typeset Table 1, in which the numbers
are right-justified relative to each other but centered as a group within each col-
umn. And second, how would you typeset the résumé excerpt shown in Figure 1
while meeting the following requirements:

1. The header columns must be left-justified relative to each other.

2. The header columns should be evenly spaced across the page.

3. Page breaks should be allowed within the résumé.

The two questions can be answered the same way: by putting various blocks
of text into equal-widthed boxes. if the data in Table 1 are put into equal-sized
\parboxes, each containing a \raggedleft for right-justification, the \parboxes
can then be centered to achieve the desired result. Similarly, if the company
names in Figure 1 are both put in a \parbox as wide as “Thingamabobs, Ltd.,”
the job titles in a \parbox as wide as “Senior Widget Designer,” and the dates in a
\parbox as wide as “1/95–present,” then they can be spaced evenly by separating
them with \hfills.

The problem is in choosing the width for each set of \parboxes. For Table 1,
this isn’t too difficult, because digits are the same width as each other in most
fonts. Each \parbox, therefore, need be only as wide as the largest sequence of

∗This document corresponds to eqparbox v3.1, dated 2010/01/01.

1

Table 1: Sample sales data

Sales (in millions)
Product October November December

Widgets 55.2 89.2 57.9
Doohickeys 65.0 64.1 9.3
Thingamabobs 10.4 8.0 109.7

Widgets, Inc. Senior Widget Designer 1/95–present

• Supervised the development of the new orange and blue widget lines.

• Improved the design of various widgets, making them less sticky and far less
likely to explode.

• Made widget management ten times more cost-effective.

Thingamabobs, Ltd. Lead Engineer 9/92–12/94

• Found a way to make thingamabobs run on solar power.

• Drafted a blueprint for a new doohickey-compatibility module for all cool-
mint thingamabobs.

• Upgraded superthingamabob specification document from Microsoft Word
to LATEX 2ε.

Figure 1: Excerpt from a sample résumé

2

digits expected. Figure 1 is more of a bother. The user must typeset the résumé
once to see which entry in each column is the widest and then assign lengths
appropriately:

\newlength{\placewidth}

\settowidth{\placewidth}{Thingamabobs, Ltd.} % Employment 2

\newlength{\jobtitlewidth}

\settowidth{\jobtitlewidth}{Senior Widget Designer} % Employment 1

\newlength{\dateswidth}

\settowidth{\dateswidth}{1/95--present} % Employment 1

Every time a piece of information changes, it must be changed in two places: in the
résumé itself and in the \settowidth command. When employment information
is added or deleted, the \settowidth commands must be modified to reflect the
new maximum-widthed entry in each column. If only there were a simpler way to
keep a set of \parboxes as wide as the widest entry in the set . . .

That simpler way is the eqparbox package. eqparbox exports an \eqparbox
macro that works just like \parbox, except that instead of specifying the width
of the box, one specifies the group that the box belongs to. All boxes in the same
group will be typeset as wide as the widest member of the group. In that sense, an
\eqparbox behaves like a cell in an l, c, or r column in a tabular; \eqparboxes
in the same group are analogous to cells in the same column. Unlike the cells in a
tabular column, however, a group of \eqparboxes can be spread throughout the
document.

2 Usage

\eqparbox [〈pos〉] [〈height〉] [〈inner-pos〉] {〈tag〉} {〈text〉}
\eqmakebox [〈tag〉] [〈pos〉] {〈text〉}
\eqframebox [〈tag〉] [〈pos〉] {〈text〉}
\eqsavebox {〈cmd〉} [〈tag〉] [〈pos〉] {〈text〉}

These macros are almost identical to \parbox, \makebox, \framebox, and
\savebox, respectively. The key difference is that the 〈width〉 argument is replaced
by a 〈tag〉 argument. (For a description of the remaining arguments, look up
\parbox, \makebox, \framebox, and \savebox in any LATEX 2ε book or in the
usrguide.pdf file that comes with all TEX distributions.) 〈tag〉 can be any valid
identifier. All boxes produced using the same tag are typeset in a box wide enough
to hold the widest of them. Discounting TEX’s limitations, any number of tags
can be used in the same document, and any number of \eqparboxes can share a
tag. The only catch is that latex will need to be run a second time for the various
box widths to stabilize.

\eqboxwidth

It is sometimes useful to take the width of a box produced by one of the pre-

3

Table 2: A tabular that stretches to fit some cells while forcing others to wrap

Wide
Wider
Wider than that
This is a fairly wide cell
While this cell’s text
wraps, the previous cells
(whose text doesn’t
wrap) determine the
width of the column.

ceding commands. While the width can be determined by creating an \eqparbox
and using \settowidth to measure it, the eqparbox package defines a convenience
routine called \eqboxwidth that achieves the same result.

\eqboxwidth makes it easy to typeset something like Table 2. Table 2’s only
column expands to fit the widest cell in the column, excluding the final cell. The
final cell’s text word-wraps within whatever space is allocated to it. In a sense, the
first four cells behave as if they were typeset in an l column, while the final cell
behaves as if it were typeset in a p column. In actuality, the column is an l column;
an \eqparbox for the first four cells ensures the column stretches appropriately
while a \parbox of width \eqboxwidth{〈tag〉} in the final cell ensures that the
final cell word-wraps.

3 Examples

Figure 1’s headings were typeset with the following code:

\noindent%

\eqparbox{place}{\textbf{Widgets, Inc.}} \hfill

\eqparbox{title}{\textbf{Senior Widget Designer}} \hfill

\eqparbox{dates}{\textbf{1/95--present}}

...

\noindent%

\eqparbox{place}{\textbf{Thingamabobs, Ltd.}} \hfill

\eqparbox{title}{\textbf{Lead Engineer}} \hfill

\eqparbox{dates}{\textbf{9/92--12/94}}

...

Table 1 was entered as follows:

4

\begin{tabular}{@{}lccc@{}} \hline

& \multicolumn{3}{c}{Sales (in millions)} \\ \cline{2-4}

\multicolumn{1}{c}{\raisebox{1ex}[2ex]{Product}} &

October & November & December \\ \hline

Widgets & \eqparbox{oct}{\raggedleft 55.2 } &

\eqparbox{nov}{\raggedleft\textbf{ 89.2}} &

\eqparbox{dec}{\raggedleft 57.9 } \\

Doohickeys & \eqparbox{oct}{\raggedleft\textbf{ 65.0}} &

\eqparbox{nov}{\raggedleft 64.1 } &

\eqparbox{dec}{\raggedleft 9.3 } \\

Thingamabobs & \eqparbox{oct}{\raggedleft 10.4 } &

\eqparbox{nov}{\raggedleft 8.0 } &

\eqparbox{dec}{\raggedleft\textbf{109.7}} \\ \hline

\end{tabular}

Note that the above can be simplified by defining a macro that combines
\eqparbox and \raggedleft. Furthermore, because the numeric data being type-
set are all approximately the same width, a single tag could reasonably replace
oct, nov, and dec. As it stands, the code serves more as an illustration than as
an optimal way to typeset Table 1.

Finally, Table 2 was typeset using the following code:

\begin{tabular}{|@{}l@{}|}

\hline

\eqparbox[b]{wtab}{Wide} \\ \hline

\eqparbox[b]{wtab}{Wider} \\ \hline

\eqparbox[b]{wtab}{Wider than that} \\ \hline

\eqparbox[b]{wtab}{This is a fairly wide cell} \\ \hline

\parbox[b]{\eqboxwidth{wtab}}{\strut

While this cell’s text wraps, the previous cells (whose text

doesn’t wrap) determine the width of the column.} \\ \hline

\end{tabular}

As an additional example, consider the paragraphs depicted in Figure 2. We’d
like the paragraph labels set on the left, as shown, but we’d also like to allow both
intra- and inter-paragraph page breaks. Of course, if the labels are made wider
or narrower, we’d like the paragraph widths to adjust automatically. (Can any
word processor do that, incidentally?) By using a custom list environment that
typesets its labels with \eqparbox this is fairly straightforward:

\begin{list}{}{%

\renewcommand{\makelabel}[1]{\eqparbox[b]{listlab}{#1}}%

\setlength{\labelwidth}{\eqboxwidth{listlab}}%

\setlength{\labelsep}{2em}%

\setlength{\parsep}{2ex plus 2pt minus 1pt}%

\setlength{\itemsep}{0pt}%

5

Stuff about me I am great. Blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah.

More stuff I am wonderful. Blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah.

Did I mention that blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah?

The final exciting thing I am fantastic. Blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah, blah,
blah, blah, blah, blah, blah, blah, blah, blah.

Figure 2: Paragraphs with hanging indentation

\setlength{\leftmargin}{\labelwidth+\labelsep}%

\setlength{\rightmargin}{0pt}}

\item[Stuff about me] I am great. Blah, blah, blah, ...

\item[More stuff] I am wonderful. Blah, blah, blah, ...

\item[The final exciting thing] I am fantastic. Blah,

blah, blah, ...

\end{list}

Finally, consider line-by-line transcription of a piece of text as illustrated by the
mockup in Figure 3. The idea is to juxtapose a scanned piece of handwritten text
with its typeset version (or, similarly, to typeset a piece of text in one language
alongside a line-by-line translation into another language). The challenge is in
ensuring that (1) the same words appear on corresponding lines of text and that
(2) the typeset text is fully justified. While the parallel package can typeset fully
justified paragraphs aligned in parallel columns, it does not support the alignment
of individual lines. tabular and minipage environments provide control of line
breaks but do not support full justification of the text when explicit line breaks
are used.

One solution is to use eqparbox’s \eqmakebox macro. Like \makebox,
\eqmakebox supports the “s” (stretch) value for the 〈pos〉 argument, which causes

6

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Phasellus volutpat, nibh sit
amet mattis convallis, metus
libero rhoncus justo, sed auctor
erat mauris sit amet tellus.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Phasellus volutpat, nibh sit
amet mattis convallis, metus
libero rhoncus justo, sed auctor
erat mauris sit amet tellus.

Figure 3: Line-by-line transcription of text with full justification

the 〈text〉 argument to stretch to the width of the box. However, while \makebox
requires the width to be specified explicitly, \eqmakebox automatically sizes all
boxes that use the same tag (in this case, each line of the input paragraph) to the
widest text’s natural width. Here’s how to use the array package’s \newcolumntype
macro to define a new tabular column type, “S”, that stretches whitespace as
needed to fit the widest line in the column:

\newsavebox{\tstretchbox}

\newcolumntype{S}[1]{%

>{\begin{lrbox}{\tstretchbox}}%

l%

<{\end{lrbox}%

\eqmakebox[#1][s]{\unhcopy\tstretchbox}}}

That code works by storing the current cell’s contents within a box called
\tstretchbox then passing \tstretchbox’s contents to \eqmakebox. (The
tabular environment does not enable a cell’s contents to be passed directly to
a macro, hence the lrbox trickery.) Note that the “S” column type takes an ar-
gument, which is the tag to pass to \eqmakebox. Using the preceding definition
we can typeset Figure 3 as follows. To simulate scanned handwriting in the left
column we use the Calligra handwriting font provided by the calligra package.

\begin{tabular}{|l|l|}

\hline

\calligra

\begin{tabular}{S{handwritten}}

Lorem ipsum dolor sit amet, \\

consectetur adipiscing elit. \\

Phasellus volutpat, nibh sit \\

amet mattis convallis, metus \\

libero rhoncus justo, sed auctor \\

erat mauris sit amet tellus. \\

\end{tabular}

&

\begin{tabular}{S{typeset}}

Lorem ipsum dolor sit amet, \\

consectetur adipiscing elit. \\

7

Phasellus volutpat, nibh sit \\

amet mattis convallis, metus \\

libero rhoncus justo, sed auctor \\

erat mauris sit amet tellus. \\

\end{tabular} \\

\hline

\end{tabular}

4 Limitations

Unfortunately, eqparbox’s macros have a number of limitations not exhibited by
the corresponding LATEX 2ε commands. First, eqparbox’s macros internally type-
set the given text within a tabular environment—specifically, using “@{}l@{}”
as the template—in order to determine the text’s natural width. Consequently,
commands not valid within such a tabular (e.g., list environments) are also not
valid within the 〈text〉 argument of an eqparbox macro. As a corollary, eqparbox’s
macros can appear only where a tabular is also acceptable.

A second limitation is that eqparbox’s macros typeset their 〈text〉 argument
twice: once within a tabular to determine the natural width and again within a
box wide enough to hold all text associated with tag 〈tag〉. This approach may
cause unexpected results if 〈text〉 is non-idempotent (i.e., has side effects). For
example, if 〈text〉 increments a counter, the counter will be incremented twice per
invocation of \eqparbox.

5 Implementation

The one-sentence summary of the implementation is, “As eqparbox goes along, it
keeps track of the maximum width of each box type, and when it’s finished, it
writes those widths to the .aux file for use on subsequent runs.” If you’re satisfied
with that summary, then read no further. Otherwise, get ready to tackle the
following annotated code listing.

\eqp@tempdima

\eqp@tempdimb

Define a couple temporary 〈dimen〉s for use in a variety of locations.
1 \newlength{\eqp@tempdima} \newlength{\eqp@tempdimb}

\eqp@taglist Define a list of all of the tags we encountered in the author’s document.
2 \def\eqp@taglist{}

\ifeqp@must@rerun

\eqp@must@reruntrue

\eqp@must@rerunfalse

If an eqparbox is wider than the maximum-width eqparbox with the same tag,
we need to store the new maximum width and request that the user re-run latex.
We use \ifeqp@must@rerun and \eqp@must@reruntrue to assist with this.
3 \newif\ifeqp@must@rerun

8

At the \end{document}, for each tag 〈tag〉 we see if \eqp@next@〈tag〉, which
was initialized to 0.0pt, is different from \eqp@this@〈tag〉, which was initial-
ized to the maximum box width from the previous run. If so, we issue an infor-
mational message. In any case, we initialize the next run’s \eqp@this@〈tag〉 to
\eqp@next@〈tag〉 and the next run’s \eqp@next@〈tag〉 to 0pt.
4 \AtEndDocument{%

5 \begingroup

\@elt The \eqp@taglist list is of the form “\@elt {〈tag1〉} \@elt {〈tag2〉} . . . ”. We
therefore locally define \@elt to take the name of a tag and perform all of the
checking described above and then merely execute \eqp@taglist.
6 \def\@elt#1{%

7 \eqp@tempdima\csname eqp@this@#1\endcsname\relax

8 \eqp@tempdimb\csname eqp@next@#1\endcsname\relax

9 \ifdim\eqp@tempdima=\eqp@tempdimb

10 \else

11 \@latex@warning@no@line{Rerun to correct the width of eqparbox ‘#1’}%

12 \fi

13 \immediate\write\@auxout{%

14 \string\expandafter\string\gdef\string\csname\space

15 eqp@this@#1\string\endcsname{%

16 \csname eqp@next@#1\endcsname

17 }%

18 ^^J%

19 \string\expandafter\string\gdef\string\csname\space

20 eqp@next@#1\string\endcsname{0pt}%

21 }%

22 }%

23 \eqp@taglist

24 \endgroup

We output the generic “rerun latex” message if we encountered a tag that was
not present on the previous run. (This is always the case on the first run or the
first run after deleting the corresponding .aux file.
25 \ifeqp@must@rerun

26 \@latex@warning@no@line{Rerun to correct eqparbox widths}

27 \fi

28 }

\eqp@storefont

\eqp@restorefont

To find the natural width of a piece of text, we put it in a table and take the
width of that. The problem is that font changes are not preserved across line
breaks (table cells). We therefore define an \eqp@storefont macro which itself
defines an \eqp@restorefont macro that restores the current font and font size
to its current state.
29 \newcommand*{\eqp@storefont}{%

30 \xdef\eqp@restorefont{%

31 \noexpand\usefont{\f@encoding}{\f@family}{\f@series}{\f@shape}%

32 \noexpand\fontsize{\f@size}{\f@baselineskip}%

33 \noexpand\selectfont

9

34 }%

35 }

The following macro (\eqp@settowidth) requires the array package’s ability
to inject code into every cell.
36 \RequirePackage{array}

\eqp@settowidth This macro is just like \settowidth, but it puts its argument in a tabular,
which means that it can contain \\. We use the array package’s “>” and “<”
template parameters to inject an \eqp@restorefont at the start of every cell and
an \eqp@storefont at the end of every cell. Doing so preserves fonts and font
sizes across \\ boundaries, just like \parbox.
37 \newcommand{\eqp@settowidth}[2]{%

38 \settowidth{#1}{{%

39 \eqp@storefont

40 \begin{tabular}{@{}>{\eqp@restorefont}l<{\eqp@storefont}@{}}%

41 #2%

42 \end{tabular}%

43 }}%

44 }

\eqparbox We want \eqparbox to take the same arguments as \parbox, with the same default
values for the optional arguments. The only difference in argument processing is
that \eqparbox has a 〈tag〉 argument where \parbox has 〈width〉.

Because \eqparbox has more than one optional argument, we can’t use a
single function defined by \DeclareRobustCommand. Instead, we have to split
\eqparbox into \eqparbox, \eqparbox@i, \eqparbox@ii, and \eqparbox@iii
macros, which correspond to \parbox, \@iparbox, \@iiparbox, and \@iiiparbox
in ltboxes.dtx.

\eqparbox takes an optional 〈pos〉 argument that defaults to c. It passes the
value of this argument to \eqparbox@i.
45 \DeclareRobustCommand{\eqparbox}{%

46 \@ifnextchar[%]

47 {\eqparbox@i}%

48 {\eqparbox@iii[c][\relax][s]}%

49 }

\eqparbox@i \eqparbox@i takes a 〈pos〉 argument followed by an optional 〈height〉 argument
that defaults to \relax. It passes both 〈pos〉 and 〈height〉 to \eqparbox@ii.
50 \def\eqparbox@i[#1]{%

51 \@ifnextchar[%]

52 {\eqparbox@ii[#1]}%

53 {\eqparbox@iii[#1][\relax][s]}%

54 }

\eqparbox@ii \eqparbox@ii takes 〈pos〉 and 〈height〉 arguments followed by an optional
〈inner-pos〉 argument that defaults to 〈pos〉. It passes 〈pos〉, 〈height〉, and
〈inner-pos〉 to \eqparbox@iii.

10

55 \def\eqparbox@ii[#1][#2]{%

56 \@ifnextchar[%]

57 {\eqparbox@iii[#1][#2]}%

58 {\eqparbox@iii[#1][#2][#1]}%

59 }

\eqparbox@iii

\eqp@produce@box

\eqparbox@iii takes 〈pos〉, 〈height〉 and 〈inner-pos〉 arguments. It defines an
\eqp@produce@box macro that takes a 〈width〉 argument and a 〈text〉 argument
and passes all of 〈pos〉, 〈height〉, 〈inner-pos〉, 〈width〉, and 〈text〉 to LATEX’s
\parbox macro. \eqparbox@iii ends by calling \eqp@compute@width, which will
eventually invoke \eqp@produce@box.
60 \def\eqparbox@iii[#1][#2][#3]{%

61 \gdef\eqp@produce@box##1##2{%

62 \parbox[#1][#2][#3]{##1}{##2}%

63 }%

64 \eqp@compute@width

65 }

\eqmakebox \eqmakebox provides an automatic-width analogue to LATEX’s \makebox. It takes
the same arguments as \makebox with the same default values for the optional
arguments. The only difference in argument processing is that \eqmakebox has a
〈tag〉 argument where \makebox has 〈width〉. Note that if 〈width〉 is not specified,
\eqmakebox simply invokes \makebox.
66 \DeclareRobustCommand{\eqmakebox}{%

67 \@ifnextchar[%]

68 {\eqlrbox@i\makebox}%

69 {\makebox}%

70 }

\eqframebox \eqframebox provides an automatic-width analogue to LATEX’s \framebox. It
takes the same arguments as \framebox with the same default values for the op-
tional arguments. The only difference in argument processing is that \eqframebox
has a 〈tag〉 argument where \framebox has 〈width〉. Note that if 〈width〉 is not
specified, \eqframebox simply invokes \framebox.
71 \DeclareRobustCommand{\eqframebox}{%

72 \@ifnextchar[%]

73 {\eqlrbox@i\framebox}%

74 {\framebox}%

75 }

\eqsavebox \eqsavebox provides an automatic-width analogue to LATEX’s \savebox. It takes
the same arguments as \savebox with the same default values for the optional
arguments. The only difference in argument processing is that \eqsavebox has a
〈tag〉 argument where \savebox has 〈width〉. Note that if 〈width〉 is not specified,
\eqsavebox simply invokes \savebox.
76 \DeclareRobustCommand{\eqsavebox}[1]{%

77 \@ifnextchar[%]

78 {\eqlrbox@i{\savebox{#1}}}%

11

79 {\savebox{#1}}%

80 }

\eqlrbox@i \eqlrbox@i takes a {〈command〉} argument (one of \makebox, \framebox, or
\savebox{〈cmd〉}) and a [〈tag〉] argument and checks if those arguments are fol-
lowed by a [〈pos〉] argument. If not, then 〈pos〉 defaults to “c”. All of 〈command〉,
〈tag〉, and 〈pos〉 are passed to \eqlrbox@ii.
81 \def\eqlrbox@i#1[#2]{%

82 \@ifnextchar[%]

83 {\eqlrbox@ii{#1}[#2]}%

84 {\eqlrbox@ii{#1}[#2][c]}%

85 }

\eqlrbox@ii

\eqp@produce@box

\eqlrbox@i takes a {〈command〉} argument (one of \makebox, \framebox,
or \savebox{〈cmd〉}), a [〈tag〉] argument, and a [〈pos〉] argument. It de-
fines \eqp@produce@box to take a 〈width〉 argument and a 〈text〉 argument
and invoke 〈command〉[〈width〉][〈pos〉]{〈text〉}. \eqlrbox@ii ends by calling
\eqp@compute@width, which will eventually invoke \eqp@produce@box.
86 \def\eqlrbox@ii#1[#2][#3]{%

87 \gdef\eqp@produce@box##1##2{%

88 #1[##1][#3]{##2}%

89 }%

90 \eqp@compute@width{#2}%

91 }

\eqp@compute@width The following function does all the real work for the eqparbox package. It takes
two parameters—〈tag〉 and 〈text〉—and ensures that all boxes with the same tag
will be as wide as the widest box with that tag. It ends by passing 〈tag〉 and 〈text〉
to the \eqp@produce@box command, which was defined by the calling macro to
produce a box using one of the existing LATEX 2ε commands.

To keep track of box widths, \eqp@compute@width makes use of two global
variables for each tag: \eqp@this@〈tag〉 and \eqp@next〈tag〉. \eqp@this@〈tag〉
is the maximum width ever seen for tag 〈tag〉, including in previous latex runs.
\eqp@next@〈tag〉 works the same way but is always initialized to 0.0pt. It rep-
resents the maximum width to assume in subsequent latex runs. It is needed
to detect whether the dest text with tag 〈tag〉 has been removed/shrunk. At
the end of a run, eqparbox prepares the next run (via the .aux file) to initialize
\eqp@this@〈tag〉 to the final value of \eqp@next@〈tag〉.
92 \def\eqp@compute@width#1#2{%

93 \eqp@settowidth{\eqp@tempdimb}{#2}%

94 \expandafter

95 \ifx\csname eqp@this@#1\endcsname\relax

If we get here, then we’ve never encountered tag 〈tag〉, even in a previous latex
run. We request that the user re-run latex This is not always necessary (e.g., when
all uses of the \eqparbox with tag 〈tag〉 are left-justified), but it’s better to be
safe than sorry.
96 \global\eqp@must@reruntrue

12

97 \expandafter\xdef\csname eqp@this@#1\endcsname{\the\eqp@tempdimb}%

98 \expandafter\xdef\csname eqp@next@#1\endcsname{\the\eqp@tempdimb}%

99 \else

If we get here, then we have previously seen tag 〈tag〉. We just have to keep track
of the maximum text width associated with it.

100 \eqp@tempdima=\csname eqp@this@#1\endcsname\relax

101 \ifdim\eqp@tempdima<\eqp@tempdimb

102 \expandafter\xdef\csname eqp@this@#1\endcsname{\the\eqp@tempdimb}%

103 \global\eqp@must@reruntrue

104 \fi

105 \eqp@tempdima=\csname eqp@next@#1\endcsname\relax

106 \ifdim\eqp@tempdima<\eqp@tempdimb

107 \expandafter\xdef\csname eqp@next@#1\endcsname{\the\eqp@tempdimb}%

108 \fi

109 \fi

The first time we encounter tag 〈tag〉 in the current document we ensure LATEX
will notify the user if he needs to re-run latex on account of that tag.

110 \@ifundefined{eqp@seen@#1}{%

111 \expandafter\gdef\csname eqp@seen@#1\endcsname{}%

112 \@cons\eqp@taglist{{#1}}%

113 }{}%

Finally, we can call \eqp@produce@box. We pass it \eqp@this@〈tag〉 for its
〈width〉 argument and #2 for its 〈text〉 argument.

114 \eqp@tempdima=\csname eqp@this@#1\endcsname\relax

115 \eqp@produce@box{\eqp@tempdima}{#2}%

116 }

\eqboxwidth For the times that the user wants to make something other than a box to match an
\eqparbox’s width, we provide \eqboxwidth. \eqboxwidth returns the width of
a box corresponding to a given tag. More precisely, if \eqp@this@〈tag〉 is defined,
it’s returned. Otherwise, 0pt is returned.

117 \newcommand*{\eqboxwidth}[1]{%

118 \@ifundefined{eqp@this@#1}{0pt}{\csname eqp@this@#1\endcsname}%

119 }

Per-tag memory usage The eqparbox package defines three macros for each
unique tag: \eqp@this@〈tag〉, \eqp@next@〈tag〉, and \eqp@seen@〈tag〉. Conse-
quently, each unique tag subtracts three strings from TEX’s string pool and three
multiletter control sequences from that pool. In addition, each unique tag 〈tag〉
subtracts |\eqp@this@|+|〈tag〉|+|\eqp@next@|+|〈tag〉|+|\eqp@seen@|+|〈tag〉| =
27 + 3 × |〈tag〉| string characters from TEX’s pool of string characters. For ex-
ample, a document that invokes \eqparbox with tags “hello” and “goodbye”
will utilize 3 × 2 = 6 strings, 3 × 2 = 6 multiletter control sequences, and
(27 + 3× 5) + (27 + 3× 7) = 90 TEX string characters.

13

6 Future Work

The following are some of the features people have requested I implement in eq-
parbox:

• Evalaute \eqparbox’s 〈text〉 argument exactly once in case it contains side
effects. Currently, 〈text〉 is evaluated twice: once to determine its natural
size and once to put it in a box of the width associated with the given tag.
(Feature requested by Bernd Schandl.)

• Get eqparbox to work properly within an algorithmic environment. (Feature
requested by Mike Shell.)

• Support pre-1999 LATEX 2ε. (Feature requested by Mike Shell.)

One idea I’ve been toying with that may resolve the first two items in that list is
to typeset 〈text〉 within a box, then check \badness to see if the box was too small
for 〈text〉. If not (i.e., the box was not overfull), then the initial box can be reused
directly without needing to re-typeset 〈text〉. With this approach, \eqparbox will
work anywhere \parbox works. Unfortunately, I don’t know how to get at the
\badness of the \hboxes that comprise the \vbox utilized by \parbox. If anyone
has a suggestion, I’m all ears.

Change History

v1.0
General: Initial version 1

v2.0
\@elt: Modified to allow numbers

in tag names (suggested by
Martin Vaeth) 9

General: Rewrote to use only two
〈dimen〉s total and the rest
macros (problem reported by
Gilles Pérez-Lambert and Pla-
men Tanovski; solution sug-
gested by David Kastrup and
Donald Arseneau) 1

\eqp@compute@width: Removed ex-
traneous \globals (suggested
by David Kastrup) 12

\eqp@settowidth: Modified to
store and restore the font across
\\ boundaries (suggested by
Mike Shell) 10

v2.1
\eqboxwidth: Rewrote so as to be

compatible with the calc pack-
age’s \setlength command
(problem initially reported by
Gary L. Gray and narrowed
down by Martin Vaeth) 13

v3.0

\eqmakebox: Included Rob Verhoe-
ven’s \eqmakebox macro 11

v3.1

\eqframebox: Introduced this
macro 11

\eqmakebox: Modified the argu-
ment processing to match
\makebox’s 11

\eqp@compute@width: Restruc-
tured the package to make all
user-callable functions eventu-
ally call \eqp@compute@width,
which does the bulk of the work 12

\eqsavebox: Introduced this macro 11

14

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@cons 112

\@elt 6

\@latex@warning@no@line

. 11, 26

A

algorithmic (package) . 14

array (package) 7, 10

\AtEndDocument 4

C

calc (package) 14

calligra (package) 7

E

\eqboxwidth 117

\eqframebox 71

\eqlrbox@i 68, 73, 78, 81

\eqlrbox@ii . . 83, 84, 86

\eqmakebox 66

\eqp@compute@width .
. 64, 90, 92

\eqp@must@rerunfalse 3

\eqp@must@reruntrue

. 3, 96, 103

\eqp@produce@box . .
. 60, 86, 115

\eqp@restorefont 29, 40
\eqp@settowidth . 37, 93
\eqp@storefont 29, 39, 40
\eqp@taglist . 2, 23, 112
\eqp@tempdima

1, 7, 9, 100, 101,
105, 106, 114, 115

\eqp@tempdimb . . . 1,
8, 9, 93, 97, 98,
101, 102, 106, 107

eqparbox (package) . .
1, 3, 4, 6, 8, 12–14

\eqparbox 45
\eqparbox@i 47, 50
\eqparbox@ii 52, 55
\eqparbox@iii

. 48, 53, 57, 58, 60
\eqsavebox 76

F
\f@baselineskip . . . 32
\f@encoding 31
\f@family 31
\f@series 31
\f@shape 31

\f@size 32
\fontsize 32
\framebox 73, 74

I
\ifeqp@must@rerun 3, 25

M
\makebox 68, 69

P
parallel (package) 6
\parbox 62

R
\RequirePackage . . . 36

S
\savebox 78, 79
\selectfont 33
\settowidth 38

U
\usefont 31

W
\write 13

15

	Motivation
	Usage
	Examples
	Limitations
	Implementation
	Future Work

