
CCLRC / Rutherford Appleton Laboratory SSN/71.0
Particle Physics & Astronomy Research Council
Starlink Project
Starlink System Note 71

Norman Gray
14 June 1999

Dvi2bitmap -- convert DVI files to
bitmap images

User’s Guide -- Software Version 0.13

Abstract

This application processes a DVI file produced by TeX, converting each page to a single
bitmap. The conversion is done directly, rather than through a chain of intermediate file
formats, making the process extremely fast. It can produce output as XBM, XPM, GIF and
PNG files.

ii SSN/71.0

Document information
Document date 14 June 1999

Last revised 19 August 2005
Version number 0
Distribution ID 0.13

Software version Software Version 0.13

c©Copyright 1999--2005, Council for the Central Laboratory of the Research Councils. Copyright
2005, Norman Gray.

SSN/71.0 iii

Contents

1 Introduction 1

2 Usage 2

2.1 Options . 2

2.2 DVI specials . 8

2.3 Exit value . 11

2.4 Examples . 11

2.5 Finding and generating fonts . 11

3 Usage notes 15

3.1 Good choices of fonts and scaling . 15

3.2 Using dvi2bitmap in a pipe . 16

3.3 Processing many bitmaps . 17

3.4 Using marks to position bitmaps . 17

4 The libdvi2bitmap library 19

5 Building and installing dvi2bitmap 20

5.1 General installation and configuration . 20

5.2 Starlink nodes . 24

6 Bugs, extras, and further developments 25

7 References and acknowledgements 26

A Maths and SGML/HTML 27

A.1 LaTeX maths within HTML . 27

A.2 Other approaches to maths . 28

B TeX dimensions 29

C Release notes 31

C.1 Release 0.13b3 . 31

C.2 Release 0.13b2 . 31

C.3 Release 0.12-2 . 31

C.4 Release 0.12-1 . 31

iv SSN/71.0

C.5 Release 0.12 . 31

C.6 Release 0.12b2 . 32

C.7 Release 0.12b1 . 32

C.8 Release 0.11 . 32

C.9 Release 0.11b1 . 33

C.10 Release 0.10b1 . 33

C.11 Release 0.9-7p1 . 34

C.12 Release 0.9-7 . 34

C.13 Release 0.9-6 . 34

C.14 Release 0.9-5 . 34

C.15 Release 0.9-4 . 35

C.16 Release 0.9-3 . 35

C.17 Release 0.9-2 . 35

C.18 Release 0.9 . 36

C.19 Release 0.8 . 36

C.20 Release 0.7 . 36

C.21 Release 0.6 . 37

C.22 Release 0.5 . 37

C.23 Release 0.4 . 37

C.24 Release 0.3 . 37

Change history 37

SSN/71.0 1

1 Introduction

It is sometimes useful to convert the typeset output of TeX into a bitmap image viewable on the
web. This is most often the case when TeX or LaTeX are being used to typeset the mathematics
in a paper being conveted to HTML. It is possible to do this with a chain of general-purpose
tools, for example going from DVI to postscript to PNM files to GIFs, but this is generally slow.
For an overview of maths and SGML/HTML, see Appendix A.

The tool dvi2bitmap does this processing in a single step, reading the DVI file and font files, and
emitting a bitmap. It can, at present, generate XBM, XPM, GIF and, if the relevant library is
installed, PNG files.

See Section 2 for usage instructions, and Section 5 for installation instructions.

The dvi2bitmap application is available for download at <http://www.astro.gla.ac.uk/users/

norman/star/dvi2bitmap/>.

This document matches version 0.13 of the program (you can see what version you have with
the command dvi2bitmap -V). This should currently be regarded as beta software.

2 SSN/71.0

2 Usage

Synopsis:

dvi2bitmap [flags] dvi-file

This program is intended to conform to the DVI processing standard.

The dvi-file argument is the name of a DVI file to be converted to a bitmap. dvi2bitmap
looks for the file both with and without the default extension .dvi.

You may also read the DVI file from the standard input by giving the DVI file as "-", thus

cat myfile.dvi | dvi2bitmap -

is an alternative way of reading the file (rather pointless in this case, but it shows the principle;
see Section 3.2 for further discussion). For more arcane purposes, the DVI file may also be
specified as <osfile>dvi-file (which is entirely equivalent), or <osfd>integer, where the
given integer specifies an open file descriptor; specifying "-" as the input file is equivalent to
<osfd>0

The motivation for this program was the need for a helper program to produce small bitmaps
for inclusion in web pages. Accordingly, the program’s underlying usage model is that one would
generate a file of TeX or LaTeX material, convert it to a DVI file using TeX, and convert the
result to a collection of bitmap files. The input text will typically be equations, but any other
TeX material will work as well. For example, the processor which generates the HTML could
spit out a file such as

\documentclass{article}
\pagestyle{empty}
\begin{document}
$E=mc^2$
\newpage
% etc...
\end{document}

and then this program can scoot through it turning each page into a bitmap. I had thought
about some complicated scheme to delimit areas on the page, but realised that since the file
being processed would typically be generated on the fly specifically for processing by a tool like
this, this wasn’t really necessary. See Section 6 for a script which can help with this.

I hope that the program is (or can be made to be) flexible enough to support other modes of
use.

2.1 Options

Various of the options below have common syntax features.

SSN/71.0 3

[keyword-value-list]
This indicates a sequence of keyword=value pairs, separated by commas. Not all keywords
necessarily have a value.

[boolean]
This can be ‘yes’, ‘true’ or ‘on’ indicating true; or ‘no’, ‘false’ or ‘off’ indicating false.

The options are as follows:

-c, --crop=[keyword-value-pairs]
The --crop option allows you to control how the generated bitmaps are cropped before
they are written. The keywords are ‘left’, ‘right’, ‘top’, ‘bottom’ and ‘all’, and the value in
each case is the number of pixels to leave as a margin. If the keywords ‘relative’ (default) or
‘absolute’ are present, they refer to all of the keywords following: if the crop is specified as
‘relative’, then the values specify the number of pixels to leave around the blackened pixels
of the text; if the crop is ‘absolute’, then it specifies the position of the crop (in pixels)
from the left or top edge of the ‘page’. The specification ----crop=absolute,all=dimen,
which would set all the crops to the same position, is silly, and so is forbidden.

The conversion from points to pixels takes account of the magnification set in the --magnification
option, if that’s been specified already, but it doesn’t notice if that’s set after this option,
and it takes no account of any magnification in the DVI file.

See Section 2.2 for TeX \special commands which set this within the TeX file.

See below for TeX \special commands which set this within the TeX file.

-F, --font-search=[keyword-value-list]
Specifies how dvi2bitmap is to find the fonts it needs. Keywords are as follows:

path[=list]: use the given list of filesystem paths to search for PK fonts, or enable using
the default path, if =path is missing. The default path is given by the environment variable
DVI2BITMAP PK PATH. See also the discussion of font searching below.

kpathsea: enable using the kpathsea library to find fonts. If the program was not built
against the kpathsea library, this option has no effect.

command[=script]: enable using the given script to find fonts. If the argument is missing,
this enables using the script configured into the program at compile-time. This script is
any program which will search the filesystem and produce a single line on output, giving
the full path to the specified font. For example, this might be given as kpsewhich pk
%f.%dpk to run the kpsewhich program. The command name is a font-string template,
as described elsewhere.

If the program does not find a font using whichever methods have been enabled then,
following the pattern of dvips and other DVIware, it writes a file missfont.log in the
current directory, containing commands which you can use to generate the fonts immedi-
ately or later.

none: disable all font-searching. The result is that only the missfont.log file is written.

Each of the keywords can be prefixed by ‘no’ to turn off the corresponding option -- thus
--font-search=nopath,nokpathsea,nocommand has the same effect as --font-search=none.

4 SSN/71.0

-G, --font-gen=[boolean], --font-gen=command[=script]
Switch automatic generation of fonts off and on. If --font-gen=command is given, then the
command specified at compile time is used to generate fonts. If, further, a font-generation
script is specified, then it will be used instead of the default. The specified script is a
font-string template, as described below. The default for automatic font generation is set
at compile time.

-g, --debug=[spec]
Switch on debugging. The [spec] is a list of letters indicating what to debug, as follows.
You may trace DVI file parsing (‘d’), PK file parsing (‘p’), font rasterdata parsing (‘r’),
input (‘i’), bitmap generation (‘b’) or the main program (‘m’). Adding an extra ‘g’ in-
creases still further the amount of debugging code. The debugging information may be
uninformative or unintelligible; it might even crash the program (mention that to me).

-h, --height=size; -w, --width=size
Specify the height and width of the canvas on which the output bitmap is painted.
The program tries to make an estimate of this based on information within the DVI
file, but it can’t efficiently get all the information it needs, so sometimes the estim-
ate is wrong. If you get a warning message like Warning: p.12: bitmap too big:
occupies (1183,1072)...(4134,6255). Requested 4100x6200 then you’ll need to spe-
cify a bitmap size. The numbers (1183,1072)...(4134,6255) are the coordinates of the
top-left and bottom-right of the bitmap: in this case --height=6300 --width=4200 would
suffice. At some point, I’d like to make the bitmap ‘expandable’, obviating the need for
these options.

--help
Display outline help for the options on stderr, and exit

-l, --end-page
See option --start-page

-M, --font-mode=[mode]
Set the MetaFont mode which is used for generating font files. The default is ibmvga. If
you set this, you will probably have to set the resolution to a consistent number.

-m, --magnification=[number]
The TeX magnification parameter which is used when processing the DVI file. It is a
float, with 1.0 corresponding to no magnification (the default). This interacts with the
resolution as follows: if you specify a resolution of 100, and a magnification of 2, then
dvi2bitmap will search for PK files at 200 dpi.

-n, --nodvi
Do not actually process the DVI file, but read the DVI pre- and postamble. Useful in
conjunction with the --query options. If this option is present, then the program returns
non-zero if any fonts were missing (see also Section 2.3). The -n is for brevity and consist-
ency with other tools -- the behaviour can be alternatively specified as --process=nodvi

-o, --output=[filename-pattern]
Choose the output filename pattern. The value is a ‘printf’ formatting string, with a
single %d formatting descriptor, which will be replaced in output filenames with the page
number. If there is no such descriptor, the filename ‘pattern’ is used as-is for the first

SSN/71.0 5

filename output, after which the program reverts to the default filename pattern. The
filename pattern can be overridden on a per-page basis by a TeX \special embedded in
the DVI file (see the outputfile special in Section 2.2). If there is no file extension, or if it
does not match the output type, a suitable file extension will be added.

--pipe
Indicates that the dvi-file argument is a non-seekable file, such as a named or unnamed
pipe. This is automatically the case if you specify the DVI file as stdin, ”-”.

-p, --start-page=num, -l, --end-page=num, -P, --page-range=[spec]
These select page ranges, using a slight extension of the notation used by dvips (and the
same option letters, except that dvips uses -pp instead of -P).

The --start-page=snum and --end-page=enum options take single page numbers; if either
of these is given, then the program will process pages from page snum to page enum, with
the defaults being the corresponding extremes. The [spec] consists of a comma-separated
sequence of page numbers and ranges (a-b); only those pages, and the pages falling in
those ranges (inclusive of the end pages) are processed. Any of these specifications may be
prefixed by either = or :n:. In the former case, DVI page numbers are used rather than
the TeX \count0 register; in the latter case, the program examines the \countn register
rather than the default \count0
You can specify both of these prefixes one or more times, but you cannot mix the --start-page
and --end-page options with the --page-range option. The program will respect only
the last --start-page and --end-page options, but the --page-range options are cu-
mulative. There may be no spaces in the pagelist. The page numbers may be negative.

Examples:

dvi2bitmap --page-range=3,6-10 ...

process only the specified pages

dvi2bitmap --page-range=:2:1 ...

process only pages where \count2 was 1.

-Q, --query=[keyword-list]
Query various things. The available possibilities are as given below. The results of each
of the queries is printed on a line by itself, prefixed by a ‘Q’, the keyword and a space,
so that, for example, each of the lines produced by the --query=missing-fonts option
would start Qmissing-fonts cmbx10 110 ...

Some of these options (--query=missing-fonts and --query=missing-fontgen) are
probably most useful with the -n or --process=options options, to investigate a DVI
file before processing. Others (--query=types and --query=paper) are probably useful
only with --process=options. The option --query=bitmaps is only useful if you do ac-
tually generate bitmaps. For consistency (and so you don’t have to remember which ones
do which), the appropriate --process option is not implied in any of them, and you have
to give it explicitly.

6 SSN/71.0

--query=bitmaps
Prints on stdout a line for each bitmap it generates, giving the filename, horizontal size,
and vertical size, in pixels. This also reports the position of any ‘mark’ in the bitmap --
see item ‘mark’.

-Qf, --query=missing-fonts
Show missing fonts. The program writes on standard output one line per missing font,
starting with Qf or Qmissing-fonts (depending on which of the variants was given -- the
shorter ones are less mnemonic, but more convenient to parse in scripts), then five fields:
the font name, the DPI value it was looking for, the base-DPI of the font, the magnification
factor, and a dummy metafont mode. This output might be massaged for use with the
mktexpk (TeXLive) or MakeTeXPK (teTeX) scripts to generate the required fonts, but
--query=missing-fontgen is more straightforward.

-QF, --query=all-fonts
As for --query=missing-fonts except that found fonts are also listed, all prefixed by
Qall-fonts

-Qg, --query=missing-fontgen
As for --query=missing-fonts, except that the output consists of the string Qmissing-fontgen
followed by a mktexpk or MakeTeXPK command which can be used to generate the font.

-QG, --query=all-fontgen
As for --query=missing-fonts, except that font-generation commands for found fonts
are also listed, prefixed by Qall-fontgen.

Note: Only one of --query=missing-fonts, --query=all-fonts, --query=missing-fontgen
and --query=all-fontgen should be specified -- if more than one appears, only the last
one is respected -- if more than one appears, only the last one is respected. In each of
these four cases, plus their short forms, font-generation is automatically suppressed. This
is probably what you want (it’s not obvious why you’re querying this otherwise), but if
you do not want this, then you can reenable font generation with --font-gen=true

--query=paper
Show the list of paper sizes which are predefined for the --paper-size option.

--query=types
List the output image formats which the program can generate, on stdout, separated by
whitespace. The first output format is the default.

-r, --resolution=[number]
Specifies the output resolution, in pixels-per-inch. This is used when deciding which PK
files to use. The default is 110, which matches the default ibmvga metafont mode.

-R, --colours=[keyword-value-list], --colors=[keyword-value-pairs]
Specifies the foreground or background colours, as RGB triples. The keywords are either
foreground or background, and the values are a triple of integers separated by slashes,
for example --colours=foreground=127/127/255. The integers must be in the range
[0,255], and can be specified in decimal, octal or hex (for example 127=0177=0x7f), or else
the whole spec may be of the form #rrggbb, where ‘rr’, ‘gg’ and ‘bb’ are each a pair of
hex digits.

SSN/71.0 7

-s, --scaledown=[number]
Reduces the linear size of the output bitmap by the given factor (default 1).

-T, --output=type=[type]
Choose the output format, which can be png, gif, xpm or xbm. The program generates
XBM bitmaps by default, and has simple support for XPM. The GIF and PNG options
may not be available if they weren’t selected when the program was configured.

-t, --paper-size=papersize
Set the initial size of the bitmap to be one of the paper sizes returned by --query=paper.
This is useful either to make sure that there is enough room on the initial bitmap, to avoid
the warning above, or, along with the --process=nocrop option, to force the output
bitmap to be a certain size.

-v, --verbose=[quiet|silent]
Quiet mode suppresses some chatter, and silent mode suppresses chatter, and does not
display warnings or errors either.

-V, --version
Display the version number and compilation options, and exit.

-X, --process=[keyword-value-list]
Specifies the processing to be done. Keywords are as follows:

dvi and nodvi : enable or disable processing of the DVI file. If disabled, we do not require
a DVI file to be present on the command line. The nodvi option is useful with some of
the --query options.

postamble and nopostamble: enable or disable processing of the DVI postamble. If
dvi2bitmap is called to invoke a non-seekable device such as a pipe, you should disable
processing of the postamble. Disabling the postamble processing is incompatible with the
--query options which examine the fonts in the file. By default, both the DVI body and
the postamble are processed.

--process=options: shorthand for --process=nopreamble,nodvi,nopostamble. Only
the options are examined.

blur and noblur: if true, blurs the bitmap, making a half-hearted attempt to make a
low-resolution bitmap look better. This really isn’t up to much -- if you have the fonts
available, or are prepared to wait for them to be generated, a better way is to use the
--magnification option to magnify the DVI file, and then the --scale option to scale it
back down to the correct size.

transparent and notransparent: if true, this makes the output bitmap have a trans-
parent background, if that’s supported by the particular format you choose using option
--output-type

crop and nocrop: if true, specifies that you want the output bitmap to be cropped. This
is true by default, so you’ll most often use the crop=false to specify that you do not want
the output cropped (for example, if you’re using the --paper-size option and want the
output to stay the specified size).

By default, bitmaps are not blurred, are cropped, and are transparent if possible.

For PNG files, the output bitmap uses a palette plus an alpha channel; these are calculated
in such a way that if you display the resulting bitmap on the same colour background as

8 SSN/71.0

dvi2bitmap was using (which is white by default, but can be specified using the ‘back-
ground’ special) then the result should look identical to the result with no transparency
information, but probably progressively worse the further the background moves from this.
I suppose, but can’t at present check, that this implies that you should choose a mid-grey
background colour when making such transparent PNGs. I’d welcome advice on this point.

2.2 DVI specials

dvi2bitmap recognises several DVI special commands, and emits a warning if it finds any others.

The syntax of the special commands is

\special{dvi2bitmap <special-command>+ }

There may be one or more <special-command> sequences within a single special.

The <special-command> which the program recognises are:

default
Makes other special-commands in this same special affect defaults. See those commands
for details.

outputfile <filename>
The output file used for the current page will be named filename.gif (if the output type
were ‘gif’). A filename extension will be added if none is present, or if it does not match
the output type selected.

If the default command has been given, then this instead specifies the default filename
pattern, and the ‘filename’ should contain a single instance of either %d or #; if there is no
such instance, one will be implicitly added at the end.

The %d is precisely analogous to the behaviour of the --output option. However it is
actually rather tricky to get an unadorned percent character into a TeX special, unless
you play catcode tricks, and this is why you may alternatively include a # character to
indicate where the page number should go. In fact, since it is also rather tricky to get a
single # character in a special, any immediately following # characters are ignored. Thus
the recommended way of specifying this special is through something of the form

\special{dvi2bitmap default outputfile myfile-#}

using the # form, and letting the file extension be controlled by the output type which is
actually used.

absolute
Affects the crop command.

crop <side> <dimen>
Crop the bitmap on the current page so that the specified edge of the bitmap is <dimen>
points away from the bounding box of the blackened pixels. <side> may be one of ‘left’,
‘right’, ‘top’, ‘bottom’ or ‘all’, referring to the corresponding edge, or all four edges at once.

SSN/71.0 9

If the default command has been given in this special, then this pattern of cropping is
additionally made the default for subsequent pages. If the absolute command has been
given, then the crop position is set at <dimen> points from the appropriate edge of the
‘paper’.

The -c and -C command-line options (Section 2.1) have the effect of setting initial defaults.
In the absence of either of these, the initial crop is exactly at the bounding box.

default imageformat <format>
Set the default image format, which should be one of the keywords ‘xbm’, ‘xpm’ ‘gif’,
‘png’. This is equivalent to specifying the image format through the -t option (section
Section 2.1).

The keyword is just imageformat, but you must specify the default keyword when you
specify imageformat; this is for consistency, and makes it clear that this is setting a default
format rather than setting the format only for the next image (that’s not implemented at
present, but could be added).

default foreground|background <red> <green> <blue>
Sets the (default) foreground and background colours for text. This works, as long as you
specify the colour change before any text is output, since you can’t, at present, change the
colours after that. Specifically, you can’t change the colours for a fragment of text in the
middle of a page; for this reason, and as with imageformat you should at present always
include the default keyword when using this special. The integers must be in the range
[0,255], and can be specified in decimal, octal or hex (ie, 127=0177=0x7f).

strut <left> <right> <top> <bottom>
This places a ‘strut’ in the generated file. Using the usual TeX \strut won’t work:
that would leave the appropriate space when TeXing the file, but that space doesn’t
explicitly appear in the DVI file (which is just a bunch of characters and locations), so
when dvi2bitmap fits its tight bounding box to the blackened pixels in the file, it knows
nothing of the extra space you want.

The ‘strut’ special forces the bounding box to be at least ‘left’, ‘right’, ‘top’ and ‘bottom’
points away from the position in the file where this special appears. All the dimensions
must be positive, and they are floats rather than integers.

If you wanted to set a page containing only the maths ‘${}^\circ$’ (why, is another
matter), dvi2bitmap would normally make a tight bounding box for the bitmap, so that
you’d get an image containing only the circle (unless other crop options were in force). If,
in this case, you put in a special such as \special{dvi2bitmap strut 0 2 10 2.5}, you
would force the bounding box to come no closer than 0pt to the left of the position in the
file where this special appears, 2pt to the right, 10pt above and 2.5pt below.

A useful bit of TeX magic is:

{\catcode‘p=12 \catcode‘t=12 \gdef\DB@PT#1pt{#1}}
\def\DBstrut{\strut\special{dvi2bitmap strut 0 0
\expandafter\DB@PT\the\ht\strutbox\space\expandafter\DB@PT\the\dp\strutbox}}

Once you’ve done that, the command \DBstrut will put an appropriate strut in the output.

10 SSN/71.0

mark
This sets a ‘mark’ in the generated file, which is reported when you specify --query=bitmaps
(see item ‘-Q, --query=[keyword-list]’). Normally, --query=bitmaps writes out the
horizontal and vertical size of the generated bitmap. If use of this special has placed a
‘mark’ in the bitmap, however, then the --query option also reports the position of that
mark, as a position within the bitmap, such that the top-left corner of the bitmap has
coordinates (0,0). For example, after

\noindent\special{dvi2bitmap mark}Hello

the command line

dvi2bitmap --query=bitmaps foo

might report

Qbitmaps foo-page1.png 80 14 -1 10

indicating that the bitmap is 80 pixels wide by 14 high, and that the reference point, after
cropping, is at position (-1, 10). The ‘-1’ is because the mark appears to the left of the
‘H’ of ‘Hello’ (and the ‘H’ probably has some negative offset), and the ‘10’ indicates that
the baseline of this text is 10 pixels from the top of the bitmap; this latter information
might be useful when working out how to position this bitmap within a generated HTML
file. See Section 3.4 for a discussion of how to do that.

Both here and in the support for the ‘strut’ special, there is a great deal of scope for
off-by-one errors; also it’s unclear what is the best interface to this functionality, so it’s
possible that this might change in subsequent versions. The author welcomes comments.

unit <u>
The units in the ‘strut’ and ‘crop’ specials are by default in TeX points. You may switch to
a different unit with the ‘unit’ special. The specifier ‘u’ gives a unit name, which may be
selected from the set of units TeX knows about (‘pt’, ‘bp’, ‘cm’, and so on), plus ‘pixels’,
and ‘dvi’ to select DVI file units (usually the same as ‘sp’). If the ‘default’ qualifier is
present, this setting applies to subsequent special strings as well.

For example, the pair of commands

\special{dvi2bitmap default outputfile trial-# unit pc crop all 5}
\special{dvi2bitmap absolute crop left 5}

will change the output filename pattern for the rest of the DVI file, and set a 5pc margin round
the bounding box. The current page, however, will have a left-hand crop five points in from
the left hand side. Remember that TeX’s origin is one inch from the left and the top of the
paper, and it is with respect to this origin that the program reckons the absolute distances for
the cropping.

SSN/71.0 11

2.3 Exit value

Exits with a non-zero status if there were any processing errors. Having no fonts present counts
as a processing error.

If there is at least one font present, then missing fonts will be replaced by the first cmr10 font it
finds, or a more-or-less randomly chosen alternative if that font is not used at all. The program
will produce a warning if the -q option is not present, but it will return with a zero (success)
status.

Exception: If the -n option (see Section 2.1) is present, then the program returns success only
if all fonts are present.

2.4 Examples

Basic usage examples.

% dvi2bitmap --resolution=110 --magnification=2 --scale=2 \
--output-type=gif hello.dvi

This converts the file hello.dvi to a GIF bitmap. It first sets the magnification factor to 2, so
that the program uses a double-size font (eg, .../cmr10.220pk), then scales the bitmap down
by a factor of 2 to obtain a bitmap of the correct size.

% dvi2bitmap -n -Qf --resolution=110 --magnification=1.5 \
--verbose=quiet hello.dvi

Qf cmr10 165 110 1.5 localfont

This reads the DVI file to find out what fonts are required, but does not process it further.
It then tries to find the fonts, fails, and produces a list of parameters which could be used to
generate the font files.

See also Section 2.5, and see Section 3 for more elaborate examples of use.

2.5 Finding and generating fonts

2.5.1 Finding fonts

The program searches for fonts using a number of mechanisms.

1. The -fp option (see above) specifies a colon-separated list of filename templates which
should be searched for font PK files. If this is given on the command line, it overrides...

2. The DVI2BITMAP PK PATH environment variable, if defined, specifies a colon-separated list
of filename templates which are to be searched for PK files.

12 SSN/71.0

3. If the program cannot find fonts using the environment variable, and if it was configured
with support for the kpathsea library (see Section 5.1), then it should find PK files using
the same mechanism other DVI processors use.

4. dvi2bitmap can be configured to use a script to find fonts. If the program was not
configured to use kpathsea or the search fails, then the program invokes a script which
knows where to find font files, given a search pattern, and which returns a single line
containing a discovered font filename. See item ‘ --with-fontfinder’.

The third method is the ideal -- you should build dvi2bitmap using the kpathsea library if
possible (see Section 5.1.1 for how to obtain it): it is because other DVI-processing programs
like dvips and xdvi are built with the kpathsea library, that you normally never have to worry
about where fonts live. The kpathsea library is generally integrated with the font-generation
commands, and can be queried using the kpsewhich command.

There are one or two possible wrinkles with the third method. The path-searching library is
very powerful and flexible, but it is possible to be tripped up by its configuration file.

Firstly, the program has to find the configuration file. The program should sort this out for
itself at configuration time, but it is possible that you might have to give it some help. If you
specify the TEXMFCNF environment variable, setting it to the directory which contains your TeX
installation’s texmf.cnf file, then this overrides the program’s notion of where the configuration
should be. You can find this file using the command kpsewhich cnf texmf.cnf.

Secondly, it’s possible to break the configuration file. Certain TeX distributions (the ones that
came with early RedHat 6.x distributions are ones I know about) are broken in an unfortunate
way. See Section 2.5.2 for a discussion.

2.5.2 Not finding fonts

It can sometimes happen that dvi2bitmap fails to find fonts, successfully calls mktexpk to build
them, but then still fails to find them, even though mktexpk has put them where they should
be. There are (at least) three possible reasons for this.

If you are using the kpathsea library, there might be some misconfiguration which is confusing
it. You can trace kpathsea’s deliberations in massive detail by giving the option -ggp (item
‘-g, --debug=[spec]’).

Perhaps you do not have the kpathsea library installed, or have disabled it, but you have
requested that font-generation be enabled (see Section 5.1). What happens in this case is
that mktexpk successfully builds the fonts, and installs them in the correct place, where ‘cor-
rect place’ means ‘the place where kpathsea would find them’; you’re not using kpathsea,
so no fonts for you. What you have to do in this case is work out where the ‘correct place’
is (kpsepath and kpsewhich can help here), and specify that place using either the -fp op-
tion or the DVI2BITMAP PK PATH variable, as above (this is confusing, I know, but more-or-less
unavoidable, since we are here trying to do kpathsea’s job, without kpathsea).

I think it is also possible to fall victim to a race condition, where the font is built successfully,
but the program looks for it in the correct place before the font is fully flushed to disk, or
(mumble) something like that. Simply running dvi2bitmap a second time seems to work OK.
I’m not sure precisely what’s going on here, and I’d welcome more precise observations, here.

SSN/71.0 13

Another, slightly nastier reason is as follows.

Some texmf.cnf files declare the location of the user-writable font directory though a setting
like

VARTEXFONTS=$SELFAUTOPARENT/var/lib/texmf

whereas others have something like

VARTEXFONTS=$TEXMFLOCAL/fonts

Now, $SELFAUTOPARENT is a variable which is set by the kpathsea library to be the grandparent
directory of the executable which uses the library. So, for /usr/bin/{tex,latex,mktexpk,...},
it’s /, but if your dvi2bitmap binary doesn’t live with the other dvi-ware then its $SELFAUTOPARENT
will be different, so that dvi2bitmap will look for fonts in a different place from the place where
mktexpk put them when it successfully generated them.

I would argue fairly strongly that having the VARTEXFONTS directory depend on the location of
the dvi-ware executables is a very silly thing to do. This was the case in the teTeX distribution
which came with RedHat 6.0, though this was fixed pretty rapidly. If you’ve fallen foul of this,
then you can either

• change your texmf.cnf file to something more like the second example above; or

• install dvi2bitmap along with the other TeXware.

I’d much prefer the first alternative, myself.

A third option is to get dvi2bitmap to work around the problem, by telling it to claim to
be some program which is installed along with the other dvi-ware. You do this with the
--enable-fake-progname option to the configuration script (see item ‘ --enable-fake-progname’).

2.5.3 Generating fonts by hand

If you didn’t enable automatic font-generation, or if you did and something went wrong, you
might have to generate fonts by hand. You need to look at the documentation for your TeX
system, specifically the mktexpk and MakeTeXPK scripts (one of which might be just an interface
to the other).

See the discussion of the ‘make test’ script in Section 2.5.1. Also, note that the option -Qg,
given to dvi2bitmap, displays the font-generation commands which would be required to build
the fonts missing from the specified DVI file. These are the commands which dvi2bitmap would
employ to generate these fonts, when automatic-font-generation is enabled.

Since dvi2bitmap’s default resolution is 72 dpi, as opposed to the usual printer resolution of 300
or 600 dpi, you are unlikely to have suitable fonts on your system, and will need to generate
them. The program will generate these automatically, if it was configured with support for that
(see Section 5.1); if it wasn’t configured with that support, or if the automatic font generation
fails, you might need to generate the fonts by hand.

14 SSN/71.0

How you generate fonts depends on your TeX distribution. As explained in Section 2.4, you can
determine which fonts you need using the -Qf option. The teTeX and TeXLive TeX distributions
include scripts to generate fonts for you; if you have a different distribution, there might be a
similar script for you to use, or you might have to do it by hand. In the case of teTeX, the
command you’d use in the example above would be:

% MakeTeXPK cmr10 165 110 1.5 ibmvga

This would generate fonts using the ibmvga Metafont mode, using a base resolution of 110 dpi
(the default for that mode), at a magnification of 1.5 times, giving a resultant resolution of 165
dpi.

If you’re using the TeXLive distribution, the equivalent command would be:

% mktexpk --mfmode ibmvga --mag 1.5 --bdpi 110 --dpi 165 cmr10

If you want to use the same mode as you use for printing documents, then the mode localfont
should do the right thing. Otherwise, and probably better if these images are intended for the
screen rather than paper, you could use a more specialised mode such as ibmvga, which has been
tweaked to be readable at small resolutions. See the file modes.mf somewhere in your metafont
distribution for the list of possibilities.

After you have created the fonts, try giving the command

% kpsewhich pk cmr10.165pk

to confirm that TeX and friends can find the new fonts, and that your dvi2bitmap environment
variable is set correctly. This command is part of the kpathsea distribution, rather than the
core TeX distribution, so may not be present on your system.

2.5.4 Font-string templates

The search-path and font-finder routes use font-string templates. Here, the components of a
font file name, or a font-finding command, are specified using placeholders like %f. You may

use

%M mode (eg. ibmvga)
%f font name (eg. cmr10)
%d dpi (eg. 330)
%b base dpi (eg. 110)
%m magnification (eg. 3)
%% %

Thus, using these values as an example, if one of the entries

in DVI2BITMAP PK PATH were </var/tmp/%M/%f.%dpk>, this would expand into </var/tmp/ibmvga/

cmr10.330pk>. Alternatively, if we had given the font-finder script as /usr/local/teTeX/bin/kpsewhich
pk %f.%dpk, the dvi2bitmap would have executed the command .../kpsewhich pk cmr10.330pk,
which would have returned with a suitable font path.

SSN/71.0 15

3 Usage notes

3.1 Good choices of fonts and scaling

There is a certain amount of subtlety in choosing fonts and resolutions for maximum readability.

The fonts that dvi2bitmap (currently) uses by default are from the cmr family, and generated
using Metafont mode ibmvga, chosen because its design resolution, of 110 pixels to the inch,
is approximately right for bitmaps viewed on the screen. This is not, however, necessarily the
optimal choice in all circumstances.

You can produce some simple antialiasing by magnifying the output bitmaps then scaling them
down, so that:

% dvi2bitmap --magnification=2 --scale=2 myfile.dvi

doubles the size of the bitmaps, then halfs it, effectively blurring it in the latter stage. This
works quite well. You don’t necessarily get better results with larger factors (though it does,
of course, depend on the situation), because Metafont already does some work to make the
characters easier to read, and I suspect that excessive antialiasing merely frustrates this.

If you choose a different Metafont mode, it can make a difference. In your TeX distribution,
there should be a file called modes.mf, containing a large collection of Metafont font-generation
modes (look for it using kpsewhich modes.mf if you have that command), and there are several
modes in this set which have resolutions in the 70 to 200 range, which are therefore about the
right size to be useful in this context. You’re probably aiming for a resolution of around 100
pixels per inch, if you want the text in the output bitmap to be around the same size as the
other text on your monitor. For example, try the ncd and nec modes:

% dvi2bitmap --magnification=2 --scale=2 --font-mode=ncd --resolution=95 try.dvi
% dvi2bitmap --scale=2 --font-mode=nec --resolution=180 try.dvi
% dvi2bitmap --magnification=2 --scale=4 --font-mode=nec --resolution=180 try.dvi

Note that the declared resolution must match the font mode -- the default resolution of 110 is
designed to match the default mode of ibmvga. Also the nec mode, because its base resolution
is large anyway, only needs to be scaled down to get adequate antialiasing.

It should be possible to create a Metafont mode specifically for dvi2bitmap applications. That
might be a useful project for someone!

Another thing to look at is whether changing the font family can help. The Computer Modern
family is, of course, designed for paper. The Concrete Math family1, though also designed
primarily for paper, has features which make it particularly suitable for this application. The
FAQ article which discusses maths font choices2 remarks that

Since Concrete is considerably darker than Computer Modern, this variant may be
of particular interest for use in low-resolution printing or in display-oriented applic-
ations such as posters, transparencies, or online documents.

1http://www.tex.ac.uk/cgi-bin/texfaq2html?label=concrete
2http://www.tex.ac.uk/cgi-bin/texfaq2html?label=psfchoice

16 SSN/71.0

As well as this, these fonts have rather simpler outlines than Computer Modern and they are
rather more upright, both of which make them more robust to being rendered at rather small
resolutions.

You can use the concrete maths fonts simply by adding the declaration

\usepackage{concmath}

to the preamble of your LaTeX document. In tests, the best configuration for clarity in a bitmap
appeared to be a document using the concrete maths fonts, plus the dvi2bitmap invocation

% dvi2bitmap --magnification=2 --scale=4 --font-mode=nec --resolution=180 try-cc.dvi

Any observations on this topic would be warmly appreciated.

Many thanks to Doug du Boulay at titech.ac.jp for raising this issue, for thus prompting me
to discuss the various options, and for then doing the critical testing work.

3.2 Using dvi2bitmap in a pipe

dvi2bitmap is perfectly happy reading DVI files from a pipe, so that

cat myfile.dvi | dvi2bitmap --pipe -

will work perfectly well. Since the program knows that the standard input -- indicated by the
- argument to dvi2bitmap -- is not seekable, the option --pipe is actually redundant. This is
not by itself particularly useful, since TeX is not written to send its DVI output into a pipe.

If, however, you make a ‘named pipe’ beforehand, using the Unix mkfifo command (a FIFO,
or first-in-first-out, is the other name for such an object), then TeX can be persuaded to send
its output there.

% mkfifo myfile.dvi
% ls -l myfile.dvi
prw-r--r-- 1 norman admin 0 Aug 12 00:18 myfile.dvi
% latex myfile >myfile.stdout &
% dvi2bitmap --pipe mkfile.dvi

Here, we create the FIFO using the mkfifo command; looking at it, we see that the first
character on the ls line is a p, indicating the type of object it is. We start (La)TeX going in
the background (achieved by the &), putting its chatty output into a file, and it merrily writes
into the ‘file’ myfile.dvi. Immediately afterwards (we’ve shown this on two lines, but the two
commands could be run together with only the & separating them) we start dvi2bitmap, telling
it to read from the named pipe. The pipe effectively synchronises the two processes, so that
if there is nothing to read, dvi2bitmap is briefly suspended, and if the pipe is full, LaTeX is
suspended. After this performance, the DVI file, myfile.dvi ends up zero size again, and the
process can be repeated.

You can go further than this, and use a FIFO for LaTeX’s input, too:

SSN/71.0 17

% mkfifo myfile.tex myfile.dvi
% cat foo.tex >myfile.tex & \

latex ’\input myfile.tex’ >myfile.stderr & \
dvi2bitmap --pipe myfile.dvi

(the trailing backslashes indicate that this second set of commands is all on one line). The rather
odd form of LaTeX invocation (note the quotes) stops TeX from peeking at the file, looking for
the magic %& line which can tell it which format to use; since the input is a pipe, it’s unseekable,
so we must use this form, or else LaTeX fails.

3.3 Processing many bitmaps

If you have a large number of fragments of TeX to process, it is best not to invoke dvi2bitmap
for each one individually. Also, the program does not (yet) allow you to specify more than one
DVI file as input. In this situation, it is best to generate an input TeX or LaTeX file which
contains all of the text you wish to process, with one fragment per page.

For example, the following can help:

\documentclass{article}
\pagestyle{empty}
\special{dvi2bitmap default imageformat png}
\newcommand{\neweq}[1]{\vfil\break\special{dvi2bitmap outputfile #1.png}}
\begin{document}

\neweq{index-html-alpha}
α

\neweq{index-html-aprime}
$A’=(0,\alpha,0,0)$

[...]

\end{document}

That includes a special to make PNG the default output format, and defines a command se-
quence, \neweq which simultaneously forces a new page and inserts a special to name the output
file. A script which generates a file like this and then looks for the resulting bitmaps, with known
names of course, can run very efficiently. Combining that with the techniques in Section 3.2
can work wonders.

3.4 Using marks to position bitmaps

When including small images in an HTML page, it can be difficult to get the images to line up
with the rest of the text, because a text with descenders (characters which go below the line
such as ‘p’ or ‘g’) cause the image to be offset from the text line. You can use the ‘mark’ facility
to tell you how much you need to offset such an image so that it lines up properly with the
surrounding text.

For example, consider the following usage:

18 SSN/71.0

% cat temp.tex
\nopagenumbers
\noindent\special{dvi2bitmap mark}%
Hello, this is dvi2bitmap
\bye
% tex temp.tex
This is TeX, Version 3.14159 (Web2C 7.3.11)
(./temp.tex [1])
Output written on temp.dvi (1 page, 240 bytes).
Transcript written on temp.log.

So, a simple test file with a single line in it, with descenders (the ‘p’). The ‘mark’ special goes
at the beginning, following \noindent. This is important, otherwise the point that is marked is
the very top-left of the image, not the bottom-left.

The output with --query=bitmaps is:

% dvi2bitmap --verbose=quiet --query=bitmaps temp
Qbitmaps temp-page1.png 163 14 -1 11

...where verbose=quiet has been used to turn off the usual chatter. It tells us that the bitmap
as a whole is 14 pixels deep, and that the mark, which is on the TeX baseline, remember, is at
position (-1,11) relative to an origin at the top-left of the bitmap; or in other words there’s 3
pixels of space between the TeX baseline and the bottom of the image. We therefore know that
we need to offset the image by three pixels to make it line up properly.

There are several ways to do that, but one way is to use per-element CSS properties, like this:

% dvi2bitmap --verbose=quiet --query=bitmaps temp | awk
’{printf "\n", $2,
$6-$4}’

%

So that’s generated an element which has the correct ‘src’ attribute (from column 2 of
the Qbitmaps line) and the correct offset (column6 - column4). That uses awk, but if you’re
generating your HTML pages with something like Perl or Python (substantially more sensible
than awk...!), say, you could do an analogous thing with the dvi2bitmap output, and put the
generated elements in the correct places in the output HTML file.

SSN/71.0 19

4 The libdvi2bitmap library

The main bulk of the code which implements dvi2bitmap is in a library, and the program itself is
a rather thin wrapper on top of this. This library is intended to be usable for other applications.

The library is written in C++, and provides an abstraction of DVI files, PK font files, Bitmaps,
and various other objects used to build these ones. By default, the build procedure creates both
static and dynamic libraries.

The library API is extensively documented in the doc libdvi2bitmap/ directory of the distri-
bution.

20 SSN/71.0

5 Building and installing dvi2bitmap

dvi2bitmap is packaged in two slightly different ways, one which respects the bundling conven-
tions of the Starlink Project3, and one which is more usual for network-distributed software.

When you unpack the distribution tarball, you should find at least the files dvi2bitmap source.tar,
Makefile.starlink and mk. If you’re on a Starlink machine, you can, and should, build the
software the Starlink way, using the mk script (see Section 5.2); but if you’re not, you should
unpack the dvi2bitmap source.tar file, and build it the conventional way (see Section 5.1).
Since the Starlink mk script is really just a driver for the Makefile within the tar file, you should
get the same results both ways.

5.1 General installation and configuration

The package uses a automake/autoconf/libtool build system. Building should therefore be
simple:

% ./configure
% make
% make install

but see the configuration options below.

By default, both a static and a dynamic library are built. If there is some reason why building
the dynamic library fails on your platform, configure using --disable-shared and you’ll build
a static library only.

It’s a good idea to run (cd test;make) as well. See Section 2.5.1.

To install, just copy the executable dvi2bitmap wherever you want it to live.

You can customise the program using flags to the ./configure command:

--with-kpathsea and --without-kpathsea
If you have the kpathsea library (see Section 2.5.1) but don’t, for some reason, want to
use it, then give the configure option --without-kpathsea. By default, the configuration
enables use of the library if it is installed (that is, if the kpathsea include files and library
are somewhere the compiler will find them. If kpathsea is disabled (by default or by
request), then fonts will not be generated by default.

If you have the kpathsea library, but it is not in the standard place, then you can provide
an argument to the --with-kpathsea option giving the name of a directory below which
are directories include and lib, containing the required kpathsea include files and library.
If you don’t have the kpathsea library available, see below (Section 5.1.1) for notes on
obtaining it.

--disable-texmfcnf
The kpathsea library finds its configuration files in two ways, either automatically if
it is installed in the same directory as the rest of the TeXware, or using the TEXMFCNF

3http://www.starlink.rl.ac.uk

SSN/71.0 21

environment variable. The dvi2bitmap program sets the latter variable internally, unless
it finds it already set. If this will be inconvenient, you can suppress this behaviour by
providing the flag --disable-texmfcnf, or equivalently --enable-texmfcnf=no.

--enable-fontgen
The program can attempt to generate fonts, and will do so using the MetaFont mode
ibmvga, which has a resolution of 110 dots-per-inch.

You can give an argument to this command, which specifies a command-line which will
build and install a required font, and return its path on standard output. This uses
the font-string template described in Section 2.5.4. You could duplicate the default (the
mktexpk script if present) with the option

--enable-fontgen=’<path>mktexpk --dpi %d --bdpi %b --mag %m --mfmode %M %f’

The default for this option is ‘on’ -- the program will attempt to generate fonts. Do
note, however, that if the kpathsea library is not enabled, then the program will not be
able to find the fonts it generates, unless you configure it correctly using either -fp or
DVI2BITMAP PK PATH (see Section 2.5.1).

If you wish to disable this automatic font generation, give the option --disable-fontgen.
Note that this does not completely disable font generation -- it merely sets the default for
font generation to ‘off’, and it can be switched back on again using the option -fG.

If you wish to change the default mode, you can do so using the option item ‘ --with-fontgen-mode=mode,res’.

--with-fontgen-mode=mode,res
If you wish to change the default parameters for font-generation, you can set both the Meta-
font mode and resolution using this option. For example, the option --fontgen-mode=pcprevw,118
will make pcprevw, which has a resolution of 118 dpi, the default MetaFont mode. Note
that the resolution you specify must match the mode: see file modes.mf for a list of modes
and resolutions (use kpsewhich mf modes.mf to find this). You can change the resolution
and mode on the fly using the -fm and -r options to the compiled program (Section 2.1).

--with-fontfinder
This specifies a command to run to find fonts. It is preferable to use the kpathsea library
if possible, but if this is difficult, then you can specify a script to run to find fonts. This
uses the font-string template described in Section 2.5.4. To use the standard kpsewhich
command, for example, you could give the option

--with-fontfinder=’/usr/local/teTeX/bin/kpsewhich pk %f.%dpk’

--enable-mktexpk and --enable-maketexpk
In the default configuration, the program will generate missing fonts using one of the
standard scripts present in most TeX distributions. The configuration process looks
first for mktexpk then MakeTeXPK, and uses whichever it finds first. If you have both
scripts but wish to use MakeTeXPK for some reason, you will have to give the option
--disable-mktexpk; if you wish to disable both, you will have to give --disable-maketexpk
as well. Both options take an optional argument giving the path to an alternative script
with the same calling interface.

22 SSN/71.0

--with-png (default: enabled)
If you give this option, and if the PNG library is installed (needs a version after 0.96),
then the program will be compiled with support for PNG bitmaps as an output format.
You can obtain the PNG library from the PNG home page4. You can disable the use of
PNG with the option --without-png.

--enable-gif (default: disabled)
The program generates only XBM bitmaps by default. If you want it to be able to generate
GIFs, then give the configure option --enable-gif. The GIF format is the copyright of
CompuServe. As far as I understand it, one does not need a licence from CompuServe
if one is distributing non-commercial, not-for-profit software, such as this. You probably
shouldn’t enable GIF support when you build this program unless you’re in that category
as well. But don’t listen to me: there’s a much fuller account of the whole sorry business
in the Graphics File Formats FAQ5 (HTML6).

--enable-fake-progname
This option enables a workaround which allows dvi2bitmap to have the expected beha-
viour when (a) you do not install dvi2bitmap along with the other dvi-ware, and (b)
your texmf.cnf file has VARTEXFONTS (or a similar variable) depending on one of the
SELFAUTO... variables (such a texmf.cnf file is probably broken, but that may not be
your problem, or within your power to fix). This option makes dvi2bitmap claim to be a
different DVI-reading program which is installed in the standard place. See Section 2.5.2
for discussion. The configuration script uses the location of the xdvi program by default,
but you can override this by giving the full path to an alternative as an argument to this
option (that is, --enable-fake-progname=/path/to/dviprog).

Since this uses undocumented behaviour of the library (‘use the source, Luke!’), you almost
certainly shouldn’t enable it unless you have to.

--with-path-seps
The default configuration is for Unix, and uses the Unix defaults for filesystem path and
search path separators. If you are building it on some other architecture, you can alter
the defaults by giving a two-character argument to this option, giving the two separators
in order. For example, the arguments appropriate for DOS would be

--with-path-seps=’\;’

The ./configure command without any options is equivalent to ./configure --with-kpathsea
--with-png --enable-mktexpk (meaning that kpathsea and PNG output will be enabled if lib-
rary support for them is found).

The program builds successfully on (at least):

4http://www.libpng.org/pub/png/
5ftp://rtfm.mit.edu/pub/usenet/news.answers/graphics/fileformats-faq
6http://www.oreilly.com/centers/gff/gff-faq/gff-faq1.htm

SSN/71.0 23

Platform Version Compiler
powerpc-apple-darwin6.6 (MacOS X, 10.2.6) 0.11b1 g++ 3.1 20020420 (prerelease)
sun-sparc-solaris2.9 0.11b1 CC: Sun WorkShop 6 update 2 C++ 5.3 2001/05/15
alphaev67-dec-osf5.1 0.11b1 Compaq C++ V6.5-014
i686-pc-linux-gnu (RedHat 7.3) 0.11b1 g++ 2.96
i686-pc-linux-gnu (RedHat 7.3) 0.10 gcc 2.96
i686-pc-linux-gnu (RedHat 6.2) 0.10b1 egcs-2.91.66
powerpc-apple-darwin6.4 (MacOSX 10.2) 0.10 g++ 3.1 20020420 (prerelease)
sparc-sun-solaris2.8 0.10b1 egcs-2.91.66
alphaev56-dec-osf5.0 0.10b1 egcs-2.91.66
i686-pc-linux-gnu (RedHat 6.2) 0.9-7p1 egcs-2.91.66
powerpc-unknown-linux-gnu (Mac mklinux DR-0.3?) 0.9 egcs-2.90.25 980302 (egcs-1.0.2 prerelease)
sparc-sun-solaris2.7 0.9 egcs-2.91.66
sparc-sun-solaris2.7 0.9 gcc 2.8.1
sparc-sun-solaris2.7 0.9-6 WorkShop Compilers 5.0 98/12/15 C++ 5.0
alpha-dec-osf4.0f 0.9-6 Compaq C++ V6.2-024 for Digital UNIX V4.0F
i386-pc-solaris2.6 0.9-7p1 gcc v2.8.1/libstdc++ v2.8.1.1

The ‘version’ column is the last version which was actually tested on that platform/compiler
combination. Reports of compilations on other platform/compiler combinations gratefully re-
ceived.

It should be written in standards-conforming C++, so if it doesn’t build then (1) it’s not as
conformant as I think it is (in which case please tell me), (2) your compiler is not as conformant
as you think it is (in which case please don’t tell me), or (3) you need to invoke some magic to
get the compiler to be conformant (in which case tell me, if there’s something I can do in the
autoconfigure script).

You can override the C++ compiler the configure script will choose by setting the environment
variable CXX, either via

% CXX=cxx ./configure

or

% env CXX=cxx ./configure

depending on your shell.

Run regression tests with (cd test;make) in the build directory. This includes a separate
whole-program test which additionally gives advice about setting environment variables. You
can run this script separately with the command (cd test;make pathtest)

Regression test 6 currently fails to link when using Compaq cxx, for some arcane C++ reason
I have yet to diagnose. The whole-script test mentioned above works, though.

5.1.1 Obtaining the kpathsea library

Not all TeX distributions install the kpathsea library, even though they install applications
built with it, and the texmf.cnf configuration file which controls it.

24 SSN/71.0

If the library does not appear to be in your distribution, then you can obtain and build it
yourself. The library is distributed as part of the web2c (Unix TeX source) distribution, which
you can find at <ftp://ftp.tug.org/tex/web2c.tar.gz>, or mirrored on CTAN sites (for example
at <http://www.tex.ac.uk> in directory <systems/web2c>).

Take a copy of the library (this is a big distribution), and unpack it. Go into the kpathsea
directory and do the usual ‘./configure; make; make install’ routine. With (some?) older
distributions of the library this appeared not to work, and you had to go to the parent of the
kpathsea directory, delete the web2c directory (which is the bulk of the distribution), then
configure and build it as usual, ignoring the warnings about the missing main texmf tree.

5.2 Starlink nodes

If you are on a Starlink node, then you should be able to use the usual mk script. Define the
environment variables INSTALL and SYSTEM as usual. SYSTEM can be any one of the Starlink-
supported platforms ix86 Linux, alpha OSF1 or sun4 Solaris. Then give the commands

% ./mk build
% ./mk install

This build configures support for GIFs, plus support for the kpathsea library if that library is
present on the system (it is not distributed with this package and not present by default on all
project machines).

There are some issues involved in creating, and hence in installing, an export run distribution.
Part of the configuration of dvi2bitmap involves establishing the location, on the build system,
of font-building scripts and TeX configuration files. However, the point of the export run
distributions is that it should run on systems other than the build system. We deal with this
by (a) configuring dvi2bitmap to use a custom font-building script, which is distributed and
installed with the package, and which is simply an interface to whichever of the real font-builders
is available on the target system, and (b) configuring it with --disable-texmfcnf. The former
should be OK as long as one of mktexpk and MakeTeXPK is in the path after installation. The
latter, however will cause a problem if kpathsea is enabled (which may or may not be the
case for the export run system), since this will probably fail unless the environment variable
TEXMFCNF is defined (see kpsewhich cnf texmf.cnf). You can see what features are enabled
with the command dvi2bitmap -V.

SSN/71.0 25

6 Bugs, extras, and further developments

To report bugs, please send to norman@astro.gla.ac.uk a brief description of the problem; a
minimal TeX file which reproduces it; some indication of the machine you’re running on (uname
-a is good); and the output of dvi2bitmap -V, which shows the options you have enabled.

See the TODO list in the distribution, for the list of things I at least would like to see added to
the code.

Bright ideas, fixes and (especially) implementations, cheerfully received.

In the <.../extras> directory of the distribution is a script img-eqlist.pl, which transforms
a file of LaTeX fragments into a LaTeX file, keeping track of filenames, and avoiding generating
duplicate bitmaps for duplicated maths.

26 SSN/71.0

7 References and acknowledgements

CTAN, the Comprehensive TeX Archive Network, is the repository of TeX and LaTeX doc-
umentation. The archive is mirrored in numerous places, but the UK node is at <http://

www.tex.ac.uk>.

DVItype and PKtoPX are two programs Donald Knuth intended as model DVI and PK file
readers, and as containers for the canonical documentation of the DVI and PK file formats.
They might be available as part of your TeX distribution, but are also available on CTAN,
in </tex-archive/systems/knuth/texware/dvitype.web> and </tex-archive/systems/knuth/pxl

/pktopx.web>.

The DVI Driver Standard, Level 0 is available on CTAN, in directory </tex-archive/dviware/

driv-standard>. This incorporates sections of the DVItype documentation. This program claims
to conform to this standard: if it doesn’t, please let me know.

Thanks for bug reports and other suggestions to Eitan Gurari7 (heroic tester), Oliver Schurr
and Oleg Bartunov (oleg@sai.msu.su).

Yamabe Kazuharu (tako da@qc4.so-net.ne.jp) supplied the writer for XPM bitmaps.

7http://www.cis.ohio-state.edu/~gurari/

SSN/71.0 27

A Maths and SGML/HTML

• W3C’s maths WG8. This covers MathML9, which is now a W3C Recommendation. The
working group also supports the www-math10 mailing list.

• Maths special topic at the SGML web page11

• Also, maths proposal from O’Reilly12.

• MathML at Concordia13

A.1 LaTeX maths within HTML

The real issue here (for me at least) is rendering equations within an HTML document. There
are several tools available which can do that with different trade-offs. The most popular method
is to write the equations in a LaTeX document, process it, and then hoik the equations out of
the resulting DVI file somehow (typically using dvips and a postscript to gif converter), and
display them on the web as gifs. The big disadvantage with this is that you get an awful lot of
gifs, and the conversion is rather inefficient.

All this hassle should become irrelevant once we get browsers which can render MathML directly.

There are reviews of the problems, and some of the tools, in articles Maths Typesetting for the
Internet14, and Comparative Review of World-Wide-Web Mathematics Renderers15.

LaTeX2HTML16 is the granddaddy of these translators -- it parses the LaTeX using Perl, and
spits out HTML, turning maths into gifs. It’s very robust by now.

John Walker’s textogif17 is a Perl program which orchestrates the various tools to do the con-
version via postscript, once you’ve generated the DVI file. It works, but it’s terribly slow, which
was the motivation for this program.

TeX4ht18 (TeX for Hypertext) uses TeX’s own parser, but still produces equations as gifs.
TeX4ht can also emit MathML from LaTeX. The TeX4ht documentation has a useful collection
of resources. There’s an alternative location for TeX4ht at TUG19.

tth: TeX to HTML translator20 (manual21). tth translates LaTeX maths directly to HTML,
with remarkable success and astonishing speed, and with good failure strategies. It works very
sweetly, but (a) requires you to tweak your browser to have it map the symbol font appropriately,

8http://www.w3.org/Math/
9http://www.w3.org/TR/REC-MathML/

10http://lists.w3.org/Archives/Public/www-math/
11http://www.oasis-open.org/cover/topics.html#sgml-math
12http://www.oreilly.com/people/staff/crism/math/
13http://indy.cs.concordia.ca/mathml/
14http://forum.swarthmore.edu/typesetting/index.html
15http://hutchinson.belmont.ma.us/tth/mmlreview/
16http://www.tex.ac.uk/tex-archive/support/latex2html/
17http://www.fourmilab.ch/webtools/textogif/textogif.html
18http://www.cis.ohio-state.edu/~gurari/TeX4ht/mn.html
19http://www.tug.org/applications/tex4ht/mn.html
20http://hutchinson.belmont.ma.us/tth/
21http://hutchinson.belmont.ma.us/tth/manual.cgi

28 SSN/71.0

and (b) the resulting HTML can’t be printed legibly. From the same source is TtHMML22, which
translates (La)TeX to HTML plus MathML.

nDVI23 is a DVI viewer plugin for Unix Netscape. This addresses the problem at the client end.

A.2 Other approaches to maths

A quite different approach is to use a different markup for maths, possibly requiring specialised
client software. These other notations typically use semantic markup -- expressing the structure
of the maths. At first sight, this seems preferable to LaTeX’s presentational markup, but its
weaknesses for authoring are exposed (I feel) when you realise that maths is not as closed and
unambiguous a language as computer scientists feel it ought to be. Semantic markup’s strength is
in interfaces with computer algebra systems, and databases -- Abramowitz and Stegun would be
ideal in this form! The major dislocation between the two approaches is what makes conversion
from presentational to semantic markup so easy. In passing, I’ll note that MathML has both a
presentational and a semantic variant.

MINSE24 uses a server to render maths into gifs on the fly. It seems to work rather nicely, but
works with its own semantic maths notation.

There is (was?) a project called Euromath25, which includes a structured SGML editor. This
project included a converter which could transform LaTeX to Euromath SGML26.

OpenMath27 might be a successor to Euromath. It’s an EC Esprit project which ‘proposes to
develop standards for the semantically-rich representation of mathematics’.

GELLMU28 is a LaTeX-like markup language, intended to be easy to convert to SGML. Spe-
cifically, it is intended to support maths (and hence conversion to MathML) well.

The following are specifically concerned with maths in SGML, using either MathML or other
maths DTD fragments.

WebEQ29 is a suite of Java programs which implement MathML. It’s commercial.

TeXML30 is a gadget from IBM which converts XML to TeX via a DTD fragment. You transform
your XML to an equivalent document marked up in TeXML, which you then separately transform
to TeX.

EzMath31 is a Dave Raggett proposal for producing maths on the web. It uses yet another
notation, and converts it to online form using a plugin (no printing, and Windows only, as of
April 1999).

22http://hutchinson.belmont.ma.us/tth/mml/
23http://www.nikhef.nl/~t16/public/ndvi/ndvi doc.html
24http://www.lfw.org/math/top.html
25http://www.dcs.fmph.uniba.sk/~emt/
26http://www.dcs.fmph.uniba.sk/~emt/EmSystem.html#editor
27http://www.nag.co.uk/projects/OpenMath/
28http://www.albany.edu/~hammond/gellmu/
29http://www.webeq.com/
30http://www.alphaworks.ibm.com/formula/texml
31http://www.w3.org/People/Raggett/EzMath

SSN/71.0 29

B TeX dimensions

When producing this program, I became terribly confused about the variety of dimensions which
appear in DVI and PK files. Table 1 is a summary of the sizes which appear, for the benefit of
anyone else attempting a project like this. The reference [Dn] refers to section ‘n’ of the webbed
DVItype document and [Pn] to section ‘n’ of the PktoPX document (see Section 7).

If you feel I have misunderstood something here, or got one of the conversion factors wrong (I
hate these!), please correct me.

Context Description See
DVI preamble num, den: multiply a ‘DVI unit’ by num/den to obtain a length in units of 10−7m [D17]

mag: DVI units are actually multiplied by (num×mag)/(1000× den) [D17]
DVI font definition d: a design size, in DVI units. The nominal size of the font. [D18]

s: a ‘fixed point’ scale factor, range 227 > s > 0, scaling d (see note). [D18]
PK preamble ds: the font design size in units of 2−20 points. [P12]

hppp, vppp: number of pixels per point, times 216 (see note). [P12]
Character tfmwidth: the width of the character (see note). [D37], [P9]

w, h: the width and height, in pixels, of the character pixel map. [P21]
hoff and voff: offset of the pixel map from the reference point. [P21]
dm, dx, dy: the pixel escapements. dm in pixels, dx and dy in pixels times 216 (see note). [P21]

Table 1: Sizes in TeX

1. s scales the design size, so that a font is actually used at (s × mag)/(1000 × d) times its
normal size.

2. hppp and vppp aren’t used as sizes, but can be used to check you have the right fonts by
comparing resolution, etc..

3. tfmwidth is the ‘physical’ size of a character, and is the only size that TeX uses in its cal-
culations, and which the DVI reader uses when working out how far to move the reference
point when it sets a character. This is defined in [P9] to be in units of FIXes, where one
FIX is 2−20 times the design size in points. [D37] describes how to multiply these widths
by scaling factors without overflowing.

4. The difference between the pixel escapements and tfmwidth is that the latter is a resolution-
independent shift of the DVI reference point, and the former is the PK file’s recommenda-
tion of the number of pixels the DVI processor should actually move. The DVI processor
keeps track of the two reference points, and readjusts the pixel-based one when rounding
errors move it too far from the resolution-independent one. See [D89] and [D91]; also
[D40].

A few useful conversions are:

• The design size of a font is a physical length, of ds/220 points. [P12]

• A FIX is a physical size, of length (designsize)/220

• A TFM width is a physical size. The tfmwidth parameter is in units of FIXes, so that the
TFM width is a length of tfmwidth fixes, which is equal to tfmwidth/220 × ds/220 points.

30 SSN/71.0

• Writing ‘dviu’ for the unit ‘DVI units’, ‘sp’ for the scaled point of 2−16 points, ‘px’ for
pixels, and dµ for Knuth’s deci-micron, or 10−7m,

1sp =
1

220
pt =

25400000
7227× 216

dµ

7227pt = 254cm = 25400000dµ

1dviu =
num× resolution

den× 254000
px

1dviu =
num× 7227

den× 25400000
pt

SSN/71.0 31

C Release notes

C.1 Release 0.13b3

No functionality changes

Small bug-fixes, from beta-testers

A couple of configuration fixes, for portability. The configure option --enable-gif is now the
default.

C.2 Release 0.13b2

There are no significant functionality changes from 0.12-2. However the build system changed
significantly when the repository was relocated to sourceforge, and this warrants a new minor
version, since the required changes, though they should be leaving the functionality unchanged,
are more than just bugfixes.

C.3 Release 0.12-2

Bugfix release.

• The mmap configure code was wrong in that, while it wouldn’t attempt to call mmap() on
systems without a working mmap (‘working’ according to the AC FUNC MMAP test), it
would try to compile it, which is incorrect.

• The problem was reported by a user who was building it under cygwin. The ./configure
output which he forwarded suggested that the system did have mman.h, but didn’t have a
‘working’ mmap -- so it thinks it’s got mmap, but autoconf disagrees (I’ve no idea what
autoconf takes as ‘working’). The actual report was an ‘invalid cast’ error which I’ve fixed.

C.4 Release 0.12-1

Bugfix release.

• Add configure code to cope with systems which declare mmap but fail to declare MAP FAILED
(required by Single Unix and POSIX).

C.5 Release 0.12

New and changed functionality:

• None -- no functionality changes from 0.12b2

32 SSN/71.0

C.6 Release 0.12b2

New and changed functionality:

• Add ‘unit’ special, and fix bugs in the ‘mark’ and ‘strut’ specials. This causes a few
single-pixel changes in the reported locations of marks and the bounding-boxes coerced by
struts.

• Conversions between units (‘pt’, ‘cm’, and so on) are generalised, and extra library func-
tionality means you’ll get this right more often.

• Refactoring of internal logic handling magnification and unit conversions. This is tremend-
ously error-prone, and difficult to write a regression test for, but it produces apparently
correct results as far as I’ve been able to test it. Be on the lookout for subtle errors.

• Various uninitialised-variable bugs caught.

C.7 Release 0.12b1

New and changed functionality:

• Input files are now mapped (using mmap(2)) if that functionality is available, and if they’re
determined to be seekable (ie, not a pipe). This should increase the speed of access to
large DVI files (but this probably wasn’t a huge bottleneck before).

• Modified DviFile::currH and currV so that they now report positions in multiple more
useful units. Enhanced library documentation.

• Added dvireport.cc program to report the contents of DVI files (in a different way from
the dv2dt suite), which also acts as an example of the use of the library.

• Modify --output so that if there is no ‘%’ character in the ‘pattern’, dvi2bitmap takes
this to be the name of the one output file; omitting the ‘%’ was previously an error.

• Added ‘mark’ special; the format of the --query=bitmaps output has been consequently
slightly enhanced.

• Modified interface to DviFile::getEvent so that the returned event should be released
by a method call, rather than delete.

• Fixed bug which meant DviFile could search for PK files in demented sizes (non-initialised
variable...)

C.8 Release 0.11

Bugfixes: correct semantics of DviFile::getEndOfPage, so that skipping the last page now works;
and Bitmap::scaleDown, so that creating multiple bitmaps now works again.

Reorder checks in configure, for robustness

SSN/71.0 33

C.9 Release 0.11b1

Major developments:

• The program is a wrapper for libdvi2bitmap, a library which abstracts DVI and PK files,
Bitmaps, and various other objects supporting these. This is built as both a static and a
shareable library.

• Can read DVI files from a non-seekable stream such as a pipe.

• Internal bitmaps are now expandable (no more guessing the output bitmap size)

• Build system redone using automake and libtool

• Released under the GPL.

• A few minor option changes (hopefully the last ones) since the previous version

C.10 Release 0.10b1

dvi2bitmap is now GPLed!

Option processing has completely changed, with long options added, and the short options
reorganised. The following table highlights important changes, where there is a straightforward

mapping.

old new Note
-bh -h, --height
-bw -w, --width
-bp -t, --paper-size
-C, -c -c, --crop
-fp -F, --font-search [1]
-fm -M, --font-mode
-fg, -fG -G, --font-gen
-g -g, --debug
-m -m, --magnification
-n -n, --preamble-only [2]
-l -l, --end-page
-p -p, --start-page
-pp -P, --page-range [3]
-o -o, --output
-P -X, --process [4]
-q -v, --verbose
-Q -Q, --query [5]
-r -r, --resolution
-R -R, --colours [4]
-s -s, --scalefactor
-t -T, --output-type
-V -V, --version

Notes:

• 1: this is now more flexible. Old -fp mypath is now --font-search=path=mypath

34 SSN/71.0

• 2: -n is (conventional) shorthand for --process=preamble-only

• 3: page-selection syntax has changed.

• 4: extra syntax added.

• 5: For consistency, none of the query options --query now automatially exit.

Font searching can now be done by a script specified either at compile time, or as the argument
to the --font-search=command=... option. This frees you from dependence on the kpathsea
library, without being therefore obliged to specify an explicit font path.

Changes in the configure script:

• Configure option --enable-png has turned into --with-png for consistency with --with-kpathsea,
since part of this option’s purpose is to indicate the possibly non-standard location of the
libpng library.

• Addition of --with-fontfinder option.

C.11 Release 0.9-7p1

Jeff Holt (jeff.holt@hotsos.com) noted build problems. Either the RedHat includes or gcc
have recently become fussier, which exposed a clash of prototypes within the kpathsea code.
Extra configuration code added to resolve this.

C.12 Release 0.9-7

Yamabe Kazuharu (tako da@qc4.so-net.ne.jp) supplied a writer for XPM bitmaps. This is
built-in, not using the XPM library (see the XPM home page32), so may not support all the
XPM functionality.

C.13 Release 0.9-6

Fixed a character-handling bug. Oleg Bartunov (oleg@sai.msu.su) identified an error in the
handling of some of the opcodes in the DVI file, which meant that only 7-bit fonts were being
set correctly (how parochial of me!). He also sent me the fix -- many thanks to him.

Also made a change to the options of the configuration script, turning --enable-kpathsea back
to --with-kpathsea, which is more sensible, in retrospect (I think the processing of this was
rather garbled in the previous version).

C.14 Release 0.9-5

Added some functionality, but more importantly corrected two nasty font bugs.

32http://www-sop.inria.fr/koala/lehors/xpm.html

SSN/71.0 35

• Added options -bp, to set initial bitmap size based on paper sizes and -Qp to list the sizes
available. Added option -PC to turn off cropping, which is useful if you want output of a
certain size.

• Fixed a bug which caused fonts loaded at magnified sizes to be requested at the wrong size,
even though, when they were found to be missing, the correct font-generation command
was being issued.

• Fixed the longish-standing bug to do with spacing at smaller font sizes: cmr7 and cmr12
now look as their maker intended.

• Corrected a bug which caused page-selection to be done subtly wrongly (font selections
were being ignored, and byte values of 140 in DVI data would have caused merry hell).

• configure script: The configuration for PNG now doesn’t rely on a libpng version better
than 0.96. Font-generation is now enabled by default, despite the potential for confusion,
which should be covered in the documentation.

• Added better diagnostics to InputByteStream.cc, so that if it goes wrong, you’re given at
least a clue why.

C.15 Release 0.9-4

No functionality change. The only difference from release 0.9-4 is to the packaging for Starlink
nodes (added a working export run target).

C.16 Release 0.9-3

No significant added functionality to the main program, but:

• Added -QG and -Qg options (see item ‘-Q, --query=[keyword-list]’).

• Added test directory, and test script, which aims to give useful advice about setting
DVI2BITMAP PK PATH if that turns out to be necessary.

• More discussing in the documentation about generating fonts, specifically referring folk to
the ‘make test’ target in the Makefile.

• Now option -q turns off warnings, but not errors (was rather inconsistent before), and -qq
turns off errors, too.

C.17 Release 0.9-2

Bugfix release. The program was crashing on Suns, when built with gcc 2.8.1. I’m not sure
I found any underlying problem, but I fixed something, which stopped it crashing for me
(Mmmm...).

This release adds a script img-eqlist.pl, to transform a file of LaTeX maths fragments into a
LaTeX file, keeping track of filenames, and avoiding generating duplicate bitmaps for duplicated
maths. See Section 6.

36 SSN/71.0

C.18 Release 0.9

No big changes, but a sufficiently significant change in the functionality to require a new minor
version, rather than just a new release number.

• The -Q options (see item ‘-Q, --query=[keyword-list]’) now write their output lines
(to stdout) prefixed by the option letters, so that the output of -Qf now consists of lines
starting ‘Qf ’. This makes it easier to disentangle the output if several of these options are
present -- it was added when option -Qb was added -- but means that any scripts parsing
the previous version’s output would break.

• Options -Rf and -Rb added (see item ‘-R, --colours=[keyword-value-list], --colors=[keyword-value-pairs]’),
to set the foreground and background colours on the command line, rather than just using
the foreground special. This is still a bit rudimentary, as it can be done only once, for the
whole document.

• Some improvements to the PNG output, so that when transparent PNGs are viewed
against their ‘natural’ background, they look the same as the same image without trans-
parency (ie, I fixed the relationship of the output palette and the alpha channel in this
case).

C.19 Release 0.8

Added support for palettised PNG output. This was intended to allow me to support full
transparency on PNGs, but the particular case which is appropriate for this seems to be very
poorly supported in PNG viewers, so, although I believe the output to be correct, you can’t see
the benefit in most cases.

That made it easy to support changing the foreground and background colours for output text,
so I did that as an encore.

Added the ‘strut’ special.

C.20 Release 0.7

Version number fiddling: this is still beta software, and as such shouldn’t be sent out with a major
version number of 1. Also, I’d been updating the ‘release number’ (after the hyphen) with new
releases -- this is incorrect, as this should indicate only bug-fixing or documentation changes,
rather than changes in functionality. I’ve therefore rationalised the version numbering, and
changed history to the extent of modifying the notes in this ReleaseNotes section. This shouldn’t
cause significant confusion, as this package has up to now only been circulated internally.

Added support for PNG graphics, using the libpng library, if it’s installed.

The Metafont mode used for building fonts is now configurable at runtime; the default is config-
urable at configuration time; and default default (!) mode and resolution now properly match,
so that you no longer have to give the -r option every single time.

The manpage source was brought up to date.

The -f option was split into the -fp, -fm, -fg and -fG options.

SSN/71.0 37

The --enable-fontgen flag was added to the configuration script.

Various clarifications to the documentation.

Assorted tidy-ups to get it to satisfy -Wall on a wider range of platforms.

C.21 Release 0.6

Added support to allow the program to lie about its name. For a discussion of the need for this,
see Section 2.5.1.

C.22 Release 0.5

Missing fonts are now generated by the program, and the TEXMFCNF variable is now set auto-
matically (unless that behaviour is suppressed at configuration time).

Support for more sophisticated cropping.

C.23 Release 0.4

The DVI2BITMAP PK PATH environment variable now accepts a colon-separated list of directories
to search. The font searching algorithm which uses that variable now does the font-size rounding
calculation properly, and will additionally search for fonts within 0.2% of the target size, as
required by the DVI Driver Standard.

The kpathsea font searching mechanism is still the preferred way of finding fonts, but since many
folk don’t have, or don’t want to obtain, access to the library, I’ve made the simple font-searching
algorithm marginally more sophisticated, as described above.

C.24 Release 0.3

No significant changes to functionality, but a couple of documentation and packaging improve-
ments.

Change history

Distribution 0.13

Norman Gray , 19 August 2005

Minor portability changes. Sources relocated to sourceforge.

Distribution 0.12

Norman Gray , 20 December 2003

Significant refactoring of library, and addition of functionality.

38 SSN/71.0

Distribution 0.10

Norman Gray , 18 May 2003

Enhancement of internal documentation. Added --help option.

Distribution 0.10b1

Norman Gray , 13 February 2003

Major changes to options. Supports external programs to find fonts.

2.1 Options Completely new option specs

Change 2 April 2001

Norman Gray , 2 April 2001

Minor documentation updates.

2.5.1 Finding fonts Included a reference to the RedHat config problem, pointing towards the
next section.

2.5.2 Not finding fonts Slightly expanded the reference to the RedHat config problem, in-
cluding a cross-reference.

5.1 General installation and configuration Corrected the URL for the Graphics File Format
FAQ.

Distribution 0.9-7

Norman Gray , 5 February 2001

The program now generates XPM bitmaps, too, and I noted this where appropriate.

Distribution 0.9-6

Norman Gray , 12 January 2001

Took opportunity of a bug-fix release of the software to make miscellaneous minor edits to the
documentation.

5.1 General installation and configuration Added ‘version’ column to table, noting which
version was actually tested.

A.1 LaTeX maths within HTML Updated nDVI URL

SSN/71.0 39

Change 8 November 2000

Norman Gray , 8 November 2000

Minor changes to the configuration options, plus a couple of documentation tidyups.

2.1 Options Mentioned that the -gp option also debugs kpathsea.

5.1 General installation and configuration Changed the disable-kpathsea configuration op-
tion to without-kpathsea (see also release notes for this version).

Distribution 0.9-5

Norman Gray , 27 June 2000

Added -bp, -PC, -Qp options, and corrected bugs which caused fonts to be generated at the
wrong sizes, and to be spaced incorrectly.

2.1 Options Added -bp, -Qp, -PC

Distribution 0.9-4

Norman Gray , 23 June 2000

Adjustments to distribution -- no functionality change.

5.2 Starlink nodes Added a note discussing the export run distribution bundle, and possible
problems with it.

Distribution 0.9-3

Norman Gray , 21 June 2000

Mostly clarifying and amplifying explanations.

2.5.1 Finding fonts Added discussion of the ‘make test’ script, and clarified (I hope) descrip-
tion of how to set DVI2BITMAP PK PATH.

Change 16 June 2000

Norman Gray , 16 June 2000

Explained how to set DVI2BITMAP PK PATH automatically.

2.5.1 Finding fonts Added description of setting DVI2BITMAP PK PATH automatically.

40 SSN/71.0

Distribution 0.9-2

Norman Gray , 12 June 2000

Bugfix release.

Distribution 0.9

Norman Gray , 11 June 2000

Minor functionality changes, but significant interface changes, so new version.

Distribution 0.8

Norman Gray , 8 June 2000

Documented changes to list of specials (foreground and background colours, and strut).

2.2 DVI specials Added foreground and background specials, to set foreground and back-
ground colours.

2.2 DVI specials Added strut special.

Distribution 0.7-1

Norman Gray , 12 May 2000

Described problems finding fonts.

2.5.1 Finding fonts Described potentially confusing interaction between enable-kpathsea and
enable-fontgen configuration options.

5.1 General installation and configuration Moved description of --enable-fontgen, and new
default setting.

6 Bugs, extras, and further developments Added bugreport address

Distribution 0.7

Norman Gray , 5 May 2000

New release. Documentation tidyups. Mentioned new support for PNG graphics.

2.1 Options Clarified the -p, -l and -pp options. Changed -Q into -qq, and -L into -Qf.

2.2 DVI specials Added documentation of imageformat special.

5.1 General installation and configuration Described --enable-fontgen. Rename of kpath-
sea option to --disable-kpathsea. Addition of --enable-png.

5.1.1 Obtaining the kpathsea library Improved instructions on getting the kpathsea library
source.

SSN/71.0 41

Distribution 0.6

Norman Gray , 18 September 1999

Add --enable-fake-progname.

2.5.1 Finding fonts Mentioned --enable-fake-progname

5.1 General installation and configuration Mentioned --enable-fake-progname

Change 13 September 1999

Norman Gray , 13 September 1999

Added page-selection features, and documented them.

2.1 Options Added documentation of -p, -l, -pp options. Note that the old -l and -L options
have changed into the new -L and -LL options.

2.5.1 Finding fonts Added a discussion of the foibles of the texmf.cnf configuration file when
it comes to finding fonts.

Distribution 0.5

Norman Gray , 6 September 1999

Assorted changes, to describe significant new functionality.

2.1 Options Added documentation of -c and -C options

2.2 DVI specials Rewritten to cover new special commands, particularly support for cropping.

5.1 General installation and configuration Largely rewrote the configuration instructions,
in an attempt to make them clearer.

Distribution 0.4

Norman Gray , 5 July 1999

Altered documentation of font-searching, to match new functionality.

2 Usage Added a description of my usage model, to help make things a little clearer.

2.5 Finding and generating fonts Described new functionality for environment variable.

42 SSN/71.0

Change 24 June 1999

Norman Gray , 24 June 1999

Slight restructuring to make it easier to find the instructions on generating fonts. Fixed a couple
of typos.

2.5 Finding and generating fonts Renamed this section from vague ‘environment’, and moved
description of font generation from examples.

Change 19 June 1999

Norman Gray , 19 June 1999

Added kpathsea support, and appendix on TeX dimensions.

5.1 General installation and configuration Added instructions on configuring in support
for the kpathsea library

Distribution initial

Norman Gray , 14 June 1999

First public release

Version 0

Norman Gray , 14 June 1999

Changes in version 0

Norman Gray , 14 June 1999

Initial version

