/* * domain.cc -- ePiX domain slicing operations * * This file is part of ePiX, a C++ library for creating high-quality * figures in LaTeX * * Version 1.1.10 * Last Change: August09, 2007 */ /* * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 * Andrew D. Hwang * Department of Mathematics and Computer Science * College of the Holy Cross * Worcester, MA, 01610-2395, USA */ /* * ePiX is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * ePiX is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with ePiX; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "constants.h" #include "triples.h" #include "functions.h" #include "domain.h" namespace ePiX { typedef std::list::const_iterator dolci; const double EPS(EPIX_EPSILON); mesh::mesh(int n1, int n2, int n3) : n_1((int)max(1, fabs(n1))), n_2((int)max(1, fabs(n2))), n_3((int)max(1, fabs(n3))) { } mesh::mesh(int n) : n_1((int)max(1, fabs(n))), n_2((int)max(1, fabs(n))), n_3((int)max(1, fabs(n))) { } mesh::mesh() : n_1(1), n_2(1), n_3(1) { } domain::domain(const P& arg1, const P& arg2, const mesh& c, const mesh& f) : m_corner1(arg1), m_corner2(arg2) { int c1(c.n1()), c2(c.n2()), c3(c.n3()); int f1(f.n1()), f2(f.n2()), f3(f.n3()); if (m_corner1.x1() == m_corner2.x1()) { c1 = f1 = 1; } if (m_corner1.x2() == m_corner2.x2()) { c2 = f2 = 1; } if (m_corner1.x3() == m_corner2.x3()) { c3 = f3 = 1; } m_coarse = mesh(c1,c2,c3); m_fine = mesh(f1,f2,f3); } domain::domain(const P& arg1, const P& arg2, const mesh& c) : m_corner1(arg1), m_corner2(arg2) { int c1(c.n1()), c2(c.n2()), c3(c.n3()); if (m_corner1.x1() == m_corner2.x1()) { c1 = 1; } if (m_corner1.x2() == m_corner2.x2()) { c2 = 1; } if (m_corner1.x3() == m_corner2.x3()) { c3 = 1; } m_coarse = mesh(c1,c2,c3); m_fine = mesh(c1,c2,c3); } // 1-dim'l domain domain::domain(double t_min, double t_max, int num_pts) : m_corner1(t_min), m_corner2(t_max), m_coarse(num_pts), m_fine(num_pts) { } int domain::dim() const { int D(0); if (fabs(m_corner2.x1() - m_corner1.x1()) > EPIX_EPSILON) ++D; if (fabs(m_corner2.x2() - m_corner1.x2()) > EPIX_EPSILON) ++D; if (fabs(m_corner2.x3() - m_corner1.x3()) > EPIX_EPSILON) ++D; return D; } double domain::step1() const { return (m_corner2.x1() - m_corner1.x1())/m_coarse.n1(); } double domain::step2() const { return (m_corner2.x2() - m_corner1.x2())/m_coarse.n2(); } double domain::step3() const { return (m_corner2.x3() - m_corner1.x3())/m_coarse.n3(); } double domain::dx1() const { return (m_corner2.x1() - m_corner1.x1())/m_fine.n1(); } double domain::dx2() const { return (m_corner2.x2() - m_corner1.x2())/m_fine.n2(); } double domain::dx3() const { return (m_corner2.x3() - m_corner1.x3())/m_fine.n3(); } // resizing attempts to preserve real resolution domain domain::resize1(double a1, double b1) const { P new_corner1(a1, m_corner1.x2(), m_corner1.x3()); P new_corner2(b1, m_corner2.x2(), m_corner2.x3()); // hack to avoid spurious round-down; should never cause round-up double ratio((b1-a1)/(m_corner2.x1()-m_corner1.x1()) + EPS); mesh new_c((int)floor(ratio*m_coarse.n1()), m_coarse.n2(), m_coarse.n3()); mesh new_f((int)floor(ratio*m_fine.n1()), m_fine.n2(), m_fine.n3()); if (step1() == 0) { new_c = mesh(1, m_coarse.n2(), m_coarse.n3()); new_f = mesh(1, m_fine.n2(), m_fine.n3()); } return domain(new_corner1, new_corner2, new_c, new_f); } domain domain::resize2(double a2, double b2) const { P new_corner1(m_corner1.x1(), a2, m_corner1.x3()); P new_corner2(m_corner2.x1(), b2, m_corner2.x3()); double ratio((b2-a2)/(m_corner2.x2()-m_corner1.x2()) + EPS); mesh new_c(m_coarse.n1(), (int)floor(ratio*m_coarse.n2()), m_coarse.n3()); mesh new_f( m_fine.n1(), (int)floor(ratio*m_fine.n2()), m_fine.n3()); if (step2() == 0) { new_c = mesh(m_coarse.n1(), 1, m_coarse.n3()); new_f = mesh( m_fine.n1(), 1, m_fine.n3()); } return domain(new_corner1, new_corner2, new_c, new_f); } domain domain::resize3(double a3, double b3) const { P new_corner1(m_corner1.x1(), m_corner1.x2(), a3); P new_corner2(m_corner2.x1(), m_corner2.x2(), b3); double ratio((b3-a3)/(m_corner2.x3()-m_corner1.x3()) + EPS); mesh new_c(m_coarse.n1(), m_coarse.n2(), (int)floor(ratio*m_coarse.n3())); mesh new_f( m_fine.n1(), m_fine.n2(), (int)floor(ratio*m_fine.n3())); if (step3() == 0) { new_c = mesh(m_coarse.n1(), m_coarse.n2(), 1); new_f = mesh( m_fine.n1(), m_fine.n2(), 1); } return domain(new_corner1, new_corner2, new_c, new_f); } // "snip_to" is defined in functions.h and performs the "obvious" // truncation: snip_to(x, a, b) = x, min(a,b), or max(a,b) // one slice domain domain::slice1(double a1) const { a1 = snip_to(a1, m_corner1.x1(), m_corner2.x1()); return domain(P(a1, m_corner1.x2(), m_corner1.x3()), P(a1, m_corner2.x2(), m_corner2.x3()), mesh(1, m_coarse.n2(), m_coarse.n3()), mesh(1, m_fine.n2(), m_fine.n3())); } domain domain::slice2(double a2) const { a2 = snip_to(a2, m_corner1.x2(), m_corner2.x2()); return domain(P(m_corner1.x1(), a2, m_corner1.x3()), P(m_corner2.x1(), a2, m_corner2.x3()), mesh(m_coarse.n1(), 1, m_coarse.n3()), mesh( m_fine.n1(), 1, m_fine.n3())); } domain domain::slice3(double a3) const { a3 = snip_to(a3, m_corner1.x3(), m_corner2.x3()); return domain(P(m_corner1.x1(), m_corner1.x2(), a3), P(m_corner2.x1(), m_corner2.x2(), a3), mesh(m_coarse.n1(), m_coarse.n2(), 1), mesh( m_fine.n1(), m_fine.n2(), 1)); } // coordinate slices std::list domain::slices1(const unsigned int n) const { unsigned int N(m_coarse.n1()); double du(step1()); if (n > 0) { du *= N*1.0/n; N = n; } std::list val; for (unsigned int i=0; i <= N; ++i) val.push_back(slice1(m_corner1.x1() + i*du)); return val; } std::list domain::slices2(const unsigned int n) const { unsigned int N(m_coarse.n2()); double du(step2()); if (n > 0) { du *= N*1.0/n; N = n; } std::list val; for (unsigned int i=0; i <= N; ++i) val.push_back(slice2(m_corner1.x2() + i*du)); return val; } std::list domain::slices3(const unsigned int n) const { unsigned int N(m_coarse.n3()); double du(step3()); if (n > 0) { du *= N*1.0/n; N = n; } std::list val; for (unsigned int i=0; i <= N; ++i) val.push_back(slice3(m_corner1.x3() + i*du)); return val; } P domain::corner1() const { return m_corner1; } P domain::corner2() const { return m_corner2; } double domain::corner1_x1() const { return m_corner1.x1(); } double domain::corner1_x2() const { return m_corner1.x2(); } double domain::corner1_x3() const { return m_corner1.x3(); } double domain::corner2_x1() const { return m_corner2.x1(); } double domain::corner2_x2() const { return m_corner2.x2(); } double domain::corner2_x3() const { return m_corner2.x3(); } int domain::coarse_n1() const { return m_coarse.n1(); } int domain::coarse_n2() const { return m_coarse.n2(); } int domain::coarse_n3() const { return m_coarse.n3(); } int domain::fine_n1() const { return m_fine.n1(); } int domain::fine_n2() const { return m_fine.n2(); } int domain::fine_n3() const { return m_fine.n3(); } domain_list::domain_list(std::list arg) : m_list(arg) { } domain_list& domain_list::add(const domain& arg) { m_list.push_back(arg); return *this; } domain_list& domain_list::add(const domain_list& arg) { // Less efficient than m_list.splice(m_list.end(), arg), but preserves arg for (dolci p=arg.m_list.begin(); p != arg.m_list.end(); ++p) m_list.push_back(*p); return *this; } } // end of namespace