/* * plot_algorithms.h -- plot function templates, for build use only * * This file is part of ePiX, a C++ library for creating high-quality * figures in LaTeX * * Andrew D. Hwang * * Version 1.1.9 * Last Change: August 01, 2007 */ /* * Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 * Andrew D. Hwang * Department of Mathematics and Computer Science * College of the Holy Cross * Worcester, MA, 01610-2395, USA */ /* * ePiX is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * ePiX is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with ePiX; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * This file provides plotting templates, with T a class * * void plot_map_dom(const T&, const domain&) * void plot_map_domlist(const T&, const domain_list&) * void plot_function(const T&, double, double, int) * void euler_plot(const T&, const P&, double, double, int) * P euler_flow(const T&, P start, double, int) */ #ifndef EPIX_PLOT_ALGO #define EPIX_PLOT_ALGO #include #include #include "constants.h" #include "triples.h" #include "functions.h" #include "edge_data.h" #include "paint_style.h" #include "domain.h" #include "path_data.h" namespace ePiX { typedef std::list::const_iterator dolci; const double INF(EPIX_INFTY); // Are args endpoints of a plottable edge? static bool is_valid(const P& tail, const P& head) { return tail.is_valid() && head.is_valid(); } template void plot_map_dom(const T& map, const domain& R) { // only attempt to fill if plotting a curve const bool is_curve(R.dim() == 1); const bool filling(is_curve && the_paint_style().fill_flag()); // max summation indices unsigned int i_max((R.dx1() > 0) ? R.coarse_n1() : 0); unsigned int j_max((R.dx2() > 0) ? R.coarse_n2() : 0); unsigned int k_max((R.dx3() > 0) ? R.coarse_n3() : 0); if (R.dx1() > 0) // there's something to draw { // number of intervals in subdivision unsigned int count1(R.fine_n1()); const double st1(R.dx1()); const double st2(R.step2()); const double st3(R.step3()); for (unsigned int j=0; j <= j_max; ++j) for (unsigned int k=0; k <= k_max; ++k) { std::list data1; const P init(R.corner1() + (j*st2)*E_2 + (k*st3)*E_3); for (unsigned int i=0; i < count1; ++i) { P curr(map(init + P(i*st1,0,0))); P next(map(init + P((i+1)*st1,0,0))); data1.push_back(edge3d(curr, next, is_valid(curr, next))); } // close path if initial and terminal points coincide bool closed(is_curve && map(init) == map(init + P(count1*st1,0,0))); path_data path1(data1, closed && filling, filling); path1.draw(); } } if (R.dx2() > 0) { unsigned int count2(R.fine_n2()); const double st1(R.step1()); const double st2(R.dx2()); const double st3(R.step3()); for (unsigned int i=0; i <= i_max; ++i) for (unsigned int k=0; k <= k_max; ++k) { std::list data2; const P init(R.corner1() + (i*st1)*E_1 + (k*st3)*E_3); for (unsigned int j=0; j < count2; ++j) { P curr(map(init + P(0,j*st2,0))); P next(map(init + P(0,(j+1)*st2,0))); data2.push_back(edge3d(curr, next, is_valid(curr, next))); } // close path if initial and terminal points coincide bool closed(is_curve && map(init) == map(init + P(0,count2*st2,0))); path_data path2(data2, closed && filling, filling); path2.draw(); } } if (R.dx3() > 0) { unsigned int count3(R.fine_n3()); const double st1(R.step1()); const double st2(R.step2()); const double st3(R.dx3()); for (unsigned int i=0; i <= i_max; ++i) for (unsigned int j=0; j <= j_max; ++j) { std::list data3; const P init(R.corner1() + (i*st1)*E_1 + (j*st2)*E_2); for (unsigned int k=0; k < count3; ++k) { P curr(map(init + P(0,0,k*st3))); P next(map(init + P(0,0,(k+1)*st3))); data3.push_back(edge3d(curr, next, is_valid(curr, next))); } // close path if initial and terminal points coincide bool closed(is_curve && map(init) == map(init + P(0,0,count3*st3))); path_data path3(data3, closed && filling, filling); path3.draw(); } } }; // end of plot_map_dom // plot over a list of domains template void plot_map_domlist(const T& map, const domain_list& R) { for (dolci p=R.m_list.begin(); p != R.m_list.end(); ++p) plot_map_dom(map, *p); } // paths templatevoid plot_function(const T& f, double t1, double t2, unsigned int n) { plot_map_dom(f, domain(t1, t2, n)); } // Solutions of ODE systems template void euler_plot(const VF& field, P curr, double t_min, double t_max, unsigned int num_pts) { std::list data; const double dt(t_max/(num_pts*EPIX_ITERATIONS)); const double dseek(t_min/(num_pts*EPIX_ITERATIONS)); if (fabs(t_min/num_pts) > EPIX_EPSILON) // seek beginning of path for (unsigned int i=0; i <= num_pts*EPIX_ITERATIONS; ++i) curr += dseek*field(curr); // curr = "start, flowed by t_min" P next(curr); for (unsigned int i=0; i <= num_pts*EPIX_ITERATIONS; ++i) { next += dt*field(next); // Euler's method if (i%EPIX_ITERATIONS == 0) { data.push_back(edge3d(curr, next, is_valid(curr, next))); curr = next; } } path_data temp(data, false, false); temp.draw(); } // end of euler_plot // flow x0 under field for specified time; pass x0 by value template P euler_flow(const VF& field, P x0, double t_max, unsigned int num_pts=0) { if (num_pts == 0) // use "sensible" default; hardwired constant 4 num_pts = 4*(1 + (unsigned int)ceil(fabs(t_max))); const double dt(t_max/(num_pts*EPIX_ITERATIONS)); for (unsigned int i=0; i <= num_pts*EPIX_ITERATIONS; ++i) x0 += dt*field(x0); return x0; } } // end of namespace #endif /* EPIX_PLOT_ALGO */