
The tkz-orm package

Object-Role Model Drawing Library

Jakob Voß
jakob.voss@gbv.de

Version 0.1
January 25th, 2010

http://purl.org/net/tkz-orm

Abstract

This package provides styles for drawing Object-Role Model (ORM)
diagrams in TEX based on the pgf and TikZ picture environment.

Contents

1 Introduction 2

2 Object Types 3

3 Predicates and Roles 4

4 Constraints 7
4.1 Uniqueness Constraints . 7
4.2 Mandatory Role Constraints . 8
4.3 External constraints . 9
4.4 Ring Constraints . 11
4.5 Numberand Value Constraints . 11
4.6 Textual constraints . 12

5 Additional Features 13
5.1 Subtyping . 13
5.2 Duplicated and implied parts of a model 14
5.3 Macros for text layout . 16

6 Settings and Utilities 16

References 16

Index 17

1

http://purl.org/net/tkz-orm

1 Introduction

tkz-orm is intended to help you creating Object-Role Model (ORM) diagrams.
It is based on the pgf and TikZ1 picture macro package for TEX. and provides
additional styles and commands to typeset ORM 2 diagrams.2 With tkz-orm you
can “program” ORM diagrams just as you “program” your document when you
use LATEX – including the inherental lack of wysiwyg. Unless multi-touch e-
paper interfaces become usable, tkz-orm can best be combined with a whiteboard
or paper and pencil — but you may also find ways to automatically create ORM
diagrams with tkz-orm.

Status of this package

This is the first public version of tkz-orm. Please send your comments to the
author so the package can be improved. All parts of the package are available
at least under the LATEX Project Public License[LPP08] and the GNU Public
license[GPL91]. For details have a look at the file LICENSE that is part of this
package. The permament URL of tkz-orm is http://purl.org/net/tkz-orm
which redirects you to its current location.

ORM in a nutshell

Object-Role Modeling (ORM)3 is a fact-oriented modeling language that evolved
from the Natural-language Information Analysis Method (NIAM) by G.M. Ni-
jssen. The current version (ORM 2) is mainly based on works of Terry Halpin.
Like ERM, UML, and other data modeling languages ORM helps to identify and
abstract information objects, relationships, and rules in a Universe of Discourse
to be formalized and implemented on another level. ORM includes a graphical
notation and a defined verbalization in natural language. Models can further
be validated by populating fact tables with sample data. An overview of the
ORM 2 Graphical Notation is given in [Hal05] and more details in [HM08]. An
ORM model consists of object types (section 2), n-ary predicates (section 3).
Each of the n roles of an n-ary predicate is connected to an object type that
plays the specific role in this predicate. Furthermore a model can contain con-
straints (section 4) and additional features (section 5). tkz-orm also allows you
to change the appearance of ORM diagrams (section 6).

A Value type
Person with

red hair

Activity
(Code)

Type name
(.reference) Zoomed

Figure 1: Examples of object types in ORM

1http://sourceforge.net/projects/pgf/
2This version is tested with TikZ version 2.00-cvs 2009-09-04. It will either be backported

to TikZ version 2.00 or work with a yet to published new release of TikZ
3http://www.orm.net/

2

http://purl.org/net/tkz-orm
http://sourceforge.net/projects/pgf/
http://www.orm.net/

2 Object Types

Object types are drawn as rectangles with rounded corners. The object’s type
name is written as node text inside. Entity types use solid border lines and
value types use dashed border lines. The minimal size of an object is set to
6mm×6mm. This package provides the following styles for entities and values:

/tikz/entity

This style is to be used with nodes that represent entity types.

Foo
Person
(.Id)

\begin{tikzpicture}

\node[entity] at (0,0) {Foo};

\node[entity] (unnamed) at (1.2,0) {};

\node[entity] at (2.5,0) {Person\\(.Id)};

\end{tikzpicture}

/tikz/value

This style is to be used with nodes that represent value types.

Name
\begin{tikzpicture}

\node[value] {Name};

\end{tikzpicture}

/tikz/every entity
/tikz/every value=

Each of this styles is envoked by the styles entity or value. Change one
of this styles to change the appearance of entity or value types.

Person

Name

\begin{tikzpicture}[

every entity/.style={draw=blue!50,fill=blue!20},

every value/.style={draw=green!50,fill=green!20}]

\node[entity] (P) at (0,0) {Person};

\node[value] (N) at (0,-1) {Name};

\end{tikzpicture}

/tikz/every object type

This style is envoked by the styles entity and value. Change this style to
change the common appearance of entity and value types.

Person Name

\begin{tikzpicture}[

every object type/.style={shape=circle}]

\node[entity] (P) at (0,0) {Person};

\node[value] (N) at (1.5,0) {Name};

\end{tikzpicture}

Since entity types and value types are very frequent node types in an ORM
diagram, there are two special abbreviations for creating object types:

\entity
Inside {tikzpicture} this is an abbreviation for \node[entity].

\value
Inside {tikzpicture} this is an abbreviation for \node[value].

3

3 Predicates and Roles

The relationship parts (roles) played by objects are shown as boxes of fixed size
(4mm×2.5mm). A predicate is a sequence of one or more concatenated role
boxes. Predicates can be created with the following styles:

/tikz/roles=〈number of roles〉
/tikz/role= (alias for roles=1)

Shapes the current node as predicate with a given number of role boxes.
Numbers from 1 to 20 are supported. The default value is 2 (binary).

A B

C

\begin{tikzpicture}[orm]

\entity (A) {A};

\entity (B) at (2.8,0) {B}

edge node[roles=3] (p) {} (A);

\entity (C) at (1.4,-1) {C}

edge (p.south);

\node[role] at (2.2,-1){} edge (C);

\draw (A) |- node[roles,xshift=2mm]{} (C);

\end{tikzpicture}

/tikz/vroles=〈number of roles〉
/tikz/vrole= (alias for vroles=1)

Shapes the current node as predicate rotated by 90 degree (vertical).

/tikz/relation
/tikz/relationship

This styles are to be used with connection lines between objects and roles.
By default it just sets the line width to 0.25mm by including the style
every orm line. Alternatively of using this style you can enable the gen-
eral style orm (see section 6) and just draw a normal line.

A
\begin{tikzpicture}

\node[entity] (A) {A};

\node[roles] (r) at (1,0) {};

\draw[relation] (A) -- (r);

\node[vrole] at (0,-.8){} edge[relation] (A);

\end{tikzpicture}

Table 1 lists abbreviations that can be used for creating predicate nodes and
relationship lines inside {tikzpicture}.

Command(s) Abbreviation for
\unary or \role \node[role]

\binary or \roles \node[roles]

\ternary \node[roles=3]
\vunary or \vrole \node[vrole]
\vbinary or \vroles \node[vroles]
\vternary \node[vroles=3]
\plays \draw[relationship]

Table 1: Abbreviations to create predicates, roles, and relationship lines

The general style of predicates and roles can be modified by the following keys:

4

/tikz/every predicate

By changing this style you can modify the common appearance of predi-
cates.

BA
\begin{tikzpicture}[

every predicate/.style={draw=blue,fill=green!20}]

\entity at (2,0) (B) {B};

\entity (A) {A} edge[relation] node[roles]{} (B);

\vunary at (0,-0.8) (r) {} edge[relation] (A);

\end{tikzpicture}

/tikz/every relationship

This style is envoked by the style relationship. To change the appearance
of explicit relationship lines you can change this style. Please keep in mind
that nodes placed on a line by node in one operation inherit properties from
the line they refer to, so you should create relationship lines with plays.

A B
\begin{tikzpicture}[orm,

every relationship/.style={draw=blue,dotted}]

\entity (A) {A};

\binary (r) at (1,0) {};

\entity (B) at (2,0) {B};

\plays (A) -- (r) -- (B);

\vunary at (0,-0.8) (r) {} edge[relation] (A);

\end{tikzpicture}

Predicates are drawn either horizontally (roles) or vertically (vroles) as nodes
with one or more parts. Figure 3 shows some of the anchors. Vertical predicates
are rotated by 90 degree so north is at the left, west is at the bottom etc.

s.one north

s.one south

s.three north

s.three south

s.one split

s.one split north

s.one split south

s.two split

s.two split north

s.two split south

s.north

s.south

s.easts.west

s.center

s.north west s.north east

s.south west s.south east

\Large

\begin{tikzpicture}

\node[roles=3,shape example,inner ysep=0.75cm] (s) {};

\foreach \anchor/\placement in

{one north/below, one south/above,

three north/below, three south/above,

one split/below, one split north/above, one split south/below,

two split/below, two split north/above, two split south/below,

north/below, south/above, east/below, west/below, center/above,

north west/above, north east/above, south west/below, south east/below}

\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}

node[\placement] {\scriptsize\texttt{s.\anchor}};

\end{tikzpicture}

Figure 2: Node anchors of an ORM predicate

5

The verbalization of a predicate can be given as label next to a predicate. For
binary relationships forward and inverse readings can be seperated by a slash.
To show the inverse reading, add an arrow tip with the commands \ormleft or
\ormup (see section 5.3). Labels for predicates with more then two roles must
contain three dots (\ldots) for each inner role. Role names and indices can be
added by different styles.

Person Car

License

Maker

valid

drives

is driven by

has of

created by/created

drives . . . by

\begin{tikzpicture}[orm]

\entity at (0,2) (P) {Person};

\entity at (3,2) (C) {Car};

\entity at (0,0) (L) {License};

\entity at (6.6,2) (M) {Maker};

\unary[label=valid] at (1.2,0) (V) {} edge (L);

\draw (P) to node[roles,

label=below:drives,label=\ormleft{is driven by}]{} (C);

\draw (P) to node[vroles,label=has,label=below:\ormup{of}]{} (L);

\draw (C) to node[roles,label=created by/created]{} (M);

\ternary[label=below:drives \ldots by] at (3,1) (t) {};

\plays (P) -- (t.west);

\plays (C) -- (t);

\plays (M) -- (t.east);

\end{tikzpicture}

/tikz/role name

This style is to be used with role names. Role names can be displayed in
square brackets and blue color next to a role box.

A B
[role1] [role2]

\begin{tikzpicture}[orm]

\entity (A) at (0,0) {A};

\entity (B) at (2.8,0) {B};

\plays (A) edge node(r)[roles]{} (B);

\node[role name,

at=(r.north),anchor=south east] {[role1]};

\node[role name,

at=(r.north),anchor=south west] {[role2]};

\end{tikzpicture}

/tikz/index=〈n〉:〈index 〉
Adds a role index as small label at the nth role box (default: n).

6

1 X

A
.1

A
.2 \begin{tikzpicture}

\binary[index=1,index=2:X] {};

\vroles[index=A.1,index=2:A.2] at (.8,0) {};

\end{tikzpicture}

4 Constraints

ORM provides a rich set of constraints: Mandatory constraints (section 4.2)
and uniqueness constraints (section 4.1) limit the way objects can be combined
in predicates. External constraints (section 4.3) and subtype constraints (sec-
tion 5.1) involve multiple roles or object types. All constraints are displayed
in violet color and either drawn directly at an object type or role, or linked
to one or more object types or role with dotted or dashed lines or arrows (see
the styles limits and limits to). ORM 2 defines a set of symbols for external
(section 4.3), ring (section 4.4) and other types of constraints. The general tkz-
orm constraint key constraint only sets the font to violet. An optional key
value can be used to add a predefined constraint symbol at the current position.

4.1 Uniqueness Constraints

By default every row in a fact table is unique. To express additional uniqueness
constraints on one or more roles of a fact table or to explicitly express the
uniqueness on the full predicate, a uniqueness bar is drawn above or below the
fact roles. If the bar spans two or more non-adjacent roles, it is drawn as dotted
line above or below the excluded roles. Bars can be stacked in multiple levels.
To draw uniqueness bars you can use the following styles at predicate nodes:

/tikz/unique=〈from〉-〈to〉:〈level〉
Draws a uniqueness constraint bar above one or more roles. All parts of the
key value are optional. As default a simple uniqueness bar above (〈level〉=1)
the first role (〈from〉=1) is drawn. To make a bar span multiple roles, use
the 〈from〉-〈to〉 syntax. Negative levels drawn the bar below the roles.

\begin{tikzpicture}

\binary[unique] at (0,0) {};

\binary[unique=2] at (1.2,0) {};

\ternary[unique=2-3:-1] at (0.2,-0.6) {};

\unary[unique=1,unique=1:2] at (1.4,-0.6) {};

\end{tikzpicture}

/tikz/skip unique=〈from〉-〈to〉:〈level〉
Draws a dotted uniqueness constraint bar. The syntax is the same as at
the unique key. The bar includes background color in the gaps between
dots, so it can be drawn on top of another bar.

\begin{tikzpicture}

\ternary[unique=1-3,skip unique=2] {};

\end{tikzpicture}

/tikz/uniqueness bar

7

/tikz/skipped uniqueness bar
This styles can be used to draw a line in the same style as a uniqueness
constraint bar or a dotted uniqueness constraint bar.

\tikz\draw[uniqueness bar] (0,0) -- (2,0);

\tikz\draw[skipped uniqueness bar] (0,0) -- (2,0);

Please note that elementary n-ary predicates should only have uniqueness con-
straints of at least n− 1 roles. Picture 3 shows how to split a ternary predicate
with unique constraint bar on one role.

A

B

C ⇒ A

B

C

\begin{tikzpicture}[orm] % needs positioning library

\ternary[unique] (t) at (0,0) {};

\entity[left=of t] {A} edge (t);

\entity[above=of t] {B} edge (t);

\entity[right=of t] {C} edge (t);

\node at (2.3,0) {\Rightarrow};

\entity (A) at (3,0) {A};

\binary[right=of A.north east,yshift=1mm,unique] (t1) {};

\binary[right=of A.south east,yshift=-1mm,unique] (t2) {};

\plays (A) -- (t1.west); \plays (A) -- (t2.west);

\entity[right=of t1] {B} edge (t1);

\entity[right=of t2] {C} edge (t2);

\end{tikzpicture}

Figure 3: A ternary predicate can be split into to binary predicates

4.2 Mandatory Role Constraints

To indicate explicitly that a role is mandatory, a mandatory role dot is added to
either end of the line that connects the role to its object. Usually it is placed at
the object type end. This package defines the style key constraint dot (alias
cdot) and the following keys which can be used to add mandatory role dots to
lines drawn with the to operation.

/tikz/constraint dot
/tikz/cdot

Draws the current node as mandatory role dot.

\tikz \node[cdot] {};

/tikz/mandatory
/tikz/required

This styles enables the relationship style and add a mandatory role dot
at the start of a straight line.

8

A B
\begin{tikzpicture}

\entity (A) {A};

\entity at (2,0) {B} edge[mandatory]

node[roles] (p) {} (A);

\end{tikzpicture}

/tikz/required by

This styles enables the relationship style and add a mandatory role dot
at the end of a straight line.

A B
\begin{tikzpicture}

\entity (A) {A};

\entity at (2,0) {B} edge[required by]

node[roles] (p) {} (A);

\end{tikzpicture}

/tikz/both required
/tikz/both mandatory

This styles enables the relationship style and adds mandatory role dots
at both ends of a straight line.

A B
\begin{tikzpicture}

\entity (A) {A};

\entity at (2,0) {B} edge[both required]

node[roles] (p) {} (A);

\end{tikzpicture}

To show that either of many roles is mandatory, you can add an inclusive-or
(disjunctive mandatory) role constraint with constraint=mandatory as shown
in section 4.3. By default it is assumed that each entity or value must play at
least some role. Independent object types whose roles are collectively optional
can be marked by an exclamation mark appended to its name. It is recom-
mended not to include implied mandatory constraints unless they they refer to
subtypes (section 5.1).

4.3 External constraints

External constraints span multiple roles that may come from different predi-
cates. They are draw with circled symbol next to the roles, possibly linked to
them with a dotted or dashed line (style limits and limits to).

/tikz/constraint=〈constraint type〉
This style sets the font to ORM style on constraint color (violet). If you pro-
vide a constraint type as key value, the current node is shaped as constraint
circle and the symbol of the specified constraint type is drawn. The most
common constraint types are exclusive (alias x) to indicate that popula-
tions of two or more role-sequences must be mutually exclusive, mandatory
(alias required, total, and or) to indicate that each at least on of two
more roles must be played by an object type, and xor (alias partition)
to indicates that exactely one of two or more roles must be played by an
object type. These constraints can also be used in subtyping (section 5.1).
The constraint type unique and preferred unique enforces combinations

9

of object types that play a given set of roles to always be the same. The
types equal, subset, and supset indicate that tuples of roles have to be
equal, subset or superset compared to each other (supset is not included
in standard ORM 2). The constraint type is misc only draws the circle and
can be used for custom constraints.

exclusive / x
mandatory / total
required / or

xor / partition

unique preferred unique misc

equal subset supset

\begin{tikzpicture}[orm]

\matrix[column sep=2mm, row sep=2mm]{

\node[constraint=x]{}; & \node[right]{exclusive / x}; &

\node[constraint=or]{}; & \node[right,text width=2.8cm]

{mandatory / total required / or}; &

\node[constraint=xor]{}; & \node[right]{xor / partition}; \\

\node[constraint=unique] {}; & \node[right]{unique}; &

\node[constraint=preferred unique]{};&\node[right]{preferred unique};&

\node[constraint=misc]{}; & \node[right]{misc}; \\

\node[constraint=equal] {}; & \node[right]{equal}; &

\node[constraint=subset] {}; & \node[right]{subset}; &

\node[constraint=supset] {}; & \node[right]{supset}; \\

};

\end{tikzpicture}

/tikz/limits

This style is to be used with lines that connect constraint circles and roles.
It can also be used to link other kinds of constraints (for instance value
constraints) to the entity, value, or role they belong to.

\begin{tikzpicture}

\unary (r1) at (0,0) {};

\unary (r2) at (0,-1.4) {};

\draw[limits] (r1) to node[constraint=x] {} (r2);

\end{tikzpicture}

\limits
This command is an abbreviation for \draw[limits] inside {tikzpicture}.

/tikz/limits to

This style is to be used with directed lines that connect constraint circles
and roles. The line is drawn in the same style as limits but dashed and
with an arrow tip of style orm arrow at the head.

2

1

Each object that
plays role 1 also
plays role 2

\begin{tikzpicture}[orm]

\unary[index=2] (a) at (0,0) {};

\unary[index=1] (b) at (0,-1.4) {};

\draw[limits to] (b) -- (a) node[pos=.4,name=s]{};

\node[constraint=subset] at (s) {};

\node[right=2mm of s,text width=2.3cm]

{Each object that plays role 1 also plays role 2};

\end{tikzpicture}

10

\constraintdeclare {〈constraint type name〉}{〈path code〉}
This command declares a new constraint type. The {〈path code〉} is passed
to the append after command key to be drawn after the constraint circle.
Unless you want to extend ORM you do not need to declare new constraint
types.

\constraintdeclarealias {〈alias name〉}{〈existing constraint type name〉}
This command can be used to create an alias (another name) for an existing
constraint type.

/tikz/every constraint

This style is envoked at every constraint. You can change this style to
change for instance the constraint color.

4.4 Ring Constraints

A ring constraint can be applied to any two roles of a predicate that are played
by the same object type (or the same supertype). Such constraints can also be
viewed as properties of a binary relation or as properties of a directed graph.
This package provides the following symbols to depict ring constraints. The
graphical syntax of some symbols is slightly changed compared to the official
ORM 2 syntax and the two symbols for ‘asymmetric and intransitive’, and for
‘symmetric and intransitive’ have been omitted because of complexity.

irreflexive asymmetric intransitive

antisymmetric acyclic acyclic intransitive

symmetric purely reflexive symmetric irreflexive

\centering

\begin{tikzpicture}[orm]

\foreach \n/\s in {0/irreflexive,1/asymmetric,2/intransitive,

3/antisymmetric,4/acyclic,5/acyclic intransitive,

6/symmetric,7/purely reflexive,8/symmetric irreflexive}{

\path ($mod(\n,3)*(3.4,0)-int(\n/3)*(0,0.8)$) node [constraint=\s] {}

+(4mm,0) node[anchor=west] {\s}; };

\end{tikzpicture}

Person

mother of

\begin{tikzpicture}[orm]

\entity (P) {Person};

\binary[below=of P,unique=2,label=below:mother of] (r) {};

\plays (P) to (r.one north) (P) to (r.two north);

\limits (r.north) to +(-1,0.4) node[constraint=acyclic]{};

\end{tikzpicture}

4.5 Numberand Value Constraints

Value constraints, cardinality constraints, and occurrence frequencies can simply
be drawn beside the object type or role they refer to, optionally linked to with
a dotted or dashed limitation line.

11

Frequency Constraints specify the number of times an object can play a role.
Usually it is connected to the roles with a limtation line.

1

f

\begin{tikzpicture}

\binary[index=1:1] (b) {};

\limits (b.one south) -- +(0,-.4) node[constraint]{f};

\end{tikzpicture}

A Value constraint indicates which values are allowed in an object type or
role. It can be defined by declaring the set of possible values enclosed in curly
brackets next to an object or role type. The command \ormbraces is a handy
abbreviation to create curly brackets.

A
{a, b, c} \begin{tikzpicture}

\entity (A) {A};

\node[constraint,anchor=north west,inner ysep=0]

at (A.north east) {\ormbraces{a, b, c}};

\end{tikzpicture}

Value comparision-constraints are depicted by one of four comparision oper-
ators <, ≤ (le), >, and ≥ (ge). The constraints are shown at a dashed arrow be-
tween two roles in the same way as constraint=subset and constraint=supset
(but the value-comparision is between instances not between sets). Equality can
be stated with constraint=equal which should not be confused with similar
looking constraint=purely reflexive.

< ≥ > ≤

\tikz \foreach \x/\s in {0/<,1/ge,2/>,3/le}{

\draw[limits to] (\x,0) to (\x,1.2);

\node[constraint=\s] at (\x,.5) {};

};

Cardinality constraints are rarely included in ORM diagrams since the are
often implied by other constraints. However you can explicitely say that each
population of an object type or a role includes exactely, at most, or at least a
given number of instances. This is done by adding a cardinality constraint next
to the object or role. The hash sign (“#”) stands for the cardinality.

A

#=n

A

1≤#≤6

#≤2
\begin{tikzpicture}[orm]

\entity[label={[constraint]\#=n}] {A};

\entity[label={[constraint]below:1\leq\#\leq6}]

at (1.1,0) {A};

\role[label={[constraint]\#\leq2}] at (2,0) {};

\end{tikzpicture}

4.6 Textual constraints

Constraints not expressed by predefined graphical notation may be specified as
textual rules. Textual rules can be displayed as footnotes with footnote numbers
or signs that mark the involved elements in the diagram.

/tikz/rule=〈mark〉
This key is to be used with nodes that contain textual rules. The optional
〈mark〉 is shown as footnotes index left to the rule.

Each Number identifies at most one Room.1

12

\begin{tikzpicture}

\node[rule=1] {{\ormbf Each} Number identifies {\ormbf at most one} Room.};

\end{tikzpicture}

\rules
This command is an abbreviation for \matrix[row sep=0mm,nodes={right}]
inside {tikzpicture}. Matrices are useful to draw multiple textual rules
below each other.

Employee1

(.nr)

has

uses2,3

Rank
(.code)

CompanyCar
(.regNr)

{‘Exec’,
‘NonExec’}

was born on

was hired on

Date
(mdy)

[birthdate]

[hiredate]

For each Employee, birthdate < hiredate.1

Each Employee who has Rank ‘NonExec’ uses at most one CompanyCar.2

Each Employee who has Rank ‘Exec’ uses some CompanyCar.3

\begin{tikzpicture}[orm]

\entity (E) {Employee\ormind{1}\\(.nr)};

\binary[left=of E.north west,unique=2,label=\ormleft{has}] (h) {};

\binary[left=of E.south west,unique=1-2,

label=below:\ormleft{uses\ormind{2,3}}] (u) {};

\entity[left=of h] (Rank) {Rank\\(.code)};

\entity[left=of u] (Car) {CompanyCar\\(.regNr)};

\node[constraint=text,align=left,anchor=east] at (Rank.west)

{\textbraceleft‘Exec’,\\‘NonExec’\textbraceright};

\plays[mandatory] (E) to (h.east);

\plays (h) to (Rank) (E) to (u.east) (u) to (Car);

\binary[right=of E.north east,unique,label=was born on] (b) {};

\binary[right=of E.south east,unique,label=below:was hired on] (i) {};

\entity[right=1.8 of E] (Date) {Date\\(mdy)};

\plays[mandatory] (E) to (b.west) (E) to (i.west);

\plays (b.east) to (Date) (i.east) to (Date);

\node[role name,anchor=south west] at (b.east) {[birthdate]};

\node[role name,anchor=north west] at (i.east) {[hiredate]};

\rules at (-.4,-2) {

\node[rule=1] {{\ormbf For each} Employee, birthdate $<$ hiredate.}; \\

\node[rule=2] {

{\ormbf Each} Employee {\ormbf who} has Rank ‘NonExec’ uses

{\ormbf at most one} CompanyCar.};\\

\node[rule=3] {

{\ormbf Each} Employee {\ormbf who} has Rank ‘Exec’ uses

{\ormbf some} CompanyCar.};\\

};

\end{tikzpicture}

5 Additional Features

5.1 Subtyping

To draw type hierarchies you can use the tree syntax of TikZ.

13

/tikz/subtype

Draws a subtype relationships from the supertype to the subtype.

Animal

Mammal Bird

Penguin Parrot

\begin{tikzpicture}[

edge from parent/.style=subtype]

\node[entity] {Animal}

child {node[entity] {Mammal}}

child {node[entity] {Bird}

child {node[entity] {Penguin}}

child {node[entity] {Parrot}}

};

\end{tikzpicture}

/tikz/suptype

Works in the same way as subtype but with reverse direction.

Animal Sheep
\begin{tikzpicture}

\node[entity] (A) {Animal};

\node[entity] (S) [right=6mm of A] {Sheep};

\draw[suptype] (S) to (A);

\end{tikzpicture}

Subtype constraints can be shown linked to the subtype arrrows:

A

B C

exclusive

A

B C

total

A

B C

partition

\begin{tikzpicture}[orm]

\foreach \c/\x in {exclusive/0,total/2.5,partition/5}{

\entity (A) at (\x,0) {A} [edge from parent/.style=subtype]

child {node [entity] (B) {B}} child {node [entity] (C) {C}};

\limits ($(A)!.7!(B)$) to node[constraint=\c] {} ($(A)!.7!(C)$);

\node at (\x,-2) {\c};

};

\end{tikzpicture}

5.2 Duplicated and implied parts of a model

Sometimes an object type or predicate is referred to without describing all its
details because it is defined in an external model or because it is shown dupli-
cated at some other place in the same model. To indicate such an external or
duplicated object type or a predicate, a shadow is added to its shape. Alter-
natively ORM 2 allows to add a circumflex “ˆ” to an object type’s name. A
different kind of redundancy are roles and constraints that deduce from other

14

parts of the model. ORM 2 includes the possibility to shade redundant roles.
This is useful for instance to show conceptual pathes or join fact types that are
normally excluded. Moreover ORM allows a zooming on object types. This
means that only objects and roles connected to a given object type are shown.

/tikz/duplicated model

This style modifies the styles every orm object and every predicate so
all object types and predicates in the current scope get a shadow.

A Bˆ
\begin{tikzpicture}[orm]

\begin{scope}[duplicated model]

\entity (A) {A};

\node[role] (r1) [right=of A] {};

\node[role] (r2) [right=0 of r1] {};

\draw[relationship] (A) -- (r1);

\end{scope}

\entity (B) [right=of r2] {B\^{}};

\draw[orm] (r2) -- (B);

\end{tikzpicture}

/tikz/implied model

This style modifies the styles every orm line and every orm object in
the current scope to draw all lines thin and all objects filled gray.

A B C

\begin{tikzpicture}

\matrix[column sep=4mm] {

\entity (A) {A}; & \binary (ab) {}; & \entity (B) {B}; &

\binary (bc) {}; & \entity (C) {C}; \\ };

\plays (A) -- (ab) -- (B) -- (bc) -- (C);

\begin{scope}[implied model]

\node[constraint=unique] (con) [above=of B] {};

\limits (ab.one north) -- (con) -- (bc.two north);

\ternary[unique=1-3,skip unique=2] (abc) [below=4mm of B] {};

\plays (A) -- (abc.west); \plays (B) -- (abc); \plays (C) -- (abc.east);

\end{scope}

\end{tikzpicture}

/tikz/zoomed

This styles visualizes an object type as zoomed by using a thicker line.

Normal Zoomed
\begin{tikzpicture}

\entity at (0,0) {Normal};

\entity[zoomed] at (2,0) {Zoomed};

\end{tikzpicture}

15

5.3 Macros for text layout

The following macros can be used both in TikZ pictures or normal text:

\ormtext
Sets the font to the same sans-serif variant which is used in ORM diagrams.

\ormbf
Sets the font to a bold variant of \ormtext.

\ormc
Sets the font to a \ormtext in constraint color.

\ormsup {〈text〉}
Puts some text in a superscript variant of \ormtext.

\ormsub {〈text〉}
Puts some text in a subscript variant of \ormtext.

\ormind {〈text〉}
Puts some text in a superscript variant of \ormbf.

\ormbraces {〈text〉}
Puts some text as \ormtext in braces.

1A Person is not {0,1}, Male or Female, up or left but queermultigender!

\ormind{1}A {\ormtext Person} is not \ormbraces{0,1},~

{\ormc Male} {\ormbf or} {\ormtext Female}, \ormup{up}~

{\ormbf or} \ormleft{left} but \ormsub{queer}multi\ormsup{gender}!

6 Settings and Utilities

/tikz/orm

This style sets the font and line width and the default node distance

/tikz/every orm line

This style is envoked by all styles of this package that draw lines. By default
it sets the line width to 0.3mm.

Changes

0.1, January 25th, 2010 First release

16

References

[GPL91] GNU Public License Version 2, 1991.

[Hal05] Terry Halpin. ORM 2 Graphical Notation, 2005.

[HM08] Terry Halpin and Tony Morgan. Information Modeling and Relational
Databases. Morgan Kaufmann, 2008.

[LPP08] LaTeX Project Public License (LPPL) Version 1.3c, 2008.

17

Index

< constraint, 12
> constraint, 12
custom constraint, 10
equal constraint, 10
ge constraint, 12
le constraint, 12
mandatory constraint, 10
or constraint, 10
partition constraint, 10
preferred unique constraint, 10
required constraint, 10
subset constraint, 10
supset constraint, 10
total constraint, 10
unique constraint, 10
xor constraint, 10
x constraint, 10

Arrow tips
mandatory, 10

\binary, 4
both mandatory key, 9
both required key, 9

cardinality constraints, 12
cdot key, 8
constraint key, 9
constraint dot key, 8
\constraintdeclare, 11
\constraintdeclarealias, 11
Constraints, 7
constraints

cardinality, 12
textual, 12
value-comparision, 12
values, 12

duplicated model key, 15

Entities, 3
\entity, 3
entity key, 3
every constraint key, 11
every entity key, 3
every object type key, 3
every orm line key, 16
every predicate key, 5

every relationship key, 5
every value key, 3

implied model key, 15
Independent object types, 9
index key, 6

\limits, 10
limits key, 10
limits to key, 10

mandatory key, 8

Object types, 3
Independent, 9

orm key, 16
\ormbf, 16
\ormbraces, 16
\ormc, 16
\ormind, 16
\ormsub, 16
\ormsup, 16
\ormtext, 16

\plays, 4
predicates, 4

relation key, 4
relationship key, 4
required key, 8
required by key, 9
\role, 4
role key, 4
role name key, 6
roles, 4
\roles, 4
roles key, 4
rule key, 12
\rules, 13

skip unique key, 7
skipped uniqueness bar key, 8
subtype key, 14
suptype key, 14

\ternary, 4
textual constraints, 12

\unary, 4

18

unique key, 7
uniqueness bar key, 7

\value, 3
value key, 3
value constraints, 12
value-comparision constraints, 12
Values, 3
\vbinary, 4
\vrole, 4
vrole key, 4
\vroles, 4
vroles key, 4
\vternary, 4
\vunary, 4

zoomed key, 15

19

	Introduction
	Object Types
	Predicates and Roles
	Constraints
	Uniqueness Constraints
	Mandatory Role Constraints
	External constraints
	Ring Constraints
	Numberand Value Constraints
	Textual constraints

	Additional Features
	Subtyping
	Duplicated and implied parts of a model
	Macros for text layout

	Settings and Utilities
	References
	Index

