% \iffalse meta-comment % % Package logpap % Copyright (c) 2004 Mike Kaufmann, all rights reserved % % This program is provided under the terms of the % LaTeX Project Public License distributed from CTAN % archives in directory macros/latex/base/lppl.txt. % % Author: Mike Kaufmann % Mike.Kaufmann@ei.fh-giessen.de % \fi %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} %% % \CheckSum{1968} % % \iffalse meta-comment % %<*package> \def\fileversion{0.6} \def\filedate{2004/02/01} % % %<*driver> \documentclass{ltxdoc} \usepackage{logpap} \setlength{\unitlength}{1mm} \EnableCrossrefs \CodelineIndex \RecordChanges %\OnlyDescription \begin{document} \DocInput{logpap.dtx} \end{document} % % %<*package> % \fi % % \DoNotIndex{\,,\ } % \DoNotIndex{\@@end,\@break@tfor,\@empty,\@ifnextchar} % \DoNotIndex{\@ne,\@tempa,\@tempb,\@tempc,\@tempd,\@tempcnta,\@tempcntb} % \DoNotIndex{\@tempdima,\@tempdimb,\@tempdimc,\@tfor} % \DoNotIndex{\advance} % \DoNotIndex{\begin,\begingroup} % \DoNotIndex{\csname,\color,\CurrentOption} % \DoNotIndex{\DeclareOption,\def,\divide,\do} % \DoNotIndex{\edef,\else,\end,\endgroup,\endcsname,\ExecuteOption} % \DoNotIndex{\expandafter,\ExecuteOptions} % \DoNotIndex{\fi,\filedate,\fileversion} % \DoNotIndex{\global} % \DoNotIndex{\if,\ifcase,\ifcat,\ifdim,\ifnum,\ifx,\InputIfFileExists} % \DoNotIndex{\LaTeX,\let,\line,\linethickness,\loop} % \DoNotIndex{\m@ne,\makebox,\multiply,\MessageBreak} % \DoNotIndex{\NeedsTeXFormat,\newcommand,\newcount,\newdimen,\newif} % \DoNotIndex{\or} % \DoNotIndex{\p@,\PackageError,\PackageWarning,\PackageInfo} % \DoNotIndex{\PassOptionToPackage,\ProcessOptions,\ProvidesPackage,\put} % \DoNotIndex{\quad} % \DoNotIndex{\real,\relax,\renewcommand,\repeat,\RequirePackage} % \DoNotIndex{\setlength,\settoheight,\scriptsize,\space,\strut} % \DoNotIndex{\the,\textsf,\times,\typeout} % \DoNotIndex{\unitlength} % \DoNotIndex{\xdef,\z@} % % ^^A\changes{0.3}{2004/01/20}{initial release} % % ^^A \MakeShortVerb{\+} % ^^A \DeleteShortVerb{\|} % % \makeatletter % \let\PrintDescribeOpt\PrintDescribeEnv % \def\DescribeOpt{\leavevmode\@bsphack\begingroup\MakePrivateLetters % \Describe@Opt} % \def\Describe@Opt#1{\endgroup % \marginpar{\raggedleft\PrintDescribeOpt{#1}}% % \SpecialOptIndex{#1}\@esphack\ignorespaces} % \def\SpecialOptIndex#1{\@bsphack % \index{#1\actualchar{\protect\ttfamily#1} % (option)\encapchar usage}% % \index{options:\levelchar{\protect\ttfamily#1}\encapchar % usage}\@esphack} % \makeatother % % \newcommand*{\bs}{\char '134 } % \newcommand*{\lb}{\char '173 } % \newcommand*{\rb}{\char '175 } % \newcommand*{\param}[1]{\texttt{\textit{#1}}} % \newcommand*{\lp}{\textsf{logpap}} % \newcommand*{\newmac}{\vspace{2ex}\noindent} % % \title{The \lp\ Package\\Logarithmic Graph Paper with \LaTeX} % \author{Mike Kaufmann\\|Mike.Kaufmann@ei.fh-giessen.de|} % \date{\filedate (v\fileversion)} % ^^A-------------------------------------------------------------------------- % \maketitle % \begin{abstract} % The \lp\ package provides four macros for drawing logarithmic-logarithmic, % logarithmic-linear, linear-logarithmic and (because it was easy to implement) % linear-linear graph paper with \LaTeX. % \end{abstract} % % \tableofcontents % % ^^A-------------------------------------------------------------------------- % \section{Introduction} % \subsection{Why this Package} % Well, at least here in Germany logarithmic graph paper is expensive. And you % might not get graph paper with the number of decades you just need. With the % \lp\ package you can make your own graph paper now. And you can get your % graph paper even when shops are closed.\footnote{The first parts of this % package were made a weekend before I needed logarithmic graph paper for an % experiment report, because the experiment took place on Monday morning.} % % ^^A--------------------------------------------- % \subsection{Packages used by the \lp\ Package} % The \lp\ package uses the following two packages % \begin{description} % \item[calc] used for some divisions by a real number % \item[color] used for drawing the graph paper in color % \end{description} % % ^^A--------------------------------------------- % \subsection{Legal Stuff} % This program is provided under the terms of the % \LaTeX\ Project Public License distributed from CTAN % archives in directory macros/latex/base/lppl.txt. % % ^^A-------------------------------------------------------------------------- % \section{Overview}\label{sec:ov} % Altough the \lp\ package only draws logarithmic graph paper, there are % various things that can be changed. Figure \ref{fig:ov} will give an % overwiev. Here the first graph paper part where made with the default % settings and the command % |\put(0,105){\loglinpap(80mm,10mm)(1,1){1}{0}[X-name][Y-name]}|. % On the right side you can find the commands used to change the appearance. % % Not all commands possible are shown here. Every option can be used with % |\LPSet{|\param{option1}|,|\param{option2}|,...}| within the document, % every \param{option} has a counterpart |no|\param{option} and for every % \param{option}|x| also an \param{option}|y| exists. Also commands to set % the three line widths, colors and the appearance of the $\mu$ are not shown. % % \begin{figure}[ht] % \centering % \begin{picture}(140,120) % \put( 0,105){\loglinpap(80mm,10mm)(1,1){1}{0}[X-name][Y-name]} % \put(85,110){\makebox(0,0)[cl]{with default settings}} % % \LPSet{nodimensions,noticksupright,tenlower} % \put( 0, 80){\loglinpap(80mm,10mm)(1,1){1}{0}[optional][optional]} % \put(85, 89){\makebox(0,0)[cl]{\texttt{\bs LPSet\lb nodimensions,}}} % \put(85, 85){\makebox(0,0)[cl]{\texttt{\ \ \ \ \ \ \ noticksupright,}}} % \put(85, 81){\makebox(0,0)[cl]{\texttt{\ \ \ \ \ \ \ tenlower\rb}}} % \LPSet{dimensions,ticksupright,notenlower} % % \LPSet{notext,nofsnx}\DefineLPMinLineDist{1.9999mm} % \put( 0, 55){\loglinpap(80mm,10mm)(1,1){1}{0}} % \put(85, 64){\makebox(0,0)[cl]{\texttt{\bs LPSet\lb notext,}}} % \put(85, 60){\makebox(0,0)[cl]{\texttt{\ \ \ \ \ \ \ nofsnx\rb}}} % \put(85, 56){\makebox(0,0)[cl]{\texttt{\bs DefineLPMinLineDist\lb 1.9999mm\rb}}} % \LPSet{text,fsnx}\DefineLPMinLineDist{0.9999mm} % % \DefineLPText{new text\quad}\DefineLPLabelFont{\sffamily\tiny}\LPSet{notwoninex} % \put( 0, 30){\loglinpap(80mm,10mm)(1,1){1}{0}} % \put(85, 41){\makebox(0,0)[cl]{\texttt{\bs DefineLPText\lb new text\bs quad\rb}}} % \put(85, 37){\makebox(0,0)[cl]{\texttt{\bs DefineLPLabelFont}}} % \put(85, 33){\makebox(0,0)[cl]{\texttt{\ \ \ \ \lb\bs sffamily\bs tiny\rb}}} % \put(85, 29){\makebox(0,0)[cl]{\texttt{\bs LPSet\lb notwoninex\rb}}} % \DefineLPText{made with \LaTeX\ and \textsf{logpap}\quad}\DefineLPLabelFont{\scriptsize}\LPSet{twoninex} % % \DefineLPThickTickLen{1mm}\DefineLPMedTickLen{0.5mm}\DefineLPLabelDist{0.5mm} % \put( 0, 5){\loglinpap(80mm,10mm)(1,1){1}{0}} % \put(85, 14){\makebox(0,0)[cl]{\texttt{\bs DefineLPThickTickLen\lb 1mm\rb}}} % \put(85, 10){\makebox(0,0)[cl]{\texttt{\bs DefineLPMedTickLen\lb 0.5mm\rb}}} % \put(85, 6){\makebox(0,0)[cl]{\texttt{\bs DefineLPLabelDist\lb 0.5mm\rb}}} % \DefineLPThickTickLen{2mm}\DefineLPMedTickLen{1mm}\DefineLPLabelDist{1mm} % \end{picture} % \caption{Overview}\label{fig:ov} % \end{figure} % % ^^A-------------------------------------------------------------------------- % \newpage % \section{Using the Package} % \subsection{Drawing Logarithmic Graph Paper}\label{sec:dlgp} % \DescribeMacro\loglogpap % \DescribeMacro\loglinpap % \DescribeMacro\linlogpap % \DescribeMacro\linlinpap % There are four commands for drwaing graph paper. They can be used as a % single paragraph, in a \LaTeX\ \texttt{picture} environment or in a % \LaTeX\ \texttt{figure} environment. But due to the fact that the ticks, % the labeling, the text and the X- and Y-axis names are drawn outside of the % given area (see first parameter), it would be the best to use them within % a \texttt{picture} environment. % \begin{description} % \item[\texttt{\bs loglogpap}] draws double logarithmic graph paper % \item[\texttt{\bs loglinpap}] draws logarithmic-linear graph paper % (logarithmic X-axis) % \item[\texttt{\bs linlogpap}] draws linear-logarithmic graph paper % (logarithmic Y-axis) % \item[\texttt{\bs linlinpap}] draws double linear graph paper % \end{description} % These macros all have six parameters: % \begin{description} % \item[\texttt{(\emph{x-length},\emph{y-length})}] % are the dimensions of the graph paper in x- and y-direction. You can % use everything accepted as a length by \TeX, such as a number followed % by a unit accepted by \TeX\ (200mm, 500pt, \ldots) or a length register % like |\textheight| or |\textwidth|. % \item[\texttt{(\emph{x-decades/divisions},\emph{y-decades/divisions})}] % specifys the number decades for a logarithmic axis or the number of % divisions for a linear axis. You can use real numbers, but only the % first digit after the decimal point is used. For logarithmic axis a % value like 2.3 means that you will get two full decades (from 1 to 10) % and a partial decade from 1 to 3. % % For logarithmic axis the minimum is 0.2 and values like $x.1$ are % not alowed. For linear axis the minimum is 0.1. You'll get an % appropriate error message if you type wrong values. % \item[\texttt{\lb\emph{x-start},\emph{factor/increment}\rb}] % specifys the start value and a factor or increment for the x-axis % labeling. % % The general format for \param{x-start} is: an optional ``$+$'' or % ``$-$'', followed by 1 to 3 digits, optionally followed by one of the % letters y, z, a, f, p, n, u, m, k, M, G, T, P, E, Z or Y. The letters % are for the exponents $10^{-24}$, $10^{-21}$, \ldots, $10^{21}$ and % $10^{24}$. % % The \param{factor/increment} part is optional, it must be an integer % number. The default value is 1. For a logarithmic axis it is used as % factor, for a linear one as increment. % % For logarithmic axis you can use 1, $-1$, 10, $-10$, 100 or $-100$ % optionally followed by one of the exponent letters as start value % (\param{x-start}) and values from 2 to 9 as factor % (\param{factor/increment}). The exponent letter is included in % calculating the next value for a full decade. If the value is % 1000 $\cdot$ \param{factor} it will be set to 1 $\cdot$ \param{factor} % and the next letter in order is appended (see first Example). Examples: % \begin{description} % \item[\texttt{\lb 10m,2\rb}] leads to ``20m'', ``200m'', ``2'', % ``20'', ``200'', ``2k'' and so on for the full decade and % ``4'', ``6'', \ldots\ ``18'' between them. % \item[\texttt{\lb -100\rb}] leads to ``$-100$'', ``$-1$k'' % \ldots\ and ``$-2$'', ``$-3$'', \ldots\ ``$-9$'' between them. % \end{description} % % For linear axis you can use a positive or negative integer number % optionally followed by one of the exponent letters as start value % (\param{x-start}) and a positive or negative one as increment % (\param{factor/increment}). The start value range is from $-999$ to % 999\footnote{This restriction is caused by the parsing algorithem % used, which can only handle three digits in this version.}, for the % increment only 0 is not allowed. The exponent letter is not used when % calculating the next value, it is only appended to all values (see % first Example) and never changed (see third Example). Examples: % \begin{description} % \item[\texttt{\lb 10m,2\rb}] leads to ``10m'', ``12m'', ``14m'', % ``16m'', ``18m'' and so on. % \item[\texttt{\lb -100\rb}] leads to ``$-100$'', ``$-99$'' \ldots. % \item[\texttt{\lb 100,100\rb}] leads to ``100'', ``200'' \ldots % ``900'', ``1000''. % \end{description} % % If the format or the values are not correct, you'll get anappropriate % error message. % \item[\texttt{\lb\emph{y-start},\emph{factor/increment}\rb}] % specifys the start value and a factor or increment for the y-axis % labeling on the same way as for the x-axis. % \item[\texttt{[\emph{x-axis name}]}] % specifys a name for the x-axis, it can be an mathematical expression. % The name is set behind the right end and under the x-axis. % The parameter is optional. % \item[\texttt{[\emph{y-axis name}]}] % specifys a name for the y-axis, it can be an mathematical expression. % The name is set over the upper end and left from the y-axis. % The parameter is optional. If you want to have an y-axis name but no % x-axis name you must specify an empty x-axis name with \texttt{[]}. % \end{description} % % ^^A--------------------------------------------- % \subsection{Package Options and Settings}\label{sec:opt} % The package has eight option pairs. This means that every option % \texttt{\emph{option}} has an counterpart \texttt{no\emph{option}}. The first % switches on something the second switches off the same thing. % The options are: % \begin{description} % \item[\texttt{[no]ticksupright}] % \DescribeOpt{ticksupright} % \DescribeOpt{noticksupright} % the drawing of ticks on the upper and the right side of the % graph paper will be switched on or off. Default is on. % \item[\texttt{[no]twoninex}] % \DescribeOpt{twoninex} % \DescribeOpt{notwoninex} % applies only to logarithmic x-axis. The axis labeling for the values % for 2 to 9 within a decade will be switched on or off. % Default is on. % \item[\texttt{[no]twoniney}] % \DescribeOpt{twoniney} % \DescribeOpt{notwoniney} % applies only to logarithmic y-axis. The axis labeling for the values % for 2 to 9 within a decade will be switched on or off. % Default is on. % \item[\texttt{[no]fsnx}] % \DescribeOpt{fsnx} % \DescribeOpt{nofsnx} % applies only to logarithmic x-axis. The axis labeling for the values % for 5, 7 and 9 within a decade will be switched on or off. Note that % if \texttt{notwoninex} is set, the values for 5, 7 and 9 will never % appear. Default is on. % \item[\texttt{[no]fsny}] % \DescribeOpt{fsny} % \DescribeOpt{nofsny} % applies only to logarithmic y-axis. The axis labeling for the values % for 5, 7 and 9 within a decade will be switched on or off. Note that % if \texttt{notwoniney} is set, the values for 5, 7 and 9 will never % appear. Default is on. % \item[\texttt{[no]tenlower}] % \DescribeOpt{tenlower} % \DescribeOpt{notenlower} % applies only to logarithmic x-axis.The axis labeling for the values for % 10 (at a decades border) will be set lower if on. Default is off. % \item[\texttt{[no]text}] % \DescribeOpt{text} % \DescribeOpt{notext} % the text ``made with \LaTeX\ and \lp'' will be set left over the % graph paper if on. Default is on. The text can be changed. % \item[\texttt{[no]dimensions}] % \DescribeOpt{dimensions} % \DescribeOpt{nodimensions} % the dimensions of the graph paper in decades and/or divisions will be % shown (after the text ``made with \LaTeX\ and \lp'') if on. Default % is on. % \end{description} % Options unknown by the \lp\ package will be passed to the color package. So % you can use all options of the color package too. But note: global option % (options passed to the document class) are not passed to the package. % % \newmac % \DescribeMacro\LPSet % Everything set with package options can allso be set with the |\LPSet| % command. So you can have more then one graph paper with different settings % in one document. It takes a comma seperated list of option as parameter. % Example: % \begin{verbatim} % \LPSet{noticksupright,notext,nodimensions}\end{verbatim} % ^^A\end{verbatim} % Unknown options passed to |\LPSet| are silently ignored. % % The new settings are then valid from the point you called the command until % the end of the current environment or, if not inside of an environment, until % the end of the document. % % ^^A--------------------------------------------- % \subsection{Setup Commands} % The command for changing settings done by package options were allready % described in subsection \ref{sec:opt}. Here the rest of the setup commands % are following. These settings are also valid from the point you called a % command until the end of the current environment or, if not inside of an % environment, until the end of the document. % % \newmac % \DescribeMacro\DefineLPThickLineThickness % \DescribeMacro\DefineLPMedLineThickness % \DescribeMacro\DefineLPThinLineThickness % As seen in section \ref{sec:ov} there are three different line widths used. % They can be set with the commands % % \vspace{1ex}\noindent{\small % \texttt{\bs DefineLPThickLineThickness\lb\emph{thickness}\rb}\\ % \texttt{\bs DefineLPMedLineThickness\lb\emph{thickness}\rb}\\ % \texttt{\bs DefineLPThinLineThickness\lb\emph{thickness}\rb}} % % \vspace{1ex}\noindent % where \texttt{\emph{thickness}} can be everything accepted as a length by % \TeX. The default values are 0.8\,pt for thick lines, 0.5\,pt for medium % lines and 0.2\,pt for thin lines. % % Setting these values is a little bit critical, because they depend on the % printer resolution. % % If you set the thin line thickness to the minimum line thickness your printer % can draw, it is possible that your printer draws some thin lines with double % thickness. With a medium line thickness of twice the thin line thickness then % you might not be able to distinguish between thin and medium lines. % % With a thin line thickness value of 1.6 times the minimum line thickness of % your printer this (hopefully) will not happen, but it might be only once % this minimum. The medium line thickness then should be at least twice the % thin line thickness and the thick line thickness more than three times the % thin line thickness and more than 1.5 times the medium line thickness. Here % the fact that a printer pixel is larger than guessed due to the resolution % and some printers are capable of subpixel printing (printing some smaller % pixels) where not taken into account. The default values should fit for a % 600\,dpi printer, but anyway it would be a good idea to test them with your % printer. % % This problem was the reason for supporting a configuration file (see % subsection \ref{sec:conf}). There you can put these values for your printer % and so there is no need to put them in every document. And if you give your % source to anyone else he will automaticly use his own configuration file if % he has one. % % \newmac % \DescribeMacro\DefineLPMinLineDist % With \texttt{\bs DefineLPMinLineDist\lb\emph{minimum-line-distance}\rb} you % can set the minimum distance between the lines drawn. Note that due to % rounding error it might be necessary to give a value a little bit lesser % then the value you want. So the default value is not 1\,mm but 0.9999\,mm. % % Another thing to keep in mind is that the thick lines will allways be drawn. % If they are to close together you will get a warning message, and an ugly % result of course. % % \newmac % \DescribeMacro\DefineLPThickTickLen % With \texttt{\bs DefineLPThickTickLen\lb\emph{thick-tick-length}\rb} you can % set the length of the ticks for thick lines, the default value is 2\,mm. % % \newmac % \DescribeMacro\DefineLPMedTickLen % And with \texttt{\bs DefineLPMedTickLen\lb\emph{medium-tick-length}\rb} you % can set the length of the ticks for medium lines, the default value is 1\,mm. % % Note: there is no |\DefineLPThinTickLen| command, because thin lines will % never have ticks. % % \newmac % \DescribeMacro\DefineLPLabelDist % The command \texttt{\bs DefineLPLabelDist\lb\emph{label-distance}\rb} % sets the distance between the axis labeling and the ticks, the default % value is 1\,mm. The label distance for a full decades label with option % \texttt{tenlower} is calculated so that the label is set one % \texttt{\emph{label-distance}} under the normal labels. The value of % \texttt{\emph{label-distance}} is also used as distance between the text % above the graph paper and the ticks and the axis names and the ticks. % % \newmac % \DescribeMacro\DefineLPLabelFont % And the command \texttt{\bs DefineLPLabelFont\lb\emph{label-font}\rb} % sets the font used for axis labeling and the text above the graph paper. % Here you can use all font size commands and commands like |\sffamily|, % |\bfseries| and |\itshape| for the font you want. Note: the |\text..| % commands are not possible here. The default is |\scriptsize|. % % \newmac % \DescribeMacro\DefineLPLineColor % \DescribeMacro\DefineLPLabelColor % The two commands \texttt{\bs DefineLPLineColor\lb...\rb} and % \texttt{\bs DefineLPLabelColor\lb...\rb} sets the colors for % lines and labeling. Here you have to use a complete |\color| % command\footnote{Please refer to \texttt{grfguide} for the description % of the \texttt{\bs color} command.} (with the advantage to have all % capabilities of it). The defaults are |\color[cmyk]{1,0,0,0}| (cyan) for % line color and |\color[cmyk]{0,0,0,1}| (black) for labeling color. % % There are three reasons for the line color default: % \begin{enumerate} % \item The printer colors are (normaly) cyan, magenta, yellow and black, so % the |cmyk| color model where chosen. % \item Only one of these printer colors where chosen, so there is no % need of rastering (which might be worse for thin lines). % \item The color cyan where chosen, because with black you wouldn't see your % (handdrawn) graph, with yellow the lines are to bright and magenta % lines are (in my opinion) to heavy. % \end{enumerate} % % \newmac % \DescribeMacro\DefineLPmu % On the axis labeling there might be a letter appended for ``micro'' % ($10^{-6}$). Due to the fact that not all fonts provide a upright % text-$\mu$, the default is just the letter ``u''. But with % \texttt{\bs DefineLPmu\lb\emph{mu}\rb} you can redefine it to the % letter you want (e.g.\ |$\mu$| or |\textmu| if provided). % % \newmac % \DescribeMacro\DefineLPText % With \texttt{\bs DefineLPText\lb\emph{new-text}\rb} you can change the text % displayed above the graph paper. It only changes the first part, not the % second where the dimensions are shown. The distance between the two text % parts has to be a part of the new text. The default text is % ``made with \LaTeX\ and \lp'' followed by a |\quad|. % % ^^A--------------------------------------------- % \subsection{Length of Decades/Divisions} % \DescribeMacro\lpgridx % \DescribeMacro\lpgridy % After drawing the graph paper the length of a single decade or division on % the x-axis can be found in |\lpgridx|. And the length of a decade or division % on the y-axis can be found in |\lpgridy|. This might be usefull to put % something into or around the graph paper, but unfortunately it won't be easy % to do such a thing. % % ^^A--------------------------------------------- % \subsection{Configuration File}\label{sec:conf} % At the end of the \lp\ package a config file with the name % \texttt{logpap.cfg} is loaded. It has to be somewhere where \TeX\ can find % it. An appropriate place should be the folder % \texttt{.../texmf/tex/latex/config/}. % % Allthough you can make any kind of settings in this file, it is strictly % recommended to use it only for setting the line widths. There should also % be a |\ProvidesFile| command as first line. Here an example % configuration file: % % \begin{verbatim} % \ProvidesFile{logpap.cfg}[2004/02/01 v0.6 configuration for a 600dpi printer] % \DefineLPThickLineThickness{0.8pt} % \DefineLPMedLineThickness{0.5pt} % \DefineLPThinLineThickness{0.2pt}\end{verbatim} % ^^A\end{verbatim} % % ^^A--------------------------------------------- % \subsection{Warnings and Errors} % There are two warning messages and six error messages, which can occur. % Both warning messages can occur several times for one graph paper. And if % you ignore an error message (by not correcting the error), you might get % more error messages. For all error messages there is an appropriate help % text, just type |h| at the |?|-prompt to see it. % % \newmac % The first warning message is % \begin{verbatim} % Package logpap Warning: lines are to close together % (logpap) on input line ...\end{verbatim} % ^^A\end{verbatim} % Because thick lines are always drawn, it can happen that they are closer % than the minimum line distance. % % \newmac % The second warning message is % \begin{verbatim} % Package logpap Warning: log. axis value went to large % (logpap) (no more letters for exponent, used X) % (logpap) on input line ...\end{verbatim} % ^^A\end{verbatim} % If the value for a full decade of a logarithmic axis is $10^{27}$ or larger, % there are no more letters for the exponent. The package then uses an X. % % \newmac % The first error message is % \begin{verbatim} % ! Package logpap Error: number of decades for logaritmic axis to small.\end{verbatim} % ^^A\end{verbatim} % It occurs, when the number of decades is less then 0.2. % % \newmac % The second error message is % \begin{verbatim} % ! Package logpap Error: wrong number of decades for logaritmic axis.\end{verbatim} % ^^A\end{verbatim} % It occurs, when the number of decades is something like $x.1$, which doesn't % make sense. % % \newmac % The third error message is % \begin{verbatim} % ! Package logpap Error: number of divisions for linear axis to small.\end{verbatim} % ^^A\end{verbatim} % It occurs, when the number of divisins is less then 0.1. % % \newmac % The fourth error message is % \begin{verbatim} % ! Package logpap Error: wrong format of start value.\end{verbatim} % ^^A\end{verbatim} % It occurs, when the format of start value for logarithmic or linear axis is % not correct. The format is: an optional $+$ or $-$, followed by 1-3 digits, % optionaly followed by one of the letters ``yzafpnumkMGTPEZY''. % % \newmac % The fifth error message is % \begin{verbatim} % ! Package logpap Error: wrong increment for linear axis.\end{verbatim} % ^^A\end{verbatim} % It occurs only, when the increment for a linear axis is 0, which doesn't make % any sense. % % \newmac % The sixth error message is % \begin{verbatim} % ! Package logpap Error: wrong logarithmic start value.\end{verbatim} % ^^A\end{verbatim} % It occurs, when the start value for a logarithmic axis is not $-100$, % $-10$, $-1$, 1, 10 or 100. % % \newmac % The seventh error message is % \begin{verbatim} % ! Package logpap Error: wrong factor for logarithmic axis.\end{verbatim} % ^^A\end{verbatim} % It occurs, when the factor for a logarithmic axis is not in the range from % 1 to 9. % % ^^A-------------------------------------------------------------------------- % \StopEventually{\newpage\PrintIndex \PrintChanges} % % ^^A-------------------------------------------------------------------------- % \newpage % \section{The Code} % \subsection{The Usual} % First the usual things. % \begin{macrocode} \NeedsTeXFormat{LaTeX2e}[2001/06/01] \ProvidesPackage{logpap}[\filedate\space v\fileversion\space drawing logarithmic graph paper] % \end{macrocode} % % ^^A--------------------------------------------- % \subsection{The Options and Settings} % Bevor declaring the options and settings, the booleans used by them are % defined. % % \begin{macro}{\iflp@ticksupright} % \begin{macro}{\lp@ticksuprighttrue} % \begin{macro}{\lp@ticksuprightfalse} % If the boolean |\iflp@ticksupright| is true ticks at the upper and the right % side of the graph paper will be drawn. % \begin{macrocode} \newif\iflp@ticksupright % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@text} % \begin{macro}{\lp@texttrue} % \begin{macro}{\lp@textfalse} % If the boolean |\iflp@text| is true the text (not the dimensions) above the % graph paper is shown. % \begin{macrocode} \newif\iflp@text % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@dimensions} % \begin{macro}{\lp@dimensionstrue} % \begin{macro}{\lp@dimensionsfalse} % If the boolean |\iflp@dimensions| is true the dimensions (not the text) above % the graph paper is shown. % \begin{macrocode} \newif\iflp@dimensions % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@twoninex} % \begin{macro}{\lp@twoninextrue} % \begin{macro}{\lp@twoninexfalse} % If the boolean |\iflp@twoninex| is false the labels for 2 to 9 within a % decade of the x-axis will not appear. % \begin{macrocode} \newif\iflp@twoninex % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@fsnx} % \begin{macro}{\lp@fsnxtrue} % \begin{macro}{\lp@fsnxfalse} % If the boolean |\iflp@fsnx| is false the labels for 5, 7 and 9 within a % decade of the x-axis will not appear. % \begin{macrocode} \newif\iflp@fsnx % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@twoniney} % \begin{macro}{\lp@twonineytrue} % \begin{macro}{\lp@twonineyfalse} % If the boolean |\iflp@twoniney| is false the labels for 2 to 9 within a % decade of the y-axis will not appear. % \begin{macrocode} \newif\iflp@twoniney % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@fsny} % \begin{macro}{\lp@fsnytrue} % \begin{macro}{\lp@fsnyfalse} % If the boolean |\iflp@fsny| is false the labels for 5, 7 and 9 within a % decade of the y-axis will not appear. % \begin{macrocode} \newif\iflp@fsny % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@tenlower} % \begin{macro}{\lp@tenlowertrue} % \begin{macro}{\lp@tenlowerfalse} % If the boolean |\iflp@tenlower| is true the labels for a full decade of % the x-axis will be set lower (under the other labels). The label for the % origin is not affected by |\iflp@tenlower|. % \begin{macrocode} \newif\iflp@tenlower % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@DeclareOS} % With |\lp@DeclareOS| an option and an internal setting command in the form % |\lp@@set|\param{option} is defined simultaneously. % \begin{macrocode} \newcommand*\lp@DeclareOS[2]{\DeclareOption{#1}{#2} \expandafter\def\csname lp@@set#1\endcsname{#2}} % \end{macrocode} % \end{macro} % % \begin{macro}{\LPSet} % The command |\LPSet| just passes the comma seperated list of option (|#1|) % to |\lp@set|. % \begin{macrocode} \newcommand*\LPSet[1]{\lp@set#1,\@@end} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@set} % In |\lp@set| the first option is executed, then it is called recursively % until the list is empty. Unknown options passed to |\LPSet| are silently % ignored. % \begin{macrocode} \def\lp@set#1,#2\@@end{\csname lp@@set#1\endcsname \def\@tempa{#2}\ifx\@tempa\@empty\else\lp@set#2\@@end\fi} % \end{macrocode} % \end{macro} % Now all options and internal setting commands are declared. % \begin{macrocode} \lp@DeclareOS{ticksupright}{\lp@ticksuprighttrue} \lp@DeclareOS{noticksupright}{\lp@ticksuprightfalse} \lp@DeclareOS{twoninex}{\lp@twoninextrue} \lp@DeclareOS{notwoninex}{\lp@twoninexfalse} \lp@DeclareOS{twoniney}{\lp@twonineytrue} \lp@DeclareOS{notwoniney}{\lp@twonineyfalse} \lp@DeclareOS{fsnx}{\lp@fsnxtrue} \lp@DeclareOS{nofsnx}{\lp@fsnxfalse} \lp@DeclareOS{fsny}{\lp@fsnytrue} \lp@DeclareOS{nofsny}{\lp@fsnyfalse} \lp@DeclareOS{tenlower}{\lp@tenlowertrue} \lp@DeclareOS{notenlower}{\lp@tenlowerfalse} \lp@DeclareOS{text}{\lp@texttrue} \lp@DeclareOS{notext}{\lp@textfalse} \lp@DeclareOS{dimensions}{\lp@dimensionstrue} \lp@DeclareOS{nodimensions}{\lp@dimensionsfalse} % \end{macrocode} % Options unknown to the \lp\ package are passed to the color package. % \begin{macrocode} \DeclareOption*{\PassOptionToPackage{\CurrentOption}{color}} % \end{macrocode} % The booleans defaults are set and the options are processed. % \begin{macrocode} \ExecuteOptions{ticksupright,twoninex,twoniney,fsnx,fsny,notenlower,text,dimensions} \ProcessOptions\relax % \end{macrocode} % The calc package is needed to calculate the length of a divison or decade. % The color package is used to get colored lines for the graph paper. % These packages are loaded here. % \begin{macrocode} \RequirePackage{calc} \RequirePackage{color} % \end{macrocode} % % ^^A--------------------------------------------- % \subsection{The logarithmic Values} % Because it wouldn't be easy to calculate a logarithem with \TeX\footnote{And % because I'm no mathematician, which means I don't know how to calculate a % logarithem numerical.} the logarithmic value for $x.y$ is stored in a macro % |\lp@log|\param{x.y} % % \begin{macro}{\deflp@logline} % Such a value is defined with % |\deflp@logline{|\param{value}|}{|\param{logarithem-of-value}|}|. % \begin{macrocode} \newcommand*{\deflp@logline}[2]{\expandafter\def\csname lp@log#1\endcsname{#2}} % \end{macrocode} % \end{macro} % % \begin{macro}{\getlp@logline} % With |\getlp@logline{|\param{value}|}| the logarithem of the value can be % requested (if defined before). % \begin{macrocode} \newcommand*{\getlp@logline}[1]{\csname lp@log#1\endcsname} % \end{macrocode} % \end{macro} % Now the logarithems of 1.0 to 10.0 in steps of 0.1 are defined. % \begin{macrocode} \deflp@logline{1.0}{0} \deflp@logline{1.1}{.041393} \deflp@logline{1.2}{.078181} \deflp@logline{1.3}{.113943} \deflp@logline{1.4}{.146128} \deflp@logline{1.5}{.176091} \deflp@logline{1.6}{.20412} \deflp@logline{1.7}{.230449} \deflp@logline{1.8}{.255273} \deflp@logline{1.9}{.278754} \deflp@logline{2.0}{.30103} \deflp@logline{2.1}{.322219} \deflp@logline{2.2}{.342423} \deflp@logline{2.3}{.361728} \deflp@logline{2.4}{.380211} \deflp@logline{2.5}{.39794} \deflp@logline{2.6}{.414973} \deflp@logline{2.7}{.431364} \deflp@logline{2.8}{.447158} \deflp@logline{2.9}{.462398} \deflp@logline{3.0}{.477121} \deflp@logline{3.1}{.491362} \deflp@logline{3.2}{.50515} \deflp@logline{3.3}{.518514} \deflp@logline{3.4}{.531479} \deflp@logline{3.5}{.544068} \deflp@logline{3.6}{.556303} \deflp@logline{3.7}{.568202} \deflp@logline{3.8}{.579784} \deflp@logline{3.9}{.591065} \deflp@logline{4.0}{.60206} \deflp@logline{4.1}{.612784} \deflp@logline{4.2}{.623249} \deflp@logline{4.3}{.633468} \deflp@logline{4.4}{.643453} \deflp@logline{4.5}{.653213} \deflp@logline{4.6}{.662758} \deflp@logline{4.7}{.672098} \deflp@logline{4.8}{.681241} \deflp@logline{4.9}{.690196} \deflp@logline{5.0}{.69897} \deflp@logline{5.1}{.70757} \deflp@logline{5.2}{.716003} \deflp@logline{5.3}{.724276} \deflp@logline{5.4}{.732394} \deflp@logline{5.5}{.740363} \deflp@logline{5.6}{.748188} \deflp@logline{5.7}{.755875} \deflp@logline{5.8}{.763428} \deflp@logline{5.9}{.770852} \deflp@logline{6.0}{.778151} \deflp@logline{6.1}{.78533} \deflp@logline{6.2}{.792392} \deflp@logline{6.3}{.799341} \deflp@logline{6.4}{.80618} \deflp@logline{6.5}{.812913} \deflp@logline{6.6}{.819544} \deflp@logline{6.7}{.826075} \deflp@logline{6.8}{.832509} \deflp@logline{6.9}{.838849} \deflp@logline{7.0}{.845098} \deflp@logline{7.1}{.851258} \deflp@logline{7.2}{.857332} \deflp@logline{7.3}{.863323} \deflp@logline{7.4}{.869232} \deflp@logline{7.5}{.875061} \deflp@logline{7.6}{.880814} \deflp@logline{7.7}{.886491} \deflp@logline{7.8}{.892095} \deflp@logline{7.9}{.897627} \deflp@logline{8.0}{.90309} \deflp@logline{8.1}{.908485} \deflp@logline{8.2}{.913814} \deflp@logline{8.3}{.919078} \deflp@logline{8.4}{.924279} \deflp@logline{8.5}{.929419} \deflp@logline{8.6}{.934498} \deflp@logline{8.7}{.939519} \deflp@logline{8.8}{.944483} \deflp@logline{8.9}{.94939} \deflp@logline{9.0}{.954243} \deflp@logline{9.1}{.959041} \deflp@logline{9.2}{.963788} \deflp@logline{9.3}{.968483} \deflp@logline{9.4}{.973128} \deflp@logline{9.5}{.977724} \deflp@logline{9.6}{.982271} \deflp@logline{9.7}{.986772} \deflp@logline{9.8}{.991226} \deflp@logline{9.9}{.995635} \deflp@logline{10.0}{1} % \end{macrocode} % I thought about making an extra package for the logarithmic values. Perhaps % it might be usefull for other packages. But, because I'm not able to write % a macro that calculates the logarithem, I decided not doing this. % % ^^A--------------------------------------------- % \subsection{Registers and other Booleans needed} % \begin{macro}{\lp@dcntx} % In the counter |\lp@dcntx| the number of full decades or divisions of the % x-axis is stored and counted down when drawing lines. % \begin{macrocode} \newcount\lp@dcntx % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@dcnty} % In the counter |\lp@dcnty| the number of full decades or divisions of the % y-axis is stored and counted down when drawing lines. % \begin{macrocode} \newcount\lp@dcnty % \end{macrocode} % \end{macro} % % \begin{macro}{\lpgridx} % The dimen |\lpgridx| holds the length of a full decade or division for the % x-axis. % \begin{macrocode} \newdimen\lpgridx % \end{macrocode} % \end{macro} % % \begin{macro}{\lpgridy} % The dimen |\lpgridy| holds the length of a full decade or division for the % y-axis. % \begin{macrocode} \newdimen\lpgridy % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@thicklinelenx} % In the dimen |\lp@thicklinelenx| the length of a horizontal thick line is % calculated and stored. % \begin{macrocode} \newdimen\lp@thicklinelenx % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@thicklineleny} % In the dimen |\lp@thicklineleny| the length of a vertical thick line is % calculated and stored. % \begin{macrocode} \newdimen\lp@thicklineleny % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@medlinelenx} % In the dimen |\lp@medlinelenx| the length of a horizontal medium line is % calculated and stored. % \begin{macrocode} \newdimen\lp@medlinelenx % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@medlineleny} % In the dimen |\lp@medlineleny| the length of a vertical medium line is % calculated and stored. % \begin{macrocode} \newdimen\lp@medlineleny % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@osg} % The dimen |\lp@osg| is used while drawing lines. Here the offset from the % origin of the graph paper to the begin of the actual decade or division is % calculated and stored. % \begin{macrocode} \newdimen\lp@osg % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@osl} % The dimen |\lp@osl| is used while drawing lines. Here first the offset from % the beginning of the actual decade or division to the actual line is % calculated. And then |\lp@osg| is added to it to get the offset from the % origin of the graph paper to the actual line. % \begin{macrocode} \newdimen\lp@osl % \end{macrocode} % \end{macro} % % \begin{macro}{\iflp@partdecx} % \begin{macro}{\lp@partdecxtrue} % \begin{macro}{\lp@partdecxfalse} % The boolean |\iflp@partdecx| will be set if the last decade or division on % the x-axis is only a partial one ($x.y$ and not $x$ or $x.0$ as the number % of decades or divisions). % \begin{macrocode} \newif\iflp@partdecx % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@partdecy} % \begin{macro}{\lp@partdecytrue} % \begin{macro}{\lp@partdecyfalse} % The boolean |\iflp@partdecy| will be set if the last decade or division on % the y-axis is only a partial one ($x.y$ and not $x$ or $x.0$ as the number % of decades or divisions). % \begin{macrocode} \newif\iflp@partdecy % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@fulldecx} % \begin{macro}{\lp@fulldecxtrue} % \begin{macro}{\lp@fulldecxfalse} % The boolean |\iflp@fulldecx| will be set if there is at least one full % decade or division for the x-axis ($x.y$ or $x$ and not $0.y$ as the number % of decades or divisions). % \begin{macrocode} \newif\iflp@fulldecx % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@fulldecy} % \begin{macro}{\lp@fulldecytrue} % \begin{macro}{\lp@fulldecyfalse} % The boolean |\iflp@fulldecy| will be set if there is at least one full % decade or division for the y-axis ($x.y$ or $x$ and not $0.y$ as the number % of decades or divisions). % \begin{macrocode} \newif\iflp@fulldecy % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@twonine} % \begin{macro}{\lp@twoninetrue} % \begin{macro}{\lp@twoninefalse} % Because the same macro is used to get the next label for a logarithmic % x- and y-axis, the boolean |\iflp@twonine| is needed. It is set to the % meaning of |\iflp@twoninex| or |\iflp@twoniney| before labeling is done. % \begin{macrocode} \newif\iflp@twonine % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@fsn} % \begin{macro}{\lp@fsntrue} % \begin{macro}{\lp@fsnfalse} % Because the same macro is used to get the next label for a logarithmic % x- and y-axis, the boolean |\iflp@fsn| is needed. It is set to the % meaning of |\iflp@fsnx| or |\iflp@fsny| before labeling is done. % \begin{macrocode} \newif\iflp@fsn % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@ten} % \begin{macro}{\lp@tentrue} % \begin{macro}{\lp@tenfalse} % The boolean |\iflp@ten| is needed to distinguish between the labels within % decade and the labels of a full decade, to be able to set only the last % lower. % \begin{macrocode} \newif\iflp@ten % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@logx} % \begin{macro}{\lp@logxtrue} % \begin{macro}{\lp@logxfalse} % The boolean |\iflp@logx| is true if the x-axis is logarithmic. It is needed % to setup things on different ways for logarithmic and linear axis. % \begin{macrocode} \newif\iflp@logx % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@logy} % \begin{macro}{\lp@logytrue} % \begin{macro}{\lp@logyfalse} % The boolean |\iflp@logy| is true if the y-axis is logarithmic. It is needed % to setup things on different ways for logarithmic and linear axis. % \begin{macrocode} \newif\iflp@logy % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\iflp@preached} % \begin{macro}{\lp@preachedtrue} % \begin{macro}{\lp@preachedfalse} % The boolean |\iflp@preached| is used while parsing the start value for axis % labeling. It will be true if the parsed character is one of the letters for % the exponent. It is also used to get the next exponent letter when labeling % is done. There it will be true if the start exponent letter (not the next % one) is reached. % \begin{macrocode} \newif\iflp@preached % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % ^^A--------------------------------------------- % \subsection{Setup Commands} % Everything set with the |\DefineLP...| commands is stored in a macro. For % the first seven this where done to save dimen registers. For the last five % it seems to be the natural way. % % \begin{macro}{\DefineLPThickLineThickness} % \begin{macro}{\lp@tkltkness} % With |\DefineLPThickLineThickness| the thick line width is stored in % |\lp@tkltkness|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPThickLineThickness[1]{\renewcommand*\lp@tkltkness{#1}} \newcommand*\lp@tkltkness{0.8\p@} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPMedLineThickness} % \begin{macro}{\lp@mdltkness} % With |\DefineLPMedLineThickness| the medium line width is stored in % |\lp@mdltkness|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPMedLineThickness[1]{\renewcommand*\lp@mdltkness{#1}} \newcommand*\lp@mdltkness{0.5\p@} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPThinLineThickness} % \begin{macro}{\lp@tnltkness} % With |\DefineLPThinLineThickness| the thin line width is stored in % |\lp@tnltkness|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPThinLineThickness[1]{\renewcommand*\lp@tnltkness{#1}} \newcommand*\lp@tnltkness{0.2\p@} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPMinLineDist} % \begin{macro}{\lp@mindist} % With |\DefineLPMinLineDist| the minimum distance between two lines drawn % is stored in |\lp@mindist|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPMinLineDist[1]{\renewcommand*\lp@mindist{#1}} \newcommand*\lp@mindist{0.9999mm} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPThickTickLen} % \begin{macro}{\lp@tol} % With |\DefineLPThickTickLen| the tick length of thick lines % is stored in |\lp@tol|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPThickTickLen[1]{\renewcommand*\lp@tol{#1}} \newcommand*\lp@tol{2mm} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPMedTickLen} % \begin{macro}{\lp@mol} % With |\DefineLPMedTickLen| the tick length of medium lines % is stored in |\lp@mol|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPMedTickLen[1]{\renewcommand*\lp@mol{#1}} \newcommand*\lp@mol{1mm} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPLabelDist} % \begin{macro}{\lp@lpos} % With |\DefineLPLabelDist| the distance betweens ticks and labeling % is stored in |\lp@lpos|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPLabelDist[1]{\renewcommand*\lp@lpos{#1}} \newcommand*\lp@lpos{1mm} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPLabelFont} % \begin{macro}{\lp@font} % With |\DefineLPLabelFont| the commands needed to choose the font for the % labeling and the text above the graph paper are stored in |\lp@font|, which % is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPLabelFont[1]{\renewcommand*\lp@font{#1}} \newcommand*\lp@font{\scriptsize} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPLineColor} % \begin{macro}{\lp@linecolor} % With |\DefineLPLineColor| the command for setting the line color % is stored in |\lp@linecolor|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPLineColor[1]{\renewcommand*\lp@linecolor{#1}} \newcommand*\lp@linecolor{\color[cmyk]{1,0,0,0}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPLabelColor} % \begin{macro}{\lp@labelcolor} % With |\DefineLPLabelColor| the command for setting the labels color % is stored in |\lp@labelcolor|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPLabelColor[1]{\renewcommand*\lp@labelcolor{#1}} \newcommand*\lp@labelcolor{\color[cmyk]{0,0,0,1}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPmu} % \begin{macro}{\lp@mu} % With |\DefineLPmu| the exponent letter for ``micro'' ($10^{-6}$) is stored in % |\lp@mu|, which is initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPmu[1]{\renewcommand*\lp@mu{#1}} \newcommand*\lp@mu{u} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\DefineLPText} % \begin{macro}{\lp@textone} % With |\DefineLPText| the first part of the text above the graph paper and % the distance to the second part is stored in |\lp@textone|, which is % initialized in the next line. % \begin{macrocode} \newcommand*\DefineLPText[1]{\renewcommand*\lp@textone{#1}} \newcommand*\lp@textone{made with \LaTeX\ and \textsf{logpap}\quad} % \end{macrocode} % \end{macro} % \end{macro} % % ^^A--------------------------------------------- % \subsection{Making Lists} % Before describing the next commands, the mechanism how lines are drawn has % to be explained: % % First the length of a division or decade for an axis is calculated. % Then a comma separated list is built for every line width. Such a list % contains normalized\footnote{The Values are all in the range from 0 to 1. % To get the absolute value it has to be multiplied with the length of a % division or decade.} offsets from beginning of a decade or division to the % line to draw. The list for thick lines will always contain offsets for all % possible lines. The lists for medium and thin lines may contain all offsets % for a part from $x$ to $(x+1)$, the offsets for $x.2$, $x.4$, $x.6$ and $x.8$ % (no medium line), only the offsets for the medium lines ($x.5$) or no offsets % at all.\footnote{Here $x$ is 0 for linear axis and 1 to 9 for logarithmic % axis.} Therefor the distances between $x.9$ to $(x+1).0$, $x.8$ to $(x+1).0$ % and $x.5$ to $(x+1).0$ are calculated and compared to the given minimum line % distance. The distance between $x$ to $(x+1)$ is only calculated and % compared to get a warning message if necessary. At last every list is passed % to a macro, which works it up recursively. This is done once for every decade % or division (the lists contain the offsets for one decade or division only). % % For a partial division only the offsets for $0.1$ to $0.y$ are appended to % the list, where $y$ is the first digit after the decimal point of the % \texttt{\emph{decades/divisions}} argument to the linear axis. % For a partial decade only the offsets for $1.1$ to $x.0$ are appended to the % list, where $x$ is the first digit after the decimal point of the % \texttt{\emph{decades/divisions}} argument to the logarithmic axis. % % \begin{macro}{\lp@thicklines} % \begin{macro}{\lp@medlines} % \begin{macro}{\lp@thinlines} % In |\lp@thicklines|, |\lp@medlines| and |\lp@thinlines| the comma separated % lists of normalized offsets form a decades or divisions beginning to the line % to draw for thick, medium and thin lines are stored. % % \begin{macro}{\lp@lllist} % In |\lp@lllist| the values form 2 to (maximal) 10 for logarithmic axis % labeling are stored, but in the same order as the offsets for the thick % lines in |\lp@thicklines|, because latter is used for labeling too. % % \begin{macro}{\lp@clearlists} % With |\lp@clearlists| all theses lists are cleared. % \begin{macrocode} \def\lp@clearlists{% \def\lp@thicklines{,}\def\lp@medlines{,}\def\lp@thinlines{,}% \def\lp@lllist{,}} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % ^^A------------------------------ % \subsubsection{Making Lists for logarithmic Axis} % \begin{macro}{\lp@mkthickloglist} % \begin{macro}{\lp@thicklines} % \begin{macro}{\lp@lllist} % With |\lp@mkthickloglist| the lists in |\lp@thicklines| and |\lp@lllist| % are built. The parameter is 10 to build lists for a full decade and the % first digit after the decimal point of the \texttt{\emph{decades/divisions}} % argument to the logarithmic axis for a partial decade. % \begin{macrocode} \def\lp@mkthickloglist#1{% \@tempcnta\@ne\loop \advance\@tempcnta\@ne \edef\lp@thicklines{\getlp@logline{\the\@tempcnta.0},\lp@thicklines}% \edef\lp@lllist{\the\@tempcnta,\lp@lllist}% \ifnum\@tempcnta<#1\repeat} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@mkmedloglist} % \begin{macro}{\lp@medlines} % In |\lp@mkmedloglist| one offset value is appended to the list in % |\lp@medlines|. Parameter |#1| can be a decimal value from 1.0 to 10.0, but % of course |\lp@mkmedloglist| will be called only with values like $x.5$. % \begin{macrocode} \def\lp@mkmedloglist#1{% \edef\lp@medlines{\getlp@logline{#1},\lp@medlines}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@mkthinloglist} % \begin{macro}{\lp@thinlines} % In |\lp@mkthinloglist| one offset value is appended to the list in % |\lp@thinlines|. Parameter |#1| can be a decimal value from 1.0 to 10.0, but % of course |\lp@mkthinloglist| will be called only with values from $x.1$ to % $x.4$ and from $x.6$ to $x.9$. % \begin{macrocode} \def\lp@mkthinloglist#1{% \edef\lp@thinlines{\getlp@logline{#1},\lp@thinlines}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@mkthinloglisttwo} % The command |\lp@mkthinloglisttwo| appends the offset values for % $x.2$, $x.4$, $x.6$ and $x.8$ to |\lp@thinlines|. Here $x$ is from 1 to 9 % and passed as parameter |#1|. % \begin{macrocode} \def\lp@mkthinloglisttwo#1{% \lp@mkthinloglist{#1.2}\lp@mkthinloglist{#1.4}% \lp@mkthinloglist{#1.6}\lp@mkthinloglist{#1.8}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@mkthinloglistone} % The command |\lp@mkthinloglistone| appends the offset values for % $x.1$ to $x.4$ and $x.6$ to $x.9$ to |\lp@thinlines|. Here $x$ is from % 1 to 9 and passed as parameter |#1|. % \begin{macrocode} \def\lp@mkthinloglistone#1{\lp@mkthinloglisttwo{#1}% \lp@mkthinloglist{#1.1}\lp@mkthinloglist{#1.3}% \lp@mkthinloglist{#1.7}\lp@mkthinloglist{#1.9}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@getdist} % In |\lp@getdist| the absolute distance between two lines is calculated. % With parameter |#1| the length of a decade is passed, it has to be one % of the dimens |\lpgridx| or |\lpgridy|. The parameters |#2| and |#3| are the % decimal values for the two lines (in the range from 1.0 to 10.0). Note that % |#2| must be greater then |#3|. After calling |\lp@getdist| the dimen % |\@tempdima| will contain the absolute distance. % \begin{macrocode} \def\lp@getdist#1#2#3{% \expandafter\@tempdima\getlp@logline{#2}#1% \expandafter\@tempdimb\getlp@logline{#3}#1% \advance\@tempdima-\@tempdimb} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@mkloglistpart} % The macro |\lp@mkloglistpart| extends the lists for medium and thin lines % with the line offsets for the part between $x$ and $(x+1)$, where $x$ is % from 1 to 9. The decision which offsets are appended (as described earlier) % is made here. Parameter |#1| is the length of a decade, passed with one % of the dimens |\lpgridx| or |\lpgridy|. Parameters |#2| is $(x+1)$ and % parameter |#3| is $x$. % \begin{macrocode} \def\lp@mkloglistpart#1#2#3{% \lp@getdist{#1}{#2.0}{#3.9}\ifdim\@tempdima<\lp@mindist \lp@getdist{#1}{#2.0}{#3.8}\ifdim\@tempdima<\lp@mindist \lp@getdist{#1}{#2.0}{#3.5}\ifdim\@tempdima<\lp@mindist \lp@getdist{#1}{#2.0}{#3.0}\ifdim\@tempdima<\lp@mindist \PackageWarning{logpap}{% lines are to close together\MessageBreak}% \fi \else \lp@mkmedloglist{#3.5}% \fi \else \lp@mkthinloglisttwo{#3}% \fi \else \lp@mkmedloglist{#3.5}\lp@mkthinloglistone{#3}% \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@mkloglist} % With |\lp@mkloglist| all lists for full or partial decade are built. % Again parameter |#1| is the length of a decade (|\lpgridx| or |\lpgridy|). % Parameter |#2| is 10 for a full decade and the first digit after the % decimal point of the \texttt{\emph{decades/divisions}} argument to the % logarithmic axis for a partial decade. % \begin{macrocode} \def\lp@mkloglist#1#2{\lp@clearlists\lp@mkthickloglist{#2}% \@tempcnta#2\@tempcntb\@tempcnta\advance\@tempcntb\m@ne \loop \lp@mkloglistpart{#1}{\the\@tempcnta}{\the\@tempcntb}% \advance\@tempcnta\m@ne\advance\@tempcntb\m@ne \ifnum\@tempcnta>\@ne\repeat} % \end{macrocode} % \end{macro} % % ^^A------------------------------ % \subsubsection{Making Lists for linear Axis} % \begin{macro}{\lp@mkthicklinlist} % \begin{macro}{\lp@thicklines} % With |\lp@mkthicklinlist| the list for thick lines is built. Because it % will contain only one line at maximum, here no |\edef| is needed. Parameter % |#1| is 1 for a full division and $.y$ for a partial division, where $y$ % is the first digit after the decimal point of the % \texttt{\emph{decades/divisions}} argument to the linear axis. % The decision if the offset has to be appended is made here. % \begin{macrocode} \def\lp@mkthicklinlist#1{% \@tempdima#1\p@\relax\ifdim\@tempdima>.99\p@\def\lp@thicklines{1,}\fi} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@mkmedlinlist} % \begin{macro}{\lp@medlines} % With |\lp@mkmedlinlist| the list for medium lines is built. It also % will contain only one line at maximum, so no |\edef| is needed here too. % Parameter |#1| is 1 for a full division and $.y$ for a partial division, % where $y$ is the first digit after the decimal point of the % \texttt{\emph{decades/divisions}} argument to the linear axis. % One part of the decision if the offset has to be appended is made here. % \begin{macrocode} \def\lp@mkmedlinlist#1{% \@tempdima#1\p@\relax\ifdim\@tempdima>.49\p@\def\lp@medlines{.5,}\fi} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@mkthinlinlist} % \begin{macro}{\lp@thinlines} % With |\lp@mkthinlinlist| one line offset is appended to the list for thin % lines. Parameter |#1| is this offset, only the values .1 to .4 and .6 to .9 % are used. % \begin{macrocode} \def\lp@mkthinlinlist#1{% \edef\lp@thinlines{#1,\lp@thinlines}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@mkthinlinlisttwo} % In |\lp@mkthinlinlisttwo| the offsets (for) .2, .4, .6 and .8 are appended % if necessary. The decision is made by parameter |#1|, which is 1 for a full % division and $.y$ for a partial division, where $y$ is the first digit after % the decimal point of the \texttt{\emph{decades/divisions}} argument to the % linear axis. One part of the decision, which offsets has to be appended is % made here. % \begin{macrocode} \def\lp@mkthinlinlisttwo#1{% \@tempdima#1\p@\relax \ifdim\@tempdima>.19\p@\lp@mkthinlinlist{.2}% \ifdim\@tempdima>.39\p@\lp@mkthinlinlist{.4}% \ifdim\@tempdima>.59\p@\lp@mkthinlinlist{.6}% \ifdim\@tempdima>.79\p@\lp@mkthinlinlist{.8}% \fi\fi\fi\fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@mkthinlinlistone} % In |\lp@mkthinlinlisttwo| the offsets (for) .1 to .4 and .6 to .9 are % appended if necessary. The decision is made by parameter |#1|, which is 1 for % a full division and $.y$ for a partial division, where $y$ is the first digit % after the decimal point of the \texttt{\emph{decades/divisions}} argument to % the linear axis. One part of the decision, which offsets has to be appended % is made here. % \begin{macrocode} \def\lp@mkthinlinlistone#1{\lp@mkthinlinlisttwo{#1}% \@tempdima#1\p@\relax \ifdim\@tempdima>.09\p@\lp@mkthinlinlist{.1}% \ifdim\@tempdima>.29\p@\lp@mkthinlinlist{.3}% \ifdim\@tempdima>.69\p@\lp@mkthinlinlist{.7}% \ifdim\@tempdima>.89\p@\lp@mkthinlinlist{.9}% \fi\fi\fi\fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@getlindist} % In |\lp@getlindist| the absolute distance between two lines is calculated. % Parameter |#1| is the length of a division (|\lpgridx| or |\lpgridy|). The % parameters |#2| and |#3| are the two line offsets, here |#2| has to be % greater then |#3|. After calling |\lp@getlindist| the dimen |\@tempdima| % will contain the absolute distance. % \begin{macrocode} \def\lp@getlindist#1#2#3{% \@tempdima#2#1\@tempdimb#3#1% \advance\@tempdima-\@tempdimb} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@mklinlist} % With |\lp@mklinlist| all lists for full or partial division are built. % Again parameter |#1| is the length of a division (|\lpgridx| or |\lpgridy|). % Parameter |#2| is 1 for a full division and $.y$ for a partial division, % where $y$ is the first digit after the decimal point of the % \texttt{\emph{decades/divisions}} argument to the linear axis. % The first part of the decision, which offsets has to be appended is % made here. % \begin{macrocode} \def\lp@mklinlist#1#2{\lp@clearlists\lp@mkthicklinlist{#2}% \lp@getlindist{#1}{1.0}{0.9}\ifdim\@tempdima<\lp@mindist \lp@getlindist{#1}{1.0}{0.8}\ifdim\@tempdima<\lp@mindist \lp@getlindist{#1}{1.0}{0.5}\ifdim\@tempdima<\lp@mindist \lp@getlindist{#1}{1.0}{0.0}\ifdim\@tempdima<\lp@mindist \PackageWarning{logpap}{% lines are to close together\MessageBreak}% \fi \else \lp@mkmedlinlist{#2}% \fi \else \lp@mkthinlinlisttwo{#2}% \fi \else \lp@mkmedlinlist{#2}\lp@mkthinlinlistone{#2}% \fi} % \end{macrocode} % \end{macro} % % ^^A--------------------------------------------- % \subsection{Drawing Lines} % \begin{macro}{\lp@dolinesx} % The command |\lp@dolinesx| draws all lines from one list of line offsets % (which contains the offsets for one decade or division). The offset from % the origin of the graph paper to the start of the decade or division to % draw is calculated and stored in |\lp@osg|. Parameter |#1| is the macro, % where the list is stored. Parameter |#2| is the thickness of the lines, % |#3| is the start positions of the lines in y-direction and |#4| is the % line length. The real work is done by |\lp@dolinex|, which is called with % the expanded list. % \begin{macrocode} \def\lp@dolinesx#1#2#3#4{\linethickness#2% \lp@osg\lp@dcntx\lpgridx \expandafter\lp@dolinex#1,\@@end{#3}{#4}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@dolinex} % If the list is not empty, |\lp@dolinex| first calculates the offset form % the origin of the graph paper to the line to draw in |\lp@osl|. Then the % line is drawn. Note: the command |\put| works with a dimen, because % |\unitlength| was disabled (with |\let\unitlength\relax|) before starting % the \texttt{picture} environment. At last |\lp@dolinex| calls itself % recursively, until the list is empty. Parameter |#1| is the first element of % the list and parameter |#2| its rest. Parameter |#3| is the start positions % of the lines in y-direction and |#4| is the line length. % \begin{macrocode} \def\lp@dolinex#1,#2,\@@end#3#4{% \def\@tempc{#1}\ifx\@tempc\@empty\else \lp@osl#1\lpgridx \advance\lp@osl\lp@osg \put(\lp@osl,#3){\line(0,1){#4}}% \def\@tempc{#2}\ifx\@tempc\@empty\else \lp@dolinex#2,\@@end{#3}{#4}\fi\fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@dolinesy} % The command |\lp@dolinesy| works the same way as |\lp@dolinesx|. It has the % same parameters, except that |#3| is the start position in x-direction. % \begin{macrocode} \def\lp@dolinesy#1#2#3#4{\linethickness#2% \lp@osg\lp@dcnty\lpgridy \expandafter\lp@doliney#1,\@@end{#3}{#4}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@doliney} % And |\lp@doliney| works the same way as |\lp@dolinex|. It has also the same % parameters, except that here |#3| is the start position in x-direction too. % \begin{macrocode} \def\lp@doliney#1,#2,\@@end#3#4{% \def\@tempc{#1}\ifx\@tempc\@empty\else \lp@osl#1\lpgridy \advance\lp@osl\lp@osg \put(#3,\lp@osl){\line(1,0){#4}}% \def\@tempc{#2}\ifx\@tempc\@empty\else \lp@doliney#2,\@@end{#3}{#4}\fi\fi} % \end{macrocode} % \end{macro} % % ^^A--------------------------------------------- % \subsection{Labeling} % \subsubsection{Setup for Labels} % During setup the \texttt{\emph{x/y-start},\emph{factor/increment}} argument % is tested and split into four macros. These macros and their contents % after setup (if everything is correct) are shown in table \ref{tab:sfi}. % \begin{table}[ht] % \begin{tabular}{lp{10cm}}\hline\\ % \texttt{\bs lp@sign} & If \texttt{\emph{x/y-start}} is negativ, it contains % a ``$-$'', else it is empty.\\[.8ex] % \texttt{\bs lp@sll} & It contains the absolute \texttt{\emph{x/y-start}} % value (1 to 3 digits), the value itself is not tested % here (but it will be done later).\\[.8ex] % \texttt{\bs lp@sllp} & It contains the exponent letter if appended, else it % is empty.\\[.8ex] % \texttt{\bs lp@lfi} & It contains the \texttt{\emph{factor/increment}} % value, which is not tested here (but a range test % will be done later). If no % \texttt{\emph{factor/increment}} is given, % it is 1.\\[2.5ex]\hline % \end{tabular} % \caption{Macros for \texttt{\emph{x/y-start},\emph{factor/increment}} % after Setup}\label{tab:sfi} % \end{table} % % \begin{macro}{\lp@setuplabel} % \begin{macro}{\lp@lfi} % For setup the command |\lp@setuplabel| has to be called with the % \texttt{\emph{x/y-start}, \emph{factor/increment}} argument and a trailing % comma appended to it, to make it work without a % \texttt{\emph{factor/increment}} part. The \texttt{\emph{x/y-start}} part % is processed with |\lp@getsign@ndparse|. If no % \texttt{\emph{factor/increment}} part is given, |\lp@lfi| is set to 1 % (the default), else this part is processed with |\lp@setup@lfi|. % \begin{macrocode} \def\lp@setuplabel#1,#2\@@end{% \lp@getsign@ndparse#1\@@end \def\@tempa{#2}\ifx\@tempa\@empty\def\lp@lfi{1}\else \def\@tempb{,}\ifx\@tempa\@tempb\def\lp@lfi{1}\else \lp@setup@lfi#2\@@end\fi\fi} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@setup@lfi} % \begin{macro}{\lp@lfi} % The command |\lp@setup@lfi| discards the trailing comma from % \texttt{\emph{factor/increment},} and stores the factor or increment to % |\lp@lfi|. % \begin{macrocode} \def\lp@setup@lfi#1,\@@end{\def\lp@lfi{#1}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@getsign@ndparse} % \begin{macro}{\lp@sign} % In |\lp@getsign@ndparse| a leading ``$+$'' or ``$-$'' is discarded from % \texttt{\emph{x/y-start}}. If it was a ``$-$'', it is stored in |\lp@sign|, % otherwise |\lp@sign| will be empty. The rest (digits and exponent letter) % is passed to |\lp@parsesll| together with four ``x'', so that there are % at least five characters. % \begin{macrocode} \def\lp@getsign@ndparse#1#2\@@end{% \if#1-\relax \def\lp@sign{#1}\lp@parsesll#2xxxx\@@end \else\if#1+\relax \def\lp@sign{}\lp@parsesll#2xxxx\@@end \else \def\lp@sign{}\lp@parsesll#1#2xxxx\@@end \fi\fi} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@parsesll} % \begin{macro}{\lp@sll} % \begin{macro}{\lp@sllp} % In |\lp@parsesll| the first four parameters takes the first four characters % passed from |\lp@getsign@ndparse| and parameter |#5| takes the rest (1 to 4 % times ``x''). The first character has to be a digit, if not an error message % (|\lp@formaterr|) will occur. The next two characters can be a digit, % one of the exponent letters or an ``x''. If not, the same error message % will occur. And the fourth character can be an exponent letter or an ``x''. % Again the error message will occur, if it is not. When an exponent letters or % an ``x'' is detected, no further characters are tested. The digits are stored % in |\lp@sll|. The exponent letter is stored in |\lp@sllp|, if there isn't % one, |\lp@sllp| will be empty. % \begin{macrocode} \def\lp@parsesll#1#2#3#4#5\@@end{% \if\lp@isdigit#1\relax \if\lp@isdigit#2\relax \if\lp@isdigit#3\relax \lp@testletter#4\iflp@preached \def\lp@sll{#1#2#3}\def\lp@sllp{#4}% \else\if#4x\relax \def\lp@sll{#1#2#3}\def\lp@sllp{}% \else \lp@formaterr \fi\fi \else\lp@testletter#3\iflp@preached \def\lp@sll{#1#2}\def\lp@sllp{#3}% \else\if#3x\relax \def\lp@sll{#1#2}\def\lp@sllp{}% \else \lp@formaterr \fi\fi\fi \else\lp@testletter#2\iflp@preached \def\lp@sll{#1}\def\lp@sllp{#2}% \else\if#2x\relax \def\lp@sll{#1}\def\lp@sllp{}% \else \lp@formaterr \fi\fi\fi \else \lp@formaterr \fi} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@formaterr} % The command |\lp@formaterr| gives an error message for a wrong % \texttt{\emph{x/y-start}} argument. It is used only in |\lp@parsesll|. % \begin{macrocode} \def\lp@formaterr{% \PackageError{logpap}{wrong format of start value}% {The format of the start value is:\MessageBreak optional + or -, followed by 1-3 digits, optionaly\MessageBreak followed by one of the letters [yzafpnumkMGTPEZY].\MessageBreak Please correct it before going on,\MessageBreak otherwise you might get more error messages.}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@isdigit} % With |\lp@isdigit| parameter |#1| is tested, whether it is a digit or % not.\footnote{This macro was kept from the UK-\TeX FAQ, % chapter ``Macro programming'', section ``Is the argument a number?''.} % It has to be invoked as follows: |\if\lp@isdigit|\meta{character} % \meta{stuff for character is a digit} |\else| % \meta{stuff for character is not a digit} |\fi|. The |\if| is needed to make % it work in nested if-strctures, therefor |\lp@isdigit| begins with |TT\fi| % to end this |\if|. The |\else| and |\fi| then belongs to the (uncomplete) % |\ifcat|. The comparison is done by the |\ifnum|. If |#1| is a digit the % second value will be 10 or greater, so the |\ifnum| expands to ``|_|'' and % the |\ifcat| will be true. In the other case|\ifnum| expands to ``|A|'' and % the |\ifcat| will be false. The macro would also work for positive numbers. % \begin{macrocode} \def\lp@isdigit#1{TT\fi\ifcat_\ifnum9<1#1 _\else A\fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@testletter} % In |\lp@testletter| parameter |#1|, which has to be one character, % is compared to all possible exponent letter. The boolean |\iflp@preached| % is set to true if |#1| is one of the letters, else it is set to false. % \begin{macrocode} \def\lp@testletter#1{% \def\@tempb{#1}\lp@preachedfalse \@tfor\@tempc:=yzafpnumkMGTPEZY\do{% \if\@tempc\@tempb\relax\relax\lp@preachedtrue\@break@tfor\fi}} % \end{macrocode} % \end{macro} % % ^^A------------------------------ % \subsubsection{Range Test for Label Values} % The next two macros (|\lp@testrangelin| and |\lp@testrangelog|) are not % invoked directly. Their meaning is assigned to |\lp@testrangex| and % |\lp@testrangey| by |\lp@@@logpap| instead, so the right test for an axis % takes place. % % \begin{macro}{\lp@testrangelin} % In |\lp@testrangelin| the start value for a linear axis is not tested, % because due to the tests in |\lp@parsesll| it is in the range from % $-999$ to 999 and there is no other limitation. The increment is only % tested against 0, because this doesn't make any sense. % \begin{macrocode} \def\lp@testrangelin{\@tempcnta\lp@lfi\relax \ifnum\@tempcnta=0\relax \PackageError{logpap}{wrong increment for linear axis}% {The increment value is 0, which doesn't make any sense.\MessageBreak Please correct it before going on.}% \fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@testrangelog} % In |\lp@testrangelog| first the start value is tested whether it is 1, 10 % or 100. If not, an error message will occur. A test against the possible % negative values is not necessary, because |\lp@sll| only contains the % absolute value (the sign is in |\lp@sign|). The test against 0 is not realy % necessary, but I could resist ;-) At last the factor is tested whether % it is in the range from 1 to 9. % \begin{macrocode} \def\lp@testrangelog{\@tempcnta\lp@sll\relax \ifnum\@tempcnta=1\else\ifnum\@tempcnta=10\else\ifnum\@tempcnta=100\else \ifnum\@tempcnta=0\relax \PackageError{logpap}{wrong logarithmic start value}% {0 as start value for a logarithmic axis?\MessageBreak This is a typo, isn't it?\MessageBreak If not, you should learn more mathematics\MessageBreak before using this package ;-)\MessageBreak Only -100, -10, -1, 1, 10 and 100 are allowed.\MessageBreak Please correct it before going on.}% \else \PackageError{logpap}{wrong logarithmic start value}% {Only -100, -10, -1, 1, 10 and 100 are allowed.\MessageBreak Please correct it before going on.}% \fi \fi\fi\fi \@tempcnta\lp@lfi\relax \ifnum\@tempcnta<1\lp@logfacerr\else\ifnum\@tempcnta>9\lp@logfacerr\fi\fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@logfacerr} % The command |\lp@logfacerr| just gives out an error message for a wrong % factor for logarithmic axis labeling. % \begin{macrocode} \def\lp@logfacerr{\PackageError{logpap}{wrong factor for logarithmic axis}% {The factor has to be in the range from 1 to 9.\MessageBreak Please correct it before going on.}} % \end{macrocode} % \end{macro} % % ^^A------------------------------ % \subsubsection{Getting next Label} % The two macros |\lp@nextlinlabel| and |\lp@nextloglabel| are not invoked % directly, but assigned to |\lp@nextxlabel| and |\lp@nextylabel| by % |\lp@@@logpap|. % % \begin{macro}{\lp@nextlinlabel} % \begin{macro}{\lp@label} % In |\lp@nextlinlabel| first the labels value is calculated. Therefore the % increment (|#3|) is multiplied with the number of the division (|#4|) and % to the result the increment is added, because the label is at the end of % the actual division. To get the final value the signed (|#6|) start value % (|#1|) has to be added. After that if the exponent letter (|#2|) is ``u'' % it is replaced with |\lp@mu|. The complete label is stored in |\lp@label|, % but with the exponent letter discarded if the value is 0. Note: parameter % |#5| is not used here, but it is necessary to be parameter compatible with % |\lp@nextloglabel|. % \begin{macrocode} \def\lp@nextlinlabel#1#2#3#4#5#6{\@tempcnta#3\multiply\@tempcnta#4\relax \advance\@tempcnta#3\advance\@tempcnta#6#1\relax \def\@tempa{#2}\def\@tempb{u}\ifx\@tempa\@tempb\def\@tempa{\lp@mu}\fi \edef\lp@label{\the\@tempcnta\ifnum\@tempcnta=0\else\@tempa\fi}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@nextloglabel} % The parameters for |\lp@nextloglabel| are the absolut start value (|#1|), % the start exponent letter (|#2|), the factor (|#3|), the decades count % (beginning with 0, |#4|), a number from 2 to 10 (|#5|) and the sign (|#6|). % % First the number is used to distinguish between a label within a decade % (values from 2 to 9) and a label for a full decade (10). The latter label % consists of the sign, the factor multiplied with one of the values 1, 10 or % 100 and the trailing exponent letter. % \begin{macrocode} \def\lp@nextloglabel#1#2#3#4#5#6{% \@tempcnta#5\relax\ifnum\@tempcnta=10 \lp@tentrue % \end{macrocode} % The values 1, 10 and 100 can also be expressed as $10^a$, where the exponent % $a$ (in |\@tempcnta|) is 0, 1 or 2. To get this exponent the decades count % (|#4|) has to be advanced by one if the start value (|#1|) is 1, by two if % the start value is 10 or by three if the start value is 100. % \begin{macrocode} \@tempcnta#4\relax\@tempcntb#1\relax \advance\@tempcnta\@ne \ifnum\@tempcntb>1\advance\@tempcnta\@ne \ifnum\@tempcntb>10\advance\@tempcnta\@ne\fi\fi % \end{macrocode} % After a modulo 3 (next four lines) $a$ is in the right range and |\lp@label| % can be defined as the value needed within a case structure. % \begin{macrocode} \@tempcntb\@tempcnta \divide\@tempcntb 3\relax \multiply\@tempcntb 3\relax \advance\@tempcnta-\@tempcntb \ifcase\@tempcnta \def\lp@label{1}\or \def\lp@label{10}\or \def\lp@label{100}\fi % \end{macrocode} % From the modulo operation the vaule $a-(a\;\mbox{mod}\;3)$ remains in % |\@tempcntb|. After dividing it by 3 it contains the number of exponent % letters to step further. This is done in |\lp@getpot| after that |\@tempa| % will contain the needed letter, or an ``X'' if there are no more letters. % In the latter case a warning is given. % \begin{macrocode} \divide\@tempcntb 3\relax \lp@getpot{#2}\@tempcntb \def\@tempb{X}\ifx\@tempa\@tempb \PackageWarning{logpap}{% log. axis value went to large\MessageBreak (no more letters for exponent, used X)\MessageBreak}% \fi % \end{macrocode} % \begin{macro}{\lp@label} % If the exponent letter is ``u'', it is replaced by |\lp@mu|. Then the value % (1, 10 or 100) is multiplied with the factor (|#3|) and the signed (|#6|) % label is built in |\lp@label|. % \begin{macrocode} \def\@tempb{u}\ifx\@tempa\@tempb\def\@tempa{\lp@mu}\fi \@tempcnta\lp@label\multiply\@tempcnta#3\relax \edef\lp@label{#6\the\@tempcnta\@tempa}% \else % \end{macrocode} % This method building the complte label is independent of the order drawing % the decades. % % \begin{macro}{\lp@label} % If a label for within a decade is needed, the number (|#5|) is multiplied % with the factor (|#3|) and then the signed (|#6|) label is built in % |\lp@label|. But if the option |notwonine| where given, |\lp@label| will be % empty and if the option |nofsn| where given, the already built |\lp@label| % for 5, 7 and 9 will be cleared. % \begin{macrocode} \lp@tenfalse \iflp@twonine \multiply\@tempcnta#3\relax \edef\lp@label{#6\the\@tempcnta}% \iflp@fsn\else \divide\@tempcnta#3\relax \ifnum\@tempcnta=9\def\lp@label{}\fi \ifnum\@tempcnta=7\def\lp@label{}\fi \ifnum\@tempcnta=5\def\lp@label{}\fi \fi \else \def\lp@label{}% \fi \fi} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@getpot} % In |\lp@getpot| the exponent letter needed for a full decades label is % ascertained. It takes the letter to start with (|#1|) and the number of % of letters to step further (|#2|) as parameters. The macro |\@tempa| will % contain the ascertained letter after operation. It is predefined as ``X'', % which will be the result, if there are not enough letters. % % Within the |\@tfor| loop the boolean |\iflp@preached| is set to true in the % pass the start letter is reached. From the same pass on the number of letters % to step further is counted down once a pass until it is $-1$. Then |\@tempa| % is set to the actual letter. Note: the |{}| in the token list (between |:=| % and |\do|) stands for the nonexisting letter for $10^0$. The |\@tfor| loop % will always run completely, because (for whatever reasons) |\@break@tfor| % doesn't work within the |\ifnum|. % \begin{macrocode} \def\lp@getpot#1#2{% \def\@tempb{#1}\def\@tempa{X}\@tempcnta#2\relax\lp@preachedfalse \@tfor\@tempc:=yzafpnum{}kMGTPEZY\do{% \if\@tempc\@tempb\relax\relax\lp@preachedtrue\fi \iflp@preached\advance\@tempcnta\m@ne \ifnum\@tempcnta=\m@ne\edef\@tempa{\@tempc}\fi \fi}} % \end{macrocode} % \end{macro} % % ^^A------------------------------ % \subsubsection{Drawing Labels} % \begin{macro}{\lp@xlabel} % With |\lp@xlabel| one label for the x-axis is drawn. Parameter |#1| is the % offset from the origin of the graph paper to the thick line, where the label % has to appear at. Parameter |#2| is the label. Note: the value in |\lp@lpos| % is already advanced by |\lp@tol|, when calling |\lp@xlabel|. Note (2): the % command |\put| works with a dimen, because |\unitlength| was disabled before % starting the \texttt{picture} environment. % \begin{macrocode} \def\lp@xlabel#1#2{\let\@tempb\lp@lpos \iflp@tenlower\iflp@ten\let\@tempb\lp@llpos\fi\fi \put(#1,-\@tempb){\makebox(\z@,\z@)[tc]{\lp@font #2}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@ylabel} % With |\lp@ylabel| one label for the y-axis is drawn. Parameter |#1| is the % offset from the origin of the graph paper to the thick line, where the label % has to appear at. Parameter |#2| is the label. Note: the value in |\lp@lpos| % is already advanced by |\lp@tol|, when calling |\lp@ylabel|. Note (2): here % also |\put| works with a dimen, because of the disabled |\unitlength|. % \begin{macrocode} \def\lp@ylabel#1#2{\put(-\lp@lpos,#1){\makebox(\z@,\z@)[cr]{\lp@font #2}}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@nextlllist} % \begin{macro}{\lp@llno} % \begin{macro}{\lp@lllist} % In |\lp@nextlllist| the first element of the list in |\lp@lllist| is % discarded from it and stored in |\lp@llno|. The macro has to be called % with the expanded |\lp@lllist|. % \begin{macrocode} \def\lp@nextlllist#1,#2\@@end{% \def\lp@llno{#1}\def\lp@lllist{#2}} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@dolabelsx} % \begin{macro}{\lp@lllist} % With |\lp@dolabelsx| the labels for one decade or division are drawn. Here % first the offset from the origin of the graph paper to the beginning of the % actual decade or division is calculated and stored in |\lp@osg|. Then the % list containing the values for logarithmic axis labels (|#5|) is assigned to % |\lp@lllist|.\footnote{The name \texttt{\bs lp@lllist} can be used here, % because after building the list in \texttt{\bs lp@lllist} it is assigned to % one of the names \texttt{\bs lp@lllistx}, \texttt{\bs lp@lllisty}, % \texttt{\bs lp@partlllistx} or \texttt{\bs lp@partlllisty}.} At last % |\lp@dolabelx| is called with the expanded list of offsets from the beginning % of a decade or division to the thick lines, where the labels has to appear % at, and the other papameters. These parameters are the start value (|#2|), % the start exponent letter (|#3|), the factor or increment (|#4|) and the % start values sign (|#6|). % \begin{macrocode} \def\lp@dolabelsx#1#2#3#4#5#6{\lp@osg\lp@dcntx\lpgridx \let\lp@lllist#5\relax \expandafter\lp@dolabelx#1,\@@end{#2}{#3}{#4}{#6}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@dolabelx} % If the list is not empty, |\lp@dolabelx| first calculates the offset form % the origin of the graph paper to the line, where the label has to appear at, % in |\lp@osl|. Then the next element of |\lp@lllist| is stored in |\lp@llno|, % the next label is built and it is drawn. At last |\lp@dolabelx| calls itself % recursively, until the list is empty. Parameter |#1| is the first element of % the list of offsets and parameter |#2| its rest. Parameter |#3| is the start % value, |#4| the start exponent letter, |#5| the factor or increment and |#6| % the start values sign. % \begin{macrocode} \def\lp@dolabelx#1,#2,\@@end#3#4#5#6{% \def\@tempc{#1}\ifx\@tempc\@empty\else \lp@osl#1\lpgridx \advance\lp@osl\lp@osg \expandafter\lp@nextlllist\lp@lllist\@@end \lp@nextxlabel{#3}{#4}{#5}\lp@dcntx\lp@llno{#6}% \lp@xlabel\lp@osl\lp@label \def\@tempc{#2}\ifx\@tempc\@empty\else \lp@dolabelx#2,\@@end{#3}{#4}{#5}{#6}\fi\fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@dolabelsy} % \begin{macro}{\lp@lllist} % The command |\lp@dolabelsy| works the same way and has the same parameters % as |\lp@dolabelsx|, but of course for the y-axis. % \begin{macrocode} \def\lp@dolabelsy#1#2#3#4#5#6{\lp@osg\lp@dcnty\lpgridy \let\lp@lllist#5\relax \expandafter\lp@dolabely#1,\@@end{#2}{#3}{#4}{#6}} % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\lp@dolabely} % The command |\lp@dolabely| works the same way and has the same parameters % as |\lp@dolabelx|, but of course for the y-axis. % \begin{macrocode} \def\lp@dolabely#1,#2,\@@end#3#4#5#6{% \def\@tempc{#1}\ifx\@tempc\@empty\else \lp@osl#1\lpgridy \advance\lp@osl\lp@osg \expandafter\lp@nextlllist\lp@lllist\@@end \lp@nextylabel{#3}{#4}{#5}\lp@dcnty\lp@llno{#6}% \lp@ylabel\lp@osl\lp@label \def\@tempc{#2}\ifx\@tempc\@empty\else \lp@dolabely#2,\@@end{#3}{#4}{#5}{#6}\fi\fi} % \end{macrocode} % \end{macro} % % ^^A--------------------------------------------- % \subsection{Some Macros for Initialization} % \subsubsection{Setting Lists} % \begin{macro}{\lp@setlinesx} % \begin{macro}{\lp@thicklinesx} % \begin{macro}{\lp@medlinesx} % \begin{macro}{\lp@thinlinesx} % \begin{macro}{\lp@lllistx} % In |\lp@setlinesx| only the already built lists for a full decade or % divisions are assigned the macros special to the x-axis. % \begin{macrocode} \def\lp@setlinesx{\let\lp@thicklinesx\lp@thicklines \let\lp@medlinesx\lp@medlines \let\lp@thinlinesx\lp@thinlines \let\lp@lllistx\lp@lllist} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@setlinesy} % \begin{macro}{\lp@thicklinesy} % \begin{macro}{\lp@medlinesy} % \begin{macro}{\lp@thinlinesy} % \begin{macro}{\lp@lllisty} % In |\lp@setlinesy| only the already built lists for a full decade or % divisions are assigned the macros special to the y-axis. % \begin{macrocode} \def\lp@setlinesy{\let\lp@thicklinesy\lp@thicklines \let\lp@medlinesy\lp@medlines \let\lp@thinlinesy\lp@thinlines \let\lp@lllisty\lp@lllist} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@setpartlinesx} % \begin{macro}{\lp@partthicklinesx} % \begin{macro}{\lp@partmedlinesx} % \begin{macro}{\lp@partthinlinesx} % \begin{macro}{\lp@partlllistx} % In |\lp@setpartlinesx| only the already built lists for a partial decade or % divisions are assigned the macros special to the x-axis. % \begin{macrocode} \def\lp@setpartlinesx{\let\lp@partthicklinesx\lp@thicklines \let\lp@partmedlinesx\lp@medlines \let\lp@partthinlinesx\lp@thinlines \let\lp@partlllistx\lp@lllist} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\lp@setpartlinesy} % \begin{macro}{\lp@partthicklinesy} % \begin{macro}{\lp@partmedlinesy} % \begin{macro}{\lp@partthinlinesy} % \begin{macro}{\lp@partlllisty} % In |\lp@setpartlinesy| only the already built lists for a partial decade or % divisions are assigned the macros special to the y-axis. % \begin{macrocode} \def\lp@setpartlinesy{\let\lp@partthicklinesy\lp@thicklines \let\lp@partmedlinesy\lp@medlines \let\lp@partthinlinesy\lp@thinlines \let\lp@partlllisty\lp@lllist} % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % ^^A------------------------------ % \subsubsection{Parsing Number of Decades/Divisions} % \begin{macro}{\lp@ipart} % The macro |\lp@ipart| expands to the integer part of a real number, which % is passed to it. % \begin{macrocode} \def\lp@ipart#1.#2\@@end{#1} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@rpart} % The macro |\lp@rpart| expands to the part after the decimal point of % a real number, which is passed to it. % \begin{macrocode} \def\lp@rpart#1.#2\@@end{#2} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@firstdigit} % The macro |\lp@firstdigit| expands to the first digit of a (integer) number, % which is passed to it. % \begin{macrocode} \def\lp@firstdigit#1#2\@@end{#1} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@getreal} % In |\lp@getreal| the number of decades or division as passed to the % \texttt{\emph{decades/divisions}} argument of an axis (parameter |#1|) % is split. The integer part is stored in |\@tempa|, if there is no integer % part |\@tempa| will be 0. The first digit after the decimal point is stored % in |\@tempb| if it is not equal 0, else |\@tempb| will be empty. This works % for $x$, $x.$, $x.0$, $x.y$, $x.0z$, $x.yz$, $0.y$, $0.yz$, $.y$ and $.yz$ % (here $x$ and $y$ are single digits and $z$ is the rest). % \begin{macrocode} \def\lp@getreal#1{% \edef\@tempa{\lp@ipart#1.\@@end}% \ifx\@tempa\@empty\def\@tempa{0}\fi \edef\@tempc{\lp@rpart#1.\@@end}% \ifx\@tempc\@empty\let\@tempb\@empty\else \if\@tempc.\let\@tempb\@empty\else \edef\@tempd{\expandafter\lp@firstdigit\@tempc\@@end}% \if\@tempd0\let\@tempb\@empty\else \let\@tempb\@tempd\fi\fi\fi} % \end{macrocode} % \end{macro} % % ^^A------------------------------ % \subsubsection{Checking Number of Decades/Devisions} % \begin{macro}{\lp@decerr} % With |\lp@decerr| an error message for a to small number of decades is given. % \begin{macrocode} \def\lp@decerr{% \PackageError{logpap}{number of decades for logaritmic axis to small}% {The number of decades for a logaritmic axis\MessageBreak has to be at least 0.2.\MessageBreak Please correct it before going on,\MessageBreak otherwise you might get more error messages.}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@decerri} % With |\lp@decerri| an error message for a wrong number of decades is given. % \begin{macrocode} \def\lp@decerri{% \PackageError{logpap}{wrong number of decades for logaritmic axis}% {For the number of decades for a logaritmic axis\MessageBreak values like x.1 are not alowed.\MessageBreak You can only use x.0 (or only x) and x.2 to x.9.\MessageBreak Please correct it before going on,\MessageBreak otherwise you might get more error messages.}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@checkdec} % In |\lp@checkdec| the number of decades is checked against a minimum value of % 0.2 and values in the form x.1 and an appropriate error messages is given if % necessary. The integer part has to be in |\@tempa| and the first digit after % the decimal point in |\@tempb| when calling |\lp@checkdec|. % \begin{macrocode} \def\lp@checkdec{\@tempcnta\@tempa \ifx\@tempb\@empty\@tempcntb0\relax\else\@tempcntb\@tempb\relax\fi \ifnum\@tempcnta<0\relax\lp@decerr\else \ifnum\@tempcntb=0\relax\ifnum\@tempcnta=0\relax\lp@decerr\fi\else \ifnum\@tempcntb<0\relax\lp@decerri\else \ifnum\@tempcntb=1\relax \ifnum\@tempcnta=0\relax\lp@decerr\else \lp@decerri\fi\fi\fi\fi\fi} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@diverr} % With |\lp@diverr| an error message for a to small number of divisions is % given. % \begin{macrocode} \def\lp@diverr{% \PackageError{logpap}{number of divisions for linear axis to small}% {The number of divisions for a linear axis\MessageBreak has to be at least 0.1.\MessageBreak Please correct it before going on,\MessageBreak otherwise you might get more error messages.}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@checkdiv} % In |\lp@checkdiv| the number of divisions is checked against a minimum value % of 0.1 and an appropriate error message is given if necessary. The integer % part has to be in |\@tempa| and the first digit after the decimal point in % |\@tempb| when calling |\lp@checkdiv|. % \begin{macrocode} \def\lp@checkdiv{\@tempcnta\@tempa \ifx\@tempb\@empty\@tempcntb0\relax\else\@tempcntb\@tempb\relax\fi \ifnum\@tempcnta<0\relax\lp@diverr\else \ifnum\@tempcnta=0\relax \ifnum\@tempcntb<1\relax\lp@diverr\fi\fi\fi} % \end{macrocode} % \end{macro} % % ^^A--------------------------------------------- % \subsection{Drawing the whole Graph Paper} % \begin{macro}{\lp@logpap} % The command |\lp@logpap| is invoked by the four main macros. It only checks % if there is a first optional argument. % \begin{macrocode} \def\lp@logpap(#1,#2)(#3,#4)#5#6{% \@ifnextchar[{\lp@@logpap{#1}{#2}{#3}{#4}{#5}{#6}}% {\lp@@logpap{#1}{#2}{#3}{#4}{#5}{#6}[]}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@@logpap} % The command |\lp@@logpap| checks if there is a second optional argument. % \begin{macrocode} \def\lp@@logpap#1#2#3#4#5#6[#7]{% \@ifnextchar[{\lp@@@logpap{#1}{#2}{#3}{#4}{#5}{#6}[#7]}% {\lp@@@logpap{#1}{#2}{#3}{#4}{#5}{#6}[#7][]}} % \end{macrocode} % \end{macro} % % \begin{macro}{\lp@@@logpap} % In |\lp@@@logpap| most of the work is done. The parameters are the dimension % of the graph paper in x- (|#1|) and y-direction (|#2|), the number of decades % or divisions in x- (|#3|) and y-direction (|#4|), the start value and factor % or increment for x- (|#5|) and y-axis labeling (|#6|) and the x- (|#7|) and % y-axis name (|#8|). % % First a lot of settings for the x-axis are made. Here the number of decades % or divisions is split (integer part in |\@tempa| and first digit after % decimal point in |\@tempb|, empty if 0 or none) and checked, the boolean % |\iflp@fulldecx| is set and the text showing the dimensions (|\lp@texttwo|) % is extended. Latter is done several times until the text is complete. % \begin{macrocode} \def\lp@@@logpap#1#2#3#4#5#6[#7][#8]{% \lp@getreal{#3}\iflp@logx\lp@checkdec\else\lp@checkdiv\fi \ifnum\@tempa=0\relax\lp@fulldecxfalse\else\lp@fulldecxtrue\fi \edef\lp@texttwo{\lp@texttwo\ \@tempa}% % \end{macrocode} % Now the boolean |\lp@partdecxfalse| is set and |\lp@real| and |\lp@part| % are defined, but latter only if there is a partial decade or division. % \begin{macrocode} \ifx\@tempb\@empty \lp@partdecxfalse \let\lp@real\@tempa \edef\lp@texttwo{\lp@texttwo\iflp@logx\,dec\fi\ $\times$}% \else \lp@partdecxtrue \iflp@logx \edef\lp@real{\@tempa\getlp@logline{\@tempb.0}}% \edef\lp@part{\@tempb}% \edef\lp@texttwo{\lp@texttwo.\@tempb\,dec\ $\times$}% \else \edef\lp@real{\@tempa.\@tempb}% \edef\lp@part{.\@tempb}% \edef\lp@texttwo{\lp@texttwo.\@tempb\ $\times$}% \fi \fi % \end{macrocode} % Then |\lp@dcntx| is set and |\lpgridx| is calculated with help of the % extensions to |\setlength| by the \textsf{calc} package (and made global, % so it can be used after the graph paper was drawn). All lists for the % x-axis are made and the necessary commands for testing the range of the % argument for labeling and getting the next label are assigned to % |\lp@testrangex| and |\lp@nextxlabel|. % \begin{macrocode} \lp@dcntx\@tempa \setlength\lpgridx{#1/\real{\lp@real}}\global\lpgridx\lpgridx \iflp@logx \lp@mkloglist\lpgridx{10}\lp@setlinesx \iflp@partdecx \lp@mkloglist\lpgridx\lp@part \lp@setpartlinesx\fi \let\lp@testrangex\lp@testrangelog \let\lp@nextxlabel\lp@nextloglabel \else \lp@mklinlist\lpgridx{1}\lp@setlinesx \iflp@partdecx \lp@mklinlist\lpgridx\lp@part \lp@setpartlinesx\fi \let\lp@testrangex\lp@testrangelin \let\lp@nextxlabel\lp@nextlinlabel \fi % \end{macrocode} % After this the same things are set up for y-axis on the same way. % \begin{macrocode} \lp@getreal{#4}\iflp@logx\lp@checkdec\else\lp@checkdiv\fi \ifnum\@tempa=0\relax\lp@fulldecyfalse\else\lp@fulldecytrue\fi \edef\lp@texttwo{\lp@texttwo\ \@tempa}% \ifx\@tempb\@empty \lp@partdecyfalse \let\lp@real\@tempa \edef\lp@texttwo{\lp@texttwo\iflp@logy\,dec\fi}% \else \lp@partdecytrue \iflp@logy \edef\lp@real{\@tempa\getlp@logline{\@tempb.0}}% \edef\lp@part{\@tempb}% \edef\lp@texttwo{\lp@texttwo.\@tempb\,dec}% \else \edef\lp@real{\@tempa.\@tempb}% \edef\lp@part{.\@tempb}% \edef\lp@texttwo{\lp@texttwo.\@tempb}% \fi \fi \lp@dcnty\@tempa \setlength\lpgridy{#2/\real{\lp@real}}\global\lpgridy\lpgridy \iflp@logy \lp@mkloglist\lpgridy{10}\lp@setlinesy \iflp@partdecy \lp@mkloglist\lpgridy\lp@part \lp@setpartlinesy\fi \let\lp@testrangey\lp@testrangelog \let\lp@nextylabel\lp@nextloglabel \else \lp@mklinlist\lpgridy{1}\lp@setlinesy \iflp@partdecy \lp@mklinlist\lpgridy\lp@part \lp@setpartlinesy\fi \let\lp@testrangey\lp@testrangelin \let\lp@nextylabel\lp@nextlinlabel \fi % \end{macrocode} % Now the lengths for thick and medium lines are calculated by adding the tick % length once, or twice if ticks on the upper and the right side of the graph % paper should appear. % \begin{macrocode} \lp@thicklinelenx#1\advance\lp@thicklinelenx\lp@tol \lp@thicklineleny#2\advance\lp@thicklineleny\lp@tol \lp@medlinelenx#1\advance\lp@medlinelenx\lp@mol \lp@medlineleny#2\advance\lp@medlineleny\lp@mol \iflp@ticksupright \advance\lp@thicklinelenx\lp@tol \advance\lp@thicklineleny\lp@tol \advance\lp@medlinelenx\lp@mol \advance\lp@medlineleny\lp@mol \fi % \end{macrocode} % Then everything for x-axis labeling is set up, the values are tested and % assigned to |\lp@sllx|, |\lp@sllpx|, |\lp@lfix| and |\lp@signx|. % \begin{macrocode} \lp@setuplabel#5,\@@end \lp@testrangex \let\lp@sllx\lp@sll\let\lp@sllpx\lp@sllp\let\lp@lfix\lp@lfi \let\lp@signx\lp@sign % \end{macrocode} % The same is done for y-axis labeling. % \begin{macrocode} \lp@setuplabel#6,\@@end \lp@testrangey \let\lp@slly\lp@sll\let\lp@sllpy\lp@sllp\let\lp@lfiy\lp@lfi \let\lp@signy\lp@sign % \end{macrocode} % After that |\unitlength| is disabled within a group (ending at the end of % |\lp@@@logpap|), so all commands of the \texttt{picture} environment and the % environment itself will work with dimens (and only with dimens). Then % |\lp@llpos| is calculated so that labels, which have to appear lower (see % option \texttt{tenlower}), are put one |\lp@lpos| under normal labels and % |\lp@lpos| is advanced by |\lp@tol|, so that normal labels appears one % (unadvanced) |\lp@lpos| under the ticks. % \begin{macrocode} \begingroup \let\unitlength\relax {\lp@font\settoheight\@tempdima{M}\advance\@tempdima\lp@tol \advance\@tempdima\lp@lpos\advance\@tempdima\lp@lpos \xdef\lp@llpos{\the\@tempdima}}% \@tempdima\lp@lpos\advance\@tempdima\lp@tol\edef\lp@lpos{\the\@tempdima}% \begin{picture}(#1,#2)(\z@,\z@) % \end{macrocode} % Within the \texttt{picture} environment first the label for the x-axis origin % is set. For a logarithmic axis the start value has to be multiplied by the % factor. If the exponent letter is ``u'' it is replaced with |\lp@mu|. And % if the start value is 0 (linear axis only) the sign and the exponent letter % are cleard. % \begin{macrocode} \lp@labelcolor \lp@tenfalse \@tempcnta\lp@sllx\iflp@logx\multiply\@tempcnta\lp@lfix\fi \def\@tempa{u}\ifx\lp@sllpx\@tempa\def\@tempa{\lp@mu}\else \def\@tempa{\lp@sllpx}\fi \begingroup \ifnum\@tempcnta=0\let\lp@signx\@empty\let\@tempa\@empty\fi \lp@xlabel{\z@}{\lp@signx\the\@tempcnta\@tempa} \endgroup % \end{macrocode} % The label for the y-axis origin is set on the same way. % \begin{macrocode} \@tempcnta\lp@slly\iflp@logy\multiply\@tempcnta\lp@lfiy\fi \def\@tempa{u}\ifx\lp@sllpy\@tempa\def\@tempa{\lp@mu}\else \def\@tempa{\lp@sllpy}\fi \begingroup \ifnum\@tempcnta=0\let\lp@signy\@empty\let\@tempa\@empty\fi \lp@ylabel{\z@}{\lp@signy\the\@tempcnta\@tempa} \endgroup % \end{macrocode} % Now the two text parts are set above the graph paper. % \begin{macrocode} \@tempdima#2\advance\@tempdima\lp@lpos \iflp@ticksupright\else\advance\@tempdima-\lp@tol\fi \put(\z@,\@tempdima){\makebox(\z@,\z@)[bl]{\lp@font \iflp@text\lp@textone\fi\iflp@dimensions\lp@texttwo\fi}} % \end{macrocode} % And the axis names are set at the end of the y- and x-axis. The y-position % for the y-axis name (|\@tempdima|) is the same as for the two text parts. % \begin{macrocode} \put(-\lp@lpos,\@tempdima){\makebox(\z@,\z@)[br]{#8}} \@tempdima#1\advance\@tempdima\lp@lpos \iflp@ticksupright\else\advance\@tempdima-\lp@tol\fi \put(\@tempdima,-\lp@lpos){\makebox(\z@,\z@)[tl]{#7}} % \end{macrocode} % Then the lines for the origin are drawn. % \begin{macrocode} \lp@linecolor \linethickness\lp@tkltkness \put(-\lp@tol,\z@){\line(1,0){\lp@thicklinelenx}} \put(\z@,-\lp@tol){\line(0,1){\lp@thicklineleny}} % \end{macrocode} % After that lines and labels for the x-axis will be done. Here first the % booleans |\iflp@twonine| and |\iflp@fsn| are set depending on % |\iflp@twoninex| and |\iflp@fsnx|. % \begin{macrocode} \iflp@twoninex\lp@twoninetrue\else\lp@twoninefalse\fi \iflp@fsnx\lp@fsntrue\else\lp@fsnfalse\fi % \end{macrocode} % Then lines and labels for a partial decade or division are done if there is % one. % \begin{macrocode} \iflp@partdecx \lp@dolinesx\lp@partthicklinesx\lp@tkltkness{-\lp@tol}\lp@thicklineleny \lp@dolinesx\lp@partmedlinesx\lp@mdltkness{-\lp@mol}\lp@medlineleny \lp@dolinesx\lp@partthinlinesx\lp@tnltkness\z@{#2}% \lp@labelcolor \lp@dolabelsx\lp@partthicklinesx\lp@sllx\lp@sllpx\lp@lfix\lp@partlllistx\lp@signx \lp@linecolor \fi % \end{macrocode} % If there is at least one full decade or division, they are done one by one. % \begin{macrocode} \iflp@fulldecx\advance\lp@dcntx\m@ne \loop \lp@dolinesx\lp@thicklinesx\lp@tkltkness{-\lp@tol}\lp@thicklineleny \lp@dolinesx\lp@medlinesx\lp@mdltkness{-\lp@mol}\lp@medlineleny \lp@dolinesx\lp@thinlinesx\lp@tnltkness\z@{#2}% \lp@labelcolor \lp@dolabelsx\lp@thicklinesx\lp@sllx\lp@sllpx\lp@lfix\lp@lllistx\lp@signx \lp@linecolor \advance\lp@dcntx\m@ne \ifnum\lp@dcntx>\m@ne\repeat \fi % \end{macrocode} % The lines and labels for y-axis are done on the same way as for the x-axis. % \begin{macrocode} \iflp@twoniney\lp@twoninetrue\else\lp@twoninefalse\fi \iflp@fsny\lp@fsntrue\else\lp@fsnfalse\fi \iflp@partdecy \lp@dolinesy\lp@partthicklinesy\lp@tkltkness{-\lp@tol}\lp@thicklinelenx \lp@dolinesy\lp@partmedlinesy\lp@mdltkness{-\lp@mol}\lp@medlinelenx \lp@dolinesy\lp@partthinlinesy\lp@tnltkness\z@{#1}% \lp@labelcolor \lp@dolabelsy\lp@partthicklinesy\lp@slly\lp@sllpy\lp@lfiy\lp@partlllisty\lp@signy \lp@linecolor \fi \iflp@fulldecy\advance\lp@dcnty\m@ne \loop \lp@dolinesy\lp@thicklinesy\lp@tkltkness{-\lp@tol}\lp@thicklinelenx \lp@dolinesy\lp@medlinesy\lp@mdltkness{-\lp@mol}\lp@medlinelenx \lp@dolinesy\lp@thinlinesy\lp@tnltkness\z@{#1}% \lp@labelcolor \lp@dolabelsy\lp@thicklinesy\lp@slly\lp@sllpy\lp@lfiy\lp@lllisty\lp@signy \lp@linecolor \advance\lp@dcnty\m@ne \ifnum\lp@dcnty>\m@ne\repeat \fi \end{picture}\endgroup} % \end{macrocode} % \end{macro} % % ^^A--------------------------------------------- % \subsection{The main Macros} % The four main macros are very simple. Here only two booleans are set and % the first part of the text showing the dimensions is defined. They even % take no parameters. This is done by |\lp@logpap|, called at the end of % the main macros. % % \begin{macro}{\loglinpap} % The command |\loglinpap| draws graph paper with logarithmic x-axis and % linear y-axis. % \begin{macrocode} \def\loglinpap{\lp@logxtrue\lp@logyfalse\def\lp@texttwo{log--lin:}\lp@logpap} % \end{macrocode} % \end{macro} % % \begin{macro}{\loglogpap} % The command |\loglogpap| draws graph paper with logarithmic x- and y-axis. % \begin{macrocode} \def\loglogpap{\lp@logxtrue\lp@logytrue\def\lp@texttwo{log--log:}\lp@logpap} % \end{macrocode} % \end{macro} % % \begin{macro}{\linlogpap} % The command |\linlogpap| draws graph paper with linear x-axis and % logarithmic y-axis. % \begin{macrocode} \def\linlogpap{\lp@logxfalse\lp@logytrue\def\lp@texttwo{lin--log:}\lp@logpap} % \end{macrocode} % \end{macro} % % \begin{macro}{\linlinpap} % The command |\linlinpap| draws graph paper with linear x- and y-axis. % \begin{macrocode} \def\linlinpap{\lp@logxfalse\lp@logyfalse\def\lp@texttwo{lin--lin:}\lp@logpap} % \end{macrocode} % \end{macro} % % ^^A--------------------------------------------- % \subsection{Config File} % The last thing to do is loading the config file if it exists. In this case % a message will be typed out. % \begin{macrocode} \InputIfFileExists{logpap.cfg}% {\typeout{Package logpap Info: Local config file logpap.cfg used}}{} % \end{macrocode} % % \newpage % \Finale\endinput % % ^^A Now the source of the example %<*example> \documentclass[a4paper]{article} \usepackage[latin1]{inputenc} \usepackage{logpap} \voffset-2cm \hoffset-0.5cm \textheight25cm \textwidth14cm \parindent0pt \parskip1ex plus.3ex minus.2ex \pagestyle{empty} \unitlength1mm \newcommand*{\lp}{\textsf{logpap}} \newcommand*{\bs}{\char '134 } \newcommand*{\lb}{\char '173 } \newcommand*{\rb}{\char '175 } \newcommand*{\param}[1]{\texttt{\textit{#1}}} \begin{document} \centerline{\textbf{\LARGE Some Examples for the \lp\ package.\footnote{The source of this example file is part of \texttt{logpap.dtx}.}}} \vspace{4mm} The \lp\ package provides four macros for drawing logarithmic-logarithmic, logarithmic-linear, linear-logarithmic and (because it was easy to implement) linear-linear graph paper with \LaTeX. \vspace{2mm} \begin{picture}(140,50) \LPSet{nofsnx,notwoniney} \put( 0, 5){\linlogpap(60mm,12.5mm)(6,1){0,10}{1}[X][Y]} \put(75, 5){\linlinpap(60mm,12.5mm)(6,1){0,10}{0,10}[X][Y]} \put( 0,32.5){\loglogpap(60mm,12.5mm)(2,1){100m}{1}[X][Y]} \put(75,32.5){\loglinpap(60mm,12.5mm)(2,1){100m}{0,10}[X][Y]} \end{picture} \vspace{2mm} Altough the \lp\ package only draws logarithmic graph paper, there are various things that can be changed. Figure \ref{fig:ov} will give an overwiev. Here the first graph paper part where made with the default settings and the command \verb|\put(0,91){\loglinpap(80mm,10mm)(1,1){1}| \verb|{0}[X-name][Y-name]}|. On the right side you can find the commands used to change the appearance. Not all commands possible are shown here. Every option can be used with \verb|\LPSet{|\param{option1}\verb|,| \param{option2}\verb|,...}| within the document, every \param{option} has a counterpart \verb|no|\param{option} and for every \param{option}\verb|x| also an \param{option}\verb|y| exists. Also commands to set the three line widths, colors and the appearance of the $\mu$ are not shown. \begin{figure}[ht] \centering \begin{picture}(140,106) \put( 0,91){\loglinpap(80mm,10mm)(1,1){1}{0}[X-name][Y-name]} \put(85,96){\makebox(0,0)[cl]{with default settings}} \LPSet{nodimensions,noticksupright,tenlower} \put( 0,69){\loglinpap(80mm,10mm)(1,1){1}{0}[optional][optional]} \put(85,78){\makebox(0,0)[cl]{\texttt{\bs LPSet\lb nodimensions,}}} \put(85,74){\makebox(0,0)[cl]{\texttt{\ \ \ \ \ \ \ noticksupright,}}} \put(85,70){\makebox(0,0)[cl]{\texttt{\ \ \ \ \ \ \ tenlower\rb}}} \LPSet{dimensions,ticksupright,notenlower} \LPSet{notext,nofsnx}\DefineLPMinLineDist{1.9999mm} \put( 0,47){\loglinpap(80mm,10mm)(1,1){1}{0}} \put(85,56){\makebox(0,0)[cl]{\texttt{\bs LPSet\lb notext,}}} \put(85,52){\makebox(0,0)[cl]{\texttt{\ \ \ \ \ \ \ nofsnx\rb}}} \put(85,48){\makebox(0,0)[cl]{\texttt{\bs DefineLPMinLineDist\lb 1.9999mm\rb}}} \LPSet{text,fsnx}\DefineLPMinLineDist{0.9999mm} \DefineLPText{new text\quad}\DefineLPLabelFont{\sffamily\tiny}\LPSet{notwoninex} \put( 0,25){\loglinpap(80mm,10mm)(1,1){1}{0}} \put(85,36){\makebox(0,0)[cl]{\texttt{\bs DefineLPText\lb new text\bs quad\rb}}} \put(85,32){\makebox(0,0)[cl]{\texttt{\bs DefineLPLabelFont}}} \put(85,28){\makebox(0,0)[cl]{\texttt{\ \ \ \ \lb\bs sffamily\bs tiny\rb}}} \put(85,24){\makebox(0,0)[cl]{\texttt{\bs LPSet\lb notwoninex\rb}}} \DefineLPText{made with \LaTeX\ and \textsf{logpap}\quad}\DefineLPLabelFont{\scriptsize}\LPSet{twoninex} \DefineLPThickTickLen{1mm}\DefineLPMedTickLen{0.5mm}\DefineLPLabelDist{0.5mm} \put( 0, 3){\loglinpap(80mm,10mm)(1,1){1}{0}} \put(85,12){\makebox(0,0)[cl]{\texttt{\bs DefineLPThickTickLen\lb 1mm\rb}}} \put(85, 8){\makebox(0,0)[cl]{\texttt{\bs DefineLPMedTickLen\lb 0.5mm\rb}}} \put(85, 4){\makebox(0,0)[cl]{\texttt{\bs DefineLPLabelDist\lb 0.5mm\rb}}} \DefineLPThickTickLen{2mm}\DefineLPMedTickLen{1mm}\DefineLPLabelDist{1mm} \end{picture} \caption{Overview}\label{fig:ov} \end{figure} \end{document} %