
The tabularx package∗

David Carlisle

1999/01/07

Abstract

A new environment, tabularx, is defined, which takes the same argu-
ments as tabular*, but modifies the widths of certain columns, rather than
the inter column space, to set a table with the requested total width. The
columns that may stretch are marked with the new token X in the preamble
argument.

This package requires the array package.

1 Introduction

This package implements a version of the tabular environment in which the widths
of certain columns are calculated so that the table is is a specified width. Requests
for such an environment seem to occur quite regularly in comp.text.tex.

\begin{tabularx}{〈width〉}{〈preamble〉}tabularx

The arguments of tabularx are essentially the same as those of the standard
tabular* environment. However rather than adding space between the columns
to achieve the desired width, it adjusts the widths of some of the columns. The
columns which are affected by the tabularx environment should be denoted with
the letter X in the preamble argument. The X column specification will be con-
verted to p{〈some value〉} once the correct column width has been calculated.

2 Examples

The following table is set with \begin{tabularx}{250pt}{|c|X|c|X|}

Multicolumn entry! THREE FOUR
one The width of

this column
depends on the
width of the
table.1

three Column four will
act in the same
way as column
two, with the
same width.

∗This file has version number v2.07, last revised 1999/01/07.
1You can now use \footnote inside tabularx!

1

If we change the first line to \begin{tabularx}{300pt}{|c|X|c|X|} we get:

Multicolumn entry! THREE FOUR
one The width of this

column depends on
the width of the table.

three Column four will act
in the same way as
column two, with the
same width.

3 Differences between tabularx and tabular*

These two environments take the same arguments, to produce a table of a specified
width. The main differences between them are:

• tabularx modifies the widths of the columns, whereas tabular* modifies
the widths of the inter-column spaces.

• tabular and tabular* environments may be nested with no restriction,
however if one tabularx environment occurs inside another, then the inner
one must be enclosed by { }.

• The body of the tabularx environment is in fact the argument to a com-
mand, and so certain constructions which are not allowed in command ar-
guments (like \verb) may not be used.2

• tabular* uses a primitive capability of TEX to modify the inter column space
of an alignment. tabularx has to set the table several times as it searches
for the best column widths, and is therefore much slower. Also the fact that
the body is expanded several times may break certain TEX constructs.

4 Customising the behaviour of tabularx

4.1 Terminal output

If this declaration is made, say in the document preamble, then all following\tracingtabularx

tabularx environments will print information about column widths as they re-
peatedly re-set the tables to find the correct widths.

As an alternative to using the \tracingtabularx declaration, either of the op-
tions infoshow or debugshow may be given, either in the \usepackage command
that loads tabularx, or as a global option in the \documentclass command.

4.2 The environment used to typeset the X columns

By default the X specification is turned into p{〈some value〉}. Such narrow
columns often require a special format, this may be achieved using the > syn-
tax of array.sty. So for example you may give a specification of >{\small}X.

2Since Version 1.02, \verb and \verb* may be used, but they may treat spaces incorrectly,
and the argument can not contain an unmatched { or }, or a % character.

2

Another format which is useful in narrow columns is ragged right, however LATEX’s
\raggedright macro redefines \\ in a way which conflicts with its use in a tab-
ular or array environments. For this reason this package introduces the com-\arraybackslash

mand \arraybackslash, this may be used after a \raggedright, \raggedleft
or \centering declaration. Thus a tabularx preamble may specify
>{\raggedright\arraybackslash}X.

These preamble specifications may of course be saved using the command,\newcolumntype

\newcolumntype, defined in array.sty. Thus we may say
\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}
and then use Y in the tabularx preamble argument.

The X columns are set using the p column which corresponds to \parbox[t].\tabularxcolumn

You may want them set using, say, the m column, which corresponds to
\parbox[c]. It is not possible to change the column type using the > syntax,
so another system is provided. \tabularxcolumn should be defined to be a macro
with one argument, which expands to the tabular preamble specification that you
want to correspond to X. The argument will be replaced by the calculated width
of a column.

The default is \newcommand{\tabularxcolumn}[1]{p{#1}}. So we may
change this with a command such as:
\renewcommand{\tabularxcolumn}[1]{>{\small}m{#1}}

4.3 Column widths

Normally all X columns in a single table are set to the same width, however it is
possible to make tabularx set them to different widths. A preamble argument of
{>{\hsize=.5\hsize}X>{\hsize=1.5\hsize}X} specifies two columns, the sec-
ond will be three times as wide as the first. However if you want to play games
like this you should follow the following two rules.

• Make sure that the sum of the widths of all the X columns is unchanged. (In
the above example, the new widths still add up to twice the default width,
the same as two standard X columns.)

• Do not use \multicolumn entries which cross any X column.

As with most rules, these may be broken if you know what you are doing.

4.4 If the algorithm fails. . .

It may be that the widths of the ‘normal’ columns of the table already total more
than the requested total width. tabularx refuses to set the X columns to a negative
width, so in this case you get a warning “X Columns too narrow (table too wide)”.

The X columns will in this case be set to a width of 1em and so the table
itself will be wider than the requested total width given in the argument to the
environment. This behaviour of the package can be customised slightly as noted
in the documentation of the code section.

3

5 The Macros

1 〈∗package〉

2 \DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

3 \DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

4 \ProcessOptions

This requires array.sty.
5 \RequirePackage{array}[1994/02/03]

First some registers etc. that we need.
6 \newdimen\TX@col@width

7 \newdimen\TX@old@table

8 \newdimen\TX@old@col

9 \newdimen\TX@target

10 \newdimen\TX@delta

11 \newcount\TX@cols

12 \newif\ifTX@

Now a trick to get the body of an environment into a token register, without
doing any expansion. This does not do any real checking of nested environments,
so if you should need to nest one tabularx inside another, the inner one must be
surrounded by { }.

\tabularx Prior to v1.06, this macro took two arguments, which were saved in separate regis-
ters before the table body was saved by \TX@get@body. Unfortunatly this disables
the [t] optional argument. Now just save the width specification separately, then
clear the token register \toks@. Finally call \TX@get@body to begin saving the
body of the table. The {\ifnum0=‘}\fi was added at v1.03, to allow tabularx
to appear inside a \halign.3

This mechanism of grabbing an environment body does have the disadvantage
(shared with the AMS alignment environments) that you can not make extension
environments by code such as

\newenvironment{foo}{\begin{tabularx}{XX}}{\end{tabularx}}

as the code is looking for a literal string \end{tabularx} to stop scanning. Since
version 2.02, one may avoid this problem by using \tabularx and \endtabularx
directly in the definition:

\newenvironment{foo}{\tabularx{XX}}{\endtabularx}

The scanner now looks for the end of the current environment (foo in this ex-
ample.) There are some restrictions on this usage, the principal one being that
\endtabularx is the first token of the ‘end code’ of the environment.
13 \def\tabularx#1{%

3This adds an extra level of grouping, which is not really needed. Instead, I could use
\iffalse{\fi\ifnum0=‘}\fi here, and \ifnum0=‘{}\fi below, however the code here would
then have to be moved after the first line, because of the footnote to page 386 of the TEXBook,
and I do not think I should be writing code that is so obscure as to be documented in a footnote
in an appendix called “Dirty Tricks”!

4

Allow \tabularx \endtabularx (but not \begin{tabularx} \end{tabularx})
to be used in \newenvironment definitions.
14 \edef\TX@{\@currenvir}%

15 {\ifnum0=‘}\fi

\relax added at v1.05 so that non-expandable length tokens, like \textwidth do
not generate an extra space, and an overfull box. \relax removed again at v4.09
in favour of \setlength so if you use the calc package you can use a width of
(\textwidth-12pt)/2.
16 \setlength\TX@target{#1}%

17 \TX@typeout{Target width: #1 = \the\TX@target.}%

18 \toks@{}\TX@get@body}

\endtabularx This does not do very much. . .
19 \let\endtabularx\relax

\TX@get@body Place all tokens as far as the first \end into a token register. Then call
\TX@find@end to see if we are at \end{tabularx}.
20 \long\def\TX@get@body#1\end

21 {\toks@\expandafter{\the\toks@#1}\TX@find@end}

\TX@find@end If we are at \end{tabularx}, call \TX@endtabularx, otherwise add \end{...} to
the register, and call \TX@get@body again.
22 \def\TX@find@end#1{%

23 \def\@tempa{#1}%

24 \ifx\@tempa\TX@\expandafter\TX@endtabularx

25 \else\toks@\expandafter

26 {\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

\TX@ The string tabularx as a macro for testing with \ifx.
27 \def\TX@{tabularx}

Now that all the parts of the table specification are stored in registers, we can
begin the work of setting the table.

The algorithm for finding the correct column widths is as follows. Firstly set
the table with each X column the width of the final table. Assuming that there is
at least one X column, this will produce a table that is too wide. Divide the excess
width by the number of X columns, and reduce the column width by this amount.
Reset the table. If the table is not now the correct width, a \multicolumn entry
must be ‘hiding’ one of the X columns, and so there is one less X column affecting
the width of the table. So we reduce by 1 the number of X columns and repeat
the process.

\TX@endtabularx Although I have tried to make tabularx look like an environment, it is in fact a
command, all the work is done by this macro.
28 \def\TX@endtabularx{%

5

Define the X column, with an internal version of the \newcolumntype command.
The \expandafter commands enable \NC@newcol to get the expansion of
\tabularxcolumn{\TX@col@width} as its argument. This will be the definition
of an X column, as discussed in section 4.
29 \expandafter\TX@newcol\expandafter{\tabularxcolumn{\TX@col@width}}%

Initialise the column width, and the number of X columns. The number of X
columns is set to one, which means that the initial count will be one too high, but
this value is decremented before it is used in the main loop.

Since v1.02, switch the definition of \verb.
30 \let\verb\TX@verb

Since v1.05, save the values of all LATEX counters, the list \cl@@ckpt contains
the names of all the LATEX counters that have been defined so far. We expand
\setcounter at this point, as it results in fewer tokens being stored in \TX@ckpt,
but the actual resetting of the counters occurs when \TX@ckpt is expanded after
each trial run. Actually since v1.07, use something equivalent to the expansion
of the original definition of \setcounter, so that tabularx works in conjunction
with calc.sty.
31 \def\@elt##1{\global\value{##1}\the\value{##1}\relax}%

32 \edef\TX@ckpt{\cl@@ckpt}%

33 \let\@elt\relax

34 \TX@old@table\maxdimen

35 \TX@col@width\TX@target

36 \global\TX@cols\@ne

Typeout some headings (unless this is disabled).
37 \TX@typeout@

38 {\@spaces Table Width\@spaces Column Width\@spaces X Columns}%

First attempt. Modify the X definition to count X columns.
39 \TX@trial{\def\NC@rewrite@X{%

40 \global\advance\TX@cols\@ne\NC@find p{\TX@col@width}}}%

Repeatedly decrease column width until table is the correct width, or stops shrink-
ing, or the columns become two narrow. If there are no multicolumn entries, this
will only take one attempt.
41 \loop

42 \TX@arith

43 \ifTX@

44 \TX@trial{}%

45 \repeat

One last time, with warnings back on (see appendix D) use tabular* to put it in
a box of the right size, in case the algorithm failed to find the correct size.

Since v1.04, locally make \footnotetext save its argument in a token register.
Since v1.06, \toks@ contains the preamble specification, and possible optional
argument, as well as the table body.
46 {\let\@footnotetext\TX@ftntext\let\@xfootnotenext\TX@xftntext

47 \csname tabular*\expandafter\endcsname\expandafter\TX@target

6

48 \the\toks@

49 \csname endtabular*\endcsname}%

Now the alignment is finished, and the } has restored the original meaning of
\@footnotetext expand the register \TX@ftn which will execute a series of
\footnotetext[〈num〉]{〈note〉}
commands. We need to be careful about clearing the register as we may be inside
a nested tabularx.
50 \global\TX@ftn\expandafter{\expandafter}\the\TX@ftn

Now finish off the tabularx environment. Note that we need \end{tabularx}
here as the \end{tabularx} in the user’s file is never expanded. Now use \TX@
rather than tabularx.

We also need to finish off the group started by {\ifnum0=‘}\fi in the macro
\tabularx.
51 \ifnum0=‘{\fi}%

52 \expandafter\end\expandafter{\TX@}}

\TX@arith Calculate the column width for the next try, setting the flag \ifTX@ to false if the
loop should be aborted.
53 \def\TX@arith{%

54 \TX@false

55 \ifdim\TX@old@table=\wd\@tempboxa

If we have reduced the column width, but the table width has not changed, we
stop the loop, and output the table (which will cause an over-full alignment) with
the previous value of \TX@col@width.
56 \TX@col@width\TX@old@col

57 \TX@typeout@{Reached minimum width, backing up.}%

58 \else

Otherwise calculate the amount by which the current table is too wide.
59 \dimen@\wd\@tempboxa

60 \advance\dimen@ -\TX@target

61 \ifdim\dimen@<\TX@delta

If this amount is less than \TX@delta, stop. (\TX@delta should be non-zero
otherwise we may miss the target due to rounding error.)
62 \TX@typeout@{Reached target.}%

63 \else

Reduce the number of effective X columns by one. (Checking that we do not get
0, as this would produce an error later.) Then divide excess width by the number
of effective columns, and calculate the new column width. Temporarily store this
value (times −1) in \dimen@.
64 \ifnum\TX@cols>\@ne

65 \advance\TX@cols\m@ne

66 \fi

67 \divide\dimen@\TX@cols

68 \advance\dimen@ -\TX@col@width

69 \ifdim \dimen@ >\z@

7

If the new width would be too narrow, abort the loop. At the moment too narrow,
means less than 0 pt!

Prior to v2.03, if the loop was aborted here, the X columns were left with the
width of the previous run, but this may make the table far too wide as initial
guesses are always too big. Now force to \TX@error@width which defaults to be
1em. If you want to get the old behaviour stick
\renewcommand\TX@error@width{\TX@col@width}
in a package file loaded after tabularx.
70 \PackageWarning{tabularx}%

71 {X Columns too narrow (table too wide)\MessageBreak}%

72 \TX@col@width\TX@error@width\relax

73 \else

Otherwise save the old settings, and set the new column width. Set the flag to
true so that the table will be set, and the loop will be executed again.
74 \TX@old@col\TX@col@width

75 \TX@old@table\wd\@tempboxa

76 \TX@col@width-\dimen@

77 \TX@true

78 \fi

79 \fi

80 \fi}

\TX@error@width If the calculated width is negative, use this instead.
81 \def\TX@error@width{1em}

\TX@delta Accept a table that is within \hfuzz of the correct width.
82 \TX@delta\hfuzz

Initialise the X column. The definition can be empty here, as it is set for each
tabularx environment.
83 \newcolumntype{X}{}

\tabularxcolumn The default definition of X is p{#1}.
84 \def\tabularxcolumn#1{p{#1}}

\TX@newcol A little macro just used to cut down the number of \expandafter commands
needed.
85 \def\TX@newcol{\newcol@{X}[0]}

\TX@trial Make a test run.
86 \def\TX@trial#1{%

87 \setbox\@tempboxa\hbox{%

Any extra commands. This is used on the first run to count the number of X
columns.
88 #1\relax

8

Since v1.04, make \footnotetext gobble its arguments. Also locally clear
\TX@vwarn so that the warning is generated by the final run, and does not
appear in the middle of the table if \tracingtabularx.
89 \let\@footnotetext\TX@trial@ftn

90 \let\TX@vwarn\@empty

Do not nest tabularx environments during trial runs. This would waste time,
and the global setting of \TX@cols would break the algorithm.
91 \expandafter\let\expandafter\tabularx\csname tabular*\endcsname

92 \expandafter\let\expandafter\endtabularx\csname endtabular*\endcsname

Added at v1.05: dissable \writes during a trial run. This trick is from the
TEXBook.4

93 \def\write{\begingroup

94 \def\let{\afterassignment\endgroup\toks@}%

95 \afterassignment\let\count@}%

Turn off warnings (see appendix D). Also prevent them being turned back on by
setting the parameter names to be registers.
96 \hbadness\@M

97 \hfuzz\maxdimen

98 \let\hbadness\@tempcnta

99 \let\hfuzz\@tempdima

Make the table, and finish the hbox. Since v1.06, \toks@ contains the preamble
specification, and possible optional argument, as well as the table body.

100 \expandafter\tabular\the\toks@

101 \endtabular}%

Since v1.05 reset all LATEX counters, by executing \TX@ckpt.
102 \TX@ckpt

Print some statistics. Added \TX@align in v1.05, to line up the columns.
103 \TX@typeout@{\@spaces

104 \expandafter\TX@align

105 \the\wd\@tempboxa\space\space\space\space\space\@@

106 \expandafter\TX@align

107 \the\TX@col@width\space\space\space\space\space\@@

108 \@spaces\the\TX@cols}}

\TX@align Macro added at v1.05, to improve the printing of the tracing info.
109 \def\TX@align#1.#2#3#4#5#6#7#8#9\@@{%

110 \ifnum#1<10 \space\fi

111 \ifnum#1<100 \space\fi

112 \ifnum#1<\@m\space\fi

113 \ifnum#1<\@M\space\fi

114 #1.#2#3#4#5#6#7#8\space\space}

\arraybackslash \\ hack.
115 \def\arraybackslash{\let\\\@arraycr}

4Actually the TEXBook trick does not work correctly, so changed for v2.05.

9

\tracingtabularx Print statistics on column and table widths.
116 \def\tracingtabularx{%

117 \def\TX@typeout{\PackageWarningNoLine{tabularx}}%

118 \def\TX@typeout@##1{\typeout{(tabularx) ##1}}}

\TX@typeout The default is to be to be quiet
119 \let\TX@typeout\@gobble

120 \let\TX@typeout@\@gobble

\TX@ftn A token register for saving footnote texts.
121 \newtoks\TX@ftn

\TX@ftntext

\TX@xftntext

Inside the alignment just save up the footnote text in a token register.
122 \long\def\TX@ftntext#1{%

123 \edef\@tempa{\the\TX@ftn\noexpand\footnotetext

124 [\the\csname c@\@mpfn\endcsname]}%

125 \global\TX@ftn\expandafter{\@tempa{#1}}}%

126 \long\def\TX@xftntext[#1]#2{%

127 \global\TX@ftn\expandafter{\the\TX@ftn\footnotetext[#1]{#2}}}

\TX@trial@ftn On trial runs, gobble footnote texts.
128 \long\def\TX@trial@ftn#1{}

This last section was added at Version 1.02. Previous versions documentented
the fact that \verb did not work inside tabularx, but that did not stop people
using it! This usually put LATEX into an irrecoverable error position, with error
messages that did not mention the cause of the error. The ‘poor man’s \verb’
(and \verb*) defined here is based on page 382 of the TEXBook. As explained
there, doing verbatim this way means that spaces are not treated correctly, and
so \verb* may well be useless, however I consider this section of code to be error-
recovery, rather than a real implementation of verbatim.

The mechanism is quite general, and any macro which wants to allow a form
of \verb to be used within its argument may \let\verb=\TX@verb. (Making sure
to restore the real definition later!)

\verb and \verb* are subject to the following restictions:

1. Spaces in the argument are not read verbatim, but may be skipped according
to TEX’s usual rules.

2. Spaces will be added to the output after control words, even if they were not
present in the input.

3. Unless the argument is a single space, any trailing space, whether in the
original argument, or added as in (2), will be omitted.

4. The argument must not end with \, so \verb|\| is not allowed, however,
because of (3), \verb|\ | produces \.

10

5. The argument must be balanced with respect to { and }. So \verb|{| is
not allowed.

6. A comment character like % will not appear verbatim. It will act as usual,
commenting out the rest of the input line!

7. The combinations ?‘ and !‘ will appear as ¿ and ¡ if the cmtt font is being
used.

\TX@verb The internal definition of \verb. Spaces will be replaced by ~, so for the star-
form, \let ~ be , which we obtain as \uppercase{*}. Use {\ifnum0=‘}\fi
rather than \bgroup to allow & to appear in the argument.

129 {\uccode‘*=‘\ %

130 \uppercase{\gdef\TX@verb{%

131 \leavevmode\null\TX@vwarn

132 {\ifnum0=‘}\fi\ttfamily\let\\\ignorespaces

133 \@ifstar{\let~*\TX@vb}{\TX@vb}}}}

\TX@vb Get the ‘almost verbatim’ text using \meaning. The ‘!’ is added to the front of
the user supplied text, to ensure that the whole argument does not consist of a
single { } group. TEX would strip the outer braces from such a group. The ‘!’
will be removed later.

Originally I followed Knuth, and had \def\@tempa{##1}, however this did not
allow # to appear in the argument. So in v1.04, I changed this to to use a token
register, and \edef. This allows # appear, but makes each one appear twice!, so
later we loop through, replacing ## by #.

134 \def\TX@vb#1{\def\@tempa##1#1{\toks@{##1}\edef\@tempa{\the\toks@}%

135 \expandafter\TX@v\meaning\@tempa\\ \\\ifnum0=‘{\fi}}\@tempa!}

\TX@v Strip the initial segment of the \meaning, including the ‘!’ added earlier.
136 \def\TX@v#1!{\afterassignment\TX@vfirst\let\@tempa= }

As explained above we are going to replace ## pairs by #. To do this we need
non-special # tokens. Make * into a parameter token so that we can define macros
with arguments. The normal meanings will be restored by the \endgroup later.

137 \begingroup

138 \catcode‘*=\catcode‘\#

139 \catcode‘\#=12

\TX@vfirst As a special case, prevent the first character from being dropped. This makes
\verb*| | produce . Then call \TX@v@. This is slightly tricky since v1.04, as I
have to ensure that an actual # rather than a command \let to # is passed on if
the first character is #.

140 \gdef\TX@vfirst{%

141 \if\@tempa#%

142 \def\@tempb{\TX@v@#}%

143 \else

144 \let\@tempb\TX@v@

11

145 \if\@tempa\space~\else\@tempa\fi

146 \fi

147 \@tempb}

\TX@v@ Loop through the \meaning, replacing all spaces by ~. If the last charcter is a
space it is dropped, so that \verb*|\LaTeX| produces \LaTeX not \LaTeX . The
rewritten tokens are then further processed to replace ## pairs.

148 \gdef\TX@v@*1 *2{%

149 \TX@v@hash*1##\relax\if*2\\\else~\expandafter\TX@v@\fi*2}

\TX@v@hash The inner loop, replacing ## by #.
150 \gdef\TX@v@hash*1##*2{*1\ifx*2\relax\else#\expandafter\TX@v@hash\fi*2}

As promised, we now restore the normal meanings of # and *.
151 \endgroup

\TX@vwarn Warn the user the first time this \verb is used.
152 \def\TX@vwarn{%

153 \@warning{\noexpand\verb may be unreliable inside tabularx}%

154 \global\let\TX@vwarn\@empty}

155 〈/package〉

12

