
The xspace package∗

David Carlisle Morten Høgholm

2006/05/08

Abstract

\xspace should be used at the end of a macro designed to be used mainly
in text. It adds a space unless the macro is followed by certain punctuation
characters.

1 Introduction

After defining \newcommand{\gb}{Great Britain\xspace}, the command \gb\xspace

will determine when to insert a space after itself and when not. Thus the input

\gb is a very nice place to live.\\
\gb, a small island off the coast of France.\\
\gb\footnote{The small island off the coast of France.}
is a very nice place to live.

results in the output

Great Britain is a very nice place to live.
Great Britain, a small island off the coast of France.
Great Britain1 is a very nice place to live.

\xspace saves the user from having to type \ or {} after most occurrences of a
macro name in text. However if either of these constructions follows \xspace, a
space is not added by \xspace. This means that it is safe to add \xspace to the
end of an existing macro without making too many changes in your document. In
particular, \xspace will always insert a space if the thing following it is a normal
letter which is the usual case.

Sometimes \xspace may make the wrong decision, and add a space when it is
not required. There may be different reasons for this behavior but it can always
be handled by following the macro with {}, as this has the effect of suppressing
the space.

∗This file has version number v1.12, last revised 2006/05/08.
1The small island off the coast of France.

1



1.1 Adding new exceptions

One of the most common reasons for \xspace to add an unwanted space is when it
is followed by a macro not on its list of exceptions. With \xspaceaddexceptions\xspaceaddexceptions

you can add new commands or characters to be recognized by \xspace’s scanning
mechanism. Users of advanced footnote packages like manyfoot will often define
new footnote macros that should not cause a command “enhanced” with \xspace
to insert a space. If you define the additional footnote macros \footnoteA and
\footnoteB, simply add the following line to your preamble:

\xspaceaddexceptions{\footnoteA \footnoteB}

1.2 Support for active characters

The other common instance of \xspace not working quite right happens with
active characters. Generally this package must be loaded after any language (or
other) packages that make punctuation characters ‘active’. This makes it difficult
for xspace to work flawlessly with the popular babel package especially since the
punctuation characters can switch between being ‘active’ and ‘other’. Starting at
xspace version 1.08 there are two different ways to handle this depending on which
engine your LATEX-format uses:

TEX The punctuation characters are added to the exception list in both their
normal and active states thus ensuring that they are always recognized.

ε-TEX The characters are re-read when going through the exception list which
means the internal comparison will test against the current state of the
character. This works for whatever category code tricks some packages may
use.

At the time of writing all major TEX distributions are using ε-TEX as engine
for LATEX so usually everything should work out of the box. If you find that you’re
running normal TEX and \xspace seems to be making the wrong choice then
either use {} as described above to fix it or add the character to the list but with
the desired category code. See the implementation for an example of how to do
that.

1.3 Still not satisfied?

Some people don’t like the default list of exceptions so they can remove one item at
a time with the command \xspaceremoveexception{〈token〉}. Furthermore the\xspaceremoveexception

command \@xspace@hook can be redefined to scan forward in the input stream\@xspace@hook

in case you want to check more tokens. It is called after \xspace has determined
if it needed to insert a space or if an exception was found (the default definition
is for \@xspace@hook to be empty). Hence you can use \unskip to remove the
space inserted if \@let@token matches something special. Below is an example
of how one can make sure an endash gets a space inserted before it but a single
dash not.

2



\xspaceremoveexception{-}

\makeatletter

\renewcommand*\@xspace@hook{%

\ifx\@let@token-%

\expandafter\@xspace@dash@i

\fi

}

\def\@xspace@dash@i-{\futurelet\@let@token\@xspace@dash@ii}

\def\@xspace@dash@ii{%

\ifx\@let@token-%

\else

\unskip

\fi

-%

}

\makeatother

2 The Macros

\xspace peeks ahead for the next token. If the token is in our exception list we
break the loop and do nothing; else we try to expand the token once and start
over again. If this leads us to an unexpandable token without finding one of the
exceptions we insert a space.

1 〈∗package〉

\xspace \xspace just looks ahead, and then calls \@xspace.
2 \DeclareRobustCommand\xspace{\@xspace@firsttrue

3 \futurelet\@let@token\@xspace}

\if@xspace@first

\@xspace@simple

Some helpers to avoid multiple calls of \@xspace@eTeX@setup.
4 \newif\if@xspace@first

5 \def\@xspace@simple{\futurelet\@let@token\@xspace}

\@xspace@exceptions@tlp The exception list. If the scanning mechanism finds one of these, it won’t insert a
space after the command. The tlp in the name means ‘token list pointer.’
6 \def\@xspace@exceptions@tlp{%

7 ,.’/?;:!~-)\ \/\bgroup\egroup\@sptoken\space\@xobeysp

8 \footnote\footnotemark

9 }

\xspaceaddexceptions The user command, which just adds tokens to the list.
10 \newcommand*\xspaceaddexceptions{%

11 \g@addto@macro\@xspace@exceptions@tlp

12 }

\xspaceremoveexception This command removes an exception globally.
13 \newcommand*\xspaceremoveexception[1]{%

3



First check that it is in the list at all.
14 \def\reserved@a##1#1##2##3\@@{%

15 \@xspace@if@q@nil@NF##2{%

It’s in the list, remove it.
16 \def\reserved@a####1#1####2\@@{%

17 \gdef\@xspace@exceptions@tlp{####1####2}}%

18 \expandafter\reserved@a\@xspace@exceptions@tlp\@@

19 }%

20 }%

21 \expandafter\reserved@a\@xspace@exceptions@tlp#1\@xspace@q@nil\@@

22 }

\@xspace@break@loop To stop the loop.
23 \def\@xspace@break@loop#1\@nil{}

\@xspace@hook A hook for users with special needs.
24 \providecommand*\@xspace@hook{}

Now we check if we’re running ε-TEX. We can’t use \@ifundefined as that
will lock catcodes and we need to change some of those. As there is a small risk
that someone already set \eTeXversion to \relax by accident we make sure we
check for that case but without setting it to \relax if it wasn’t already.
25 \begingroup\expandafter\expandafter\expandafter\endgroup

26 \expandafter\ifx\csname eTeXversion\endcsname\relax

If we are running normal TEX we add the most common cases of active punctuation
characters. First we make them active.
27 \begingroup

28 \catcode‘\;=\active \catcode‘\:=\active

29 \catcode‘\?=\active \catcode‘\!=\active

The alltt environment also makes ,, ’, and - active so we add them as well.
30 \catcode‘\,=\active \catcode‘\’=\active \catcode‘\-=\active

31 \xspaceaddexceptions{;:?!,’-}

32 \endgroup

33 \let\@xspace@eTeX@setup\relax

\@xspace@eTeX@setup When we’re running ε-TEX, we have the advantage of \scantokens which will
rescan tokens with current catcodes. This little expansion trick makes sure that
the exception list is redefined to itself but with the contents of it exposed to the
current catcode regime. That is why we must make sure the catcode of space is
10, since we have a \ inside the list.
34 \else

35 \def\@xspace@eTeX@setup{%

36 \begingroup

37 \everyeof{}%

38 \endlinechar=-1\relax

39 \catcode‘\ =10\relax

40 \makeatletter

4



We may also be so unfortunate that the re-reading of the list takes place when
the catcodes of \, { and } are “other,” e.g., if it takes place in a header and the
output routine was called in the middle of a verbatim environment.
41 \catcode‘\\\z@

42 \catcode‘\{\@ne

43 \catcode‘\}\tw@

44 \scantokens\expandafter{\expandafter\gdef

45 \expandafter\@xspace@exceptions@tlp

46 \expandafter{\@xspace@exceptions@tlp}}%

47 \endgroup

48 }

49 \fi

\@xspace If the next token is one of a specified list of characters, do nothing, otherwise add
a space. With version 1.07 the approach was altered dramatically to run through
the exception list \@xspace@exceptions@tlp and check each token one at a time.
50 \def\@xspace{%

Before we start checking the exception list it makes sense to performe a quick
check on the token in question. Most of the time \xspace is used in regular text
so \@let@token is set equal to a letter. In that case there is no point in checking
the list because it will definitely not contain any tokens with catcode 11.

You may wonder why there are special functions here instead of simpler \ifx
conditionals. The reason is that a) this way we don’t have to add many, many
\expandafters to get the nesting right and b) we don’t get into trouble when
\@let@token has been let equal to \if etc.
51 \@xspace@lettoken@if@letter@TF \space{%

Otherwise we start testing after setting up a few things. If running ε-TEX we
rescan the catcodes but only the first time around.
52 \if@xspace@first

53 \@xspace@firstfalse

54 \let\@xspace@maybespace\space

55 \@xspace@eTeX@setup

56 \fi

57 \expandafter\@xspace@check@token

58 \@xspace@exceptions@tlp\@xspace@q@nil\@nil

If an exception was found \@xspace@maybespace is let to \relax and we do
nothing.
59 \@xspace@token@if@equal@NNT \space \@xspace@maybespace

Otherwise we check to see if we found something expandable and try again with
that token one level expanded. If no expandable token is found we insert a space
and then execute the hook.
60 {%

61 \@xspace@lettoken@if@expandable@TF

62 {\expandafter\@xspace@simple}%

63 {\@xspace@maybespace\@xspace@hook}%

64 }%

5



65 }%

66 }

\@xspace@check@token This macro just checks the current item in the exception list against the
\@let@token. If they are equal we make sure that no space is inserted and break
the loop.
67 \def\@xspace@check@token #1{%

68 \ifx\@xspace@q@nil#1%

69 \expandafter\@xspace@break@loop

70 \fi

71 \expandafter\ifx\csname @let@token\endcsname#1%

72 \let\@xspace@maybespace\relax

73 \expandafter\@xspace@break@loop

74 \fi

75 \@xspace@check@token

76 }

That’s all, folks! That is, if we were running LATEX3. In that case we would have
had nice functions for all the conditionals but here we must define them ourselves.
We also optimize them here as \@let@token will always be the argument in some
cases.

\@xspace@if@lettoken@letter@TF

\@xspace@if@lettoken@expandable@TF

\@xspace@cs@if@equal@NNF

First a few comparisons.
77 \def\@xspace@lettoken@if@letter@TF{%

78 \ifcat\noexpand\@let@token @% letter

79 \expandafter\@firstoftwo

80 \else

81 \expandafter\@secondoftwo

82 \fi}

83 \def\@xspace@lettoken@if@expandable@TF{%

84 \expandafter\ifx\noexpand\@let@token\@let@token%

85 \expandafter\@secondoftwo

86 \else

87 \expandafter\@firstoftwo

88 \fi

89 }

90 \def\@xspace@token@if@equal@NNT#1#2{%

91 \ifx#1#2%

92 \expandafter\@firstofone

93 \else

94 \expandafter\@gobble

95 \fi}

\@xspace@q@nil

\@xspace@if@q@nil@NF

Some macros dealing with quarks.
96 \def\@xspace@q@nil{\@xspace@q@nil}

97 \def\@xspace@if@q@nil@NF#1{%

98 \ifx\@xspace@q@nil#1%

99 \expandafter\@gobble

100 \else

6



101 \expandafter\@firstofone

102 \fi}

103 〈/package〉

7


