
The breqn package

Morten Høgholm
mh.ctan@gmail.com

2008/08/13 v0.98a

Abstract

The breqn package facilitates automatic line-breaking of displayed math
expressions.

User’s guide

1 A bit of history

Originally breqn, flexisym, and mathstyle were created by Michael J. Downes from
the American Mathematical Society during the 1990’s up to late 2002. Sadly—and
much to the shock of the TEX world—Michael passed away in early 2003 at the
age of only 44.

The American Mathematical Society has kindly allowed me to assume main-
tainership of this part of his work and I wish to express my gratitude to them and
to Barbara Beeton in particular for providing me with the files I needed.

I hope to continue Michael’s work, thereby allowing users to create more mas-
terpieces of the publishing art as I think he would have wanted.

2 Package loading

The recommended way of loading the breqn package is to load it after other pack-
ages dealing with math, i.e.,, after amsmath, amssymb, or packages such as math-
pazo or mathptmx.

The flexisym package (described in section 11 on page 10) is required by breqn
and ensures the math symbols are set up correctly. By default breqn loads it with
support for Computer Modern but if you use a different math package requiring
slightly different definitions, it must be loaded before breqn. Below is an example
of how you enable breqn to work with the widely used mathpazo package.

\usepackage{mathpazo}
\usepackage[mathpazo]{flexisym}

1

\usepackage{breqn}

Currently, the packages mathpazo and mathptmx are supported. Despair not:
Chances are that the package will work using the default settings. If you find that
a particular math font package doesn’t work then please see implementation in
flexisym.dtx for how to create a support file—it is easier than one might think.
Contributions welcome.

The documentation for the package was formerly found in breqndoc. It has
now been added to this implementation file. Below follows the contents of the
original breqn documentation. Not all details hold anymore but I have prioritized
fixing the package.

3 To do

• Handling of QED

• Space between \end{dmath} and following punctuation will prevent the
punctuation from being drawn into the equation.

• Overriding the equation layout

• Overriding the placement of the equation number

• “alignid” option for more widely separated equations where shared alignment
is desired (requires two passes)

• Or maybe provide an “alignwidths” option where you give lhs/rhs width
in terms of ems? And get feedback later on discrepancies with the actual
measured contents?

• \intertext not needed within dgroup! But currently there are limitations
on floating objects within dgroup.

• align={1} or 2, 3, 4 expressing various levels of demand for group-wide
alignment. Level 4 means force alignment even if some lines then have to
run over the right margin! Level 1, the default, means first break LHS-RHS
equations as if it occurred by itself, then move them left or right within the
current line width to align them if possible. Levels 2 and 3 mean try harder
to align but give up if overfull lines result.

• Need an \hshift command to help with alignment of lines broken at a
discretionary times sign. Also useful for adjusting inside-delimiter breaks.

4 Introduction

The breqn package for LATEX provides solutions to a number of common difficulties
in writing displayed equations and getting high-quality output. For example, it

2

is a well-known inconvenience that if an equation must be broken into more than
one line, \left . . . \right constructs cannot span lines. The breqn package makes
them work as one would expect whether or not there is an intervening line break.

The single most ambitious goal of the breqn package, however, is to support
automatic linebreaking of displayed equations. Such linebreaking cannot be done
without substantial changes under the hood in the way math formulas are pro-
cessed. For this reason, especially in the alpha release, users should proceed with
care and keep an eye out for unexpected glitches or side effects.

5 Principal features

The principal features of the breqn package are:

semantically oriented structure The way in which compound displayed for-
mulas are subdivided matches the logical structure more closely than, say,
the standard eqnarray environment. Separate equations in a group of equa-
tions are written as separate environments instead of being bounded merely
by \\ commands. Among other things, this clears up a common problem
of wrong math symbol spacing at the beginning of continuation lines. It
also makes it possible to specify different vertical space values for the space
between lines of a long, broken equation and the space between separate
equations in a group of equations.

automatic line breaking Overlong equations will be broken automatically to
the prevailing column width, and continuation lines will be indented follow-
ing standard conventions.

line breaks within delimiters Line breaks within \left . . . \right delimiters
work in a natural way. Line breaks can be forbidden below a given depth of
delimiter nesting through a package option.

mixed math and text Display equations that contain mixed math and text, or
even text only, are handled naturally by means of a dseries environment
that starts out in text mode instead of math mode.

ending punctuation The punctuation at the end of a displayed equation can be
handled in a natural way that makes it easier to promote or demote formulas
from/to inline math, and to apply special effects such as adding space before
the punctuation.

flexible numbering Equation numbering is handled in a natural way, with
all the flexibility of the amsmath package and with no need for a special
\nonumber command.

special effects It is easy to apply special effects to individual displays, e.g.,
changing the type size or adding a frame.

3

using available space Horizontal shrink is made use of whenever feasible. With
most other equation macros it is frozen when it occurs between \left . . .
\right delimiters, or in any sort of multiline structure, so that some expres-
sions require two lines that would otherwise fit on one.

high-quality spacing The \abovedisplayshortskip is used when applicable
(other equation macros fail to apply it in equations of more than one line).

abbreviations Unlike the amsmath equation environments, the breqn environ-
ments can be called through user-defined abbreviations such as \beq . . .
\eeq.

6 Shortcomings of the package

The principal known deficiencies of the breqn package are:

6.1 Incompatibilities

As it pushes the envelope of what is possible within the context of LATEX 2ε, the
breqn package will tend to break other packages when used in combination with
them, or to fail itself, when there are any areas of internal overlap; successful use
may in some cases depend on package loading order.

6.2 Indention of delimited fragments

When line breaks within delimiters are involved, the automatic indention of con-
tinuation lines is likely to be unsatisfactory and need manual adjustment. I don’t
see any easy way to provide a general solution for this, though I have some ideas
on how to attain partial improvements.

6.3 Math symbol subversion

In order for automatic line breaking to work, the operation of all the math sym-
bols of class 2, 3, 4, and 5 must be altered (relations, binary operators, opening
delimiters, closing delimiters). This is done by an auxiliary package flexisym.
As long as you stick to the advertised LATEX interface for defining math symbols
(\DeclareMathSymbol), things should work OK most of the time. Any more com-
plex math symbol setup is quite likely to quarrel with the flexisym package. See
Section 11 on page 10 for further information.

6.4 Subscripts and superscripts

Because of the changes to math symbols of class 2–5, writing certain combinations
such as ^+ or _\pm or ^\geq without braces would lead to error messages; (The
problem described here already exists in standard LATEX to a lesser extent, as you
may know if you ever tried ^\neq or ^\cong; and indeed there are no examples in

4

the LATEX book to indicate any sanction for omitting braces around a subscript or
superscript.)

The flexisym package therefore calls, as of version 0.92, another package called
mathstyle which turns ^ and _ into active characters. This is something that I
believe is desirable in any case, in the long run, because having a proper mathstyle
variable eliminates some enormous burdens that affect almost any nontrivial math
macros, as well as many other things where the connection is not immediately
obvious, e.g., the LATEX facilities for loading fonts on demand.

Not that this doesn’t introduce new and interesting problems of its own—
for example, you don’t want to put usepackage statements after flexisym for any
package that refers to, e.g., ^^J or ^^M internally (too bad that the LATEX package
loading code does not include automatic defenses to ensure normal catcodes in the
interior of a package; but it only handles the @ character).

But I took a random AMS journal article, with normal end-user kind of LATEX
writing, did some straightforward substitutions to change all the equations into
dmath environments, and ran it with active math sub/sup: everything worked
OK. This suggests to me that it can work in the real world, without an impossible
amount of compatibility work.

7 Incomplete

In addition, in the alpha release [1997/10/30] the following gaps remain to be
filled in:

documentation The documentation could use amplification, especially more il-
lustrations, and I have undoubtedly overlooked more than a few errors.

group alignment The algorithm for doing alignment of mathrel symbols across
equations in a dgroup environment needs work. Currently the standard and
noalign alternatives produce the same output.

single group number When a dgroup has a group number and the individual
equations are unnumbered, the handling and placement of the group number
aren’t right.

group frame Framing a group doesn’t work, you might be able to get frames on
the individual equations at best.

group brace The brace option for dgroup is intended to produce a large brace
encompassing the whole group. This hasn’t been implemented yet.

darray environment The darray environment is unfinished.

dseries environment The syntax and usage for the dseries environment are
in doubt and may change.

failure arrangements When none of the line-breaking passes for a dmath envi-
ronment succeeds—i.e., at least one line is overfull—the final arrangement

5

is usually rather poor. A better fall-back arrangement in the failure case is
needed.

8 Package options

Many of the package options for the breqn package are the same as options of the
dmath or dgroup environments, and some of them require an argument, which is
something that cannot be done through the normal package option mechanism.
Therefore most of the breqn package options are designed to be set with a \setkeys
command after the package is loaded. For example, to load the package and set
the maximum delimiter nesting depth for line breaks to 1:

\usepackage{breqn}
\setkeys{breqn}{breakdepth={1}}

See the discussion of environment options, Section 10 on page 8, for more
information.

Debugging information is no longer available as a package option. Instead, the
tracing information has been added in a fashion so that it can be enabled as a
docstrip option:

\generate{\file{breqn.sty}{\from{breqn.dtx}{package,trace}}}

9 Environments and commands

9.1 Environments

All of the following environments take an optional argument for applying local
effects such as changing the typesize or adding a frame to an individual equation.

dmath Like equation but supports line breaking and variant numbers.

dmath* Unnumbered; like displaymath but supports line breaking

dseries Like equation but starts out in text mode; intended for series of math-
ematical expressions of the form ‘A, B, and C’. As a special feature, if you
use

\begin{math} ... \end{math}

for each expression in the series, a suitable amount of inter-expression space
will be automatically added. This is a small step in the direction of facilitat-
ing conversion of display math to inline math, and vice versa: If you write
a display as

6

\begin{dseries}
\begin{math}A\end{math},
\begin{math}B\end{math},
and
\begin{math}C\end{math}.
\end{dseries}

then conversion to inline form is simply a matter of removing the \begin{dseries}
and \end{dseries} lines; the contents of the display need no alterations.

It would be nice to provide the same feature for $ notation but there is
no easy way to do that because the $ function has no entry point to allow
changing what happens before math mode is entered. Making it work would
therefore require turning $ into an active character, something that I hesitate
to do in a LATEX 2ε context.

dseries* Unnumbered variant of dseries

dgroup Like the align environment of amsmath, but with each constituent equa-
tion wrapped in a dmath, dmath*, dseries, or dseries* environment in-
stead of being separated by \\. The equations are numbered with a group
number. When the constituent environments are the numbered forms (dmath
or dseries) they automatically switch to ‘subequations’-style numbering,
i.e., something like (3a), (3b), (3c), . . . , depending on the current form of
non-grouped equation numbers. See also dgroup*.

dgroup* Unnumbered variant of dgroup. If the constituent environments are the
numbered forms, they get normal individual equation numbers, i.e., some-
thing like (3), (4), (5),

darray Similar to eqnarray but with an argument like array for giving column
specs. Automatic line breaking is not done here.

darray* Unnumbered variant of darray, rather like array except in using
\displaystyle for all column entries.

dsuspend Suspend the current display in order to print some text, without loss of
the alignment. There is also a command form of the same thing, \intertext.

9.2 Commands

The commands provided by the breqn package are:

\condition This command is used for a part of a display which functions as a
condition on the main assertion. For example:

\begin{dmath}
f(x)=\frac{1}{x} \condition{for $x\neq 0$}

7

\end{dmath}.

(1)f(x) =
1
x

, for x 6= 0 .

The \condition command automatically switches to text mode (so that in-
terword spaces function the way they should), puts in a comma, and adds an
appropriate amount of space. To facilitate promotion/demotion of formulas,
\condition “does the right thing” if used outside of display math.

To substitute a different punctuation mark instead of the default comma,
supply it as an optional argument for the \condition command:

\condition[;]{...}

(Thus, to get no punctuation: \condition[]{...}.)

For conditions that contain no text, you can use the starred form of the
command, which means to stay in math mode:

\begin{dmath}
f(x)=\frac{1}{x} \condition*{x\neq 0}
\end{dmath}.

If your material contains a lot of conditions like these, you might like
to define shorter abbreviations, e.g.,
\begin{verbatim}
\newcommand{\mc}{\condition*}% math condition
\newcommand{\tc}{\condition}% text condition

But the breqn package refrains from predefining such abbreviations in order
that they may be left to the individual author’s taste.

\hiderel In a compound equation it is sometimes desired to use a later relation
symbol as the alignment point, rather than the first one. To do this, mark
all the relation symbols up to the desired one with \hiderel:

T(n) \hiderel{\leq} T(2^n) \leq c(3^n - 2^n) ...

10 Various environment options

The following options are recognized for the dmath, dgroup, darray, and dseries
environments; some of the options do not make sense for all of the environments,
but if an option is used where not applicable it is silently ignored rather than
treated as an error.

8

\begin{dmath}[style={\small}]
\begin{dmath}[number={BV}]
\begin{dmath}[labelprefix={eq:}]
\begin{dmath}[label={xyz}]
\begin{dmath}[relindent={1em}]
\begin{dmath}[compact]
\begin{dmath}[spread={1pt}]
\begin{dmath}[frame]
\begin{dmath}[frame={1pt},framesep={2pt}]
\begin{dmath}[background={red}]
\begin{dmath}[color={purple}]
\begin{dmath}[breakdepth={0}]

Use the style option to change the type size of an individual equation. This
option can also serve as a catch-all option for altering the equation style in other
ways; the contents are simply executed directly within the context of the equation.

Use the number option if you want the number for a particular equation to fall
outside of the usual sequence. If this option is used the equation counter is not
incremented. If for some reason you need to increment the counter and change the
number at the same time, use the style option in addition to the number option:

style={\refstepcounter{equation}}

Use of the normal \label command instead of the label option works, I think,
most of the time (untested). labelprefix prepends its argument to the label (only
useful as a global option, really), and must be called before label.

Use the relindent option to specify something other than the default amount
for the indention of relation symbols. The default is 2em.

Use the compact option in compound equations to inhibit line breaks at relation
symbols. By default a line break will be taken before each relation symbol except
the first one. With the compact option LATEX will try to fit as much material as
possible on each line, but breaks at relation symbols will still be preferred over
breaks at binary operator symbols.

Use the spread option to increase (or decrease) the amount of interline space
in an equation. See the example given above.

Use the frame option to produce a frame around the body of the equation.
The thickness of the frame can optionally be specified by giving it as an argument
of the option. The default thickness is \fboxrule.

Use the framesep option to change the amount of space separating the frame
from what it encloses. The default space is \fboxsep.

Use the background option to produce a colored background for the equation
body. The breqn package doesn’t automatically load the color package, so this
option won’t work unless you remember to load the color package yourself.

Use the color option to specify a different color for the contents of the equa-
tion. Like the background option, this doesn’t work if you forgot to load the color

9

package.
Use the breakdepth option to change the level of delimiter nesting to which

line breaks are allowed. To prohibit line breaks within delimiters, set this to 0:

\begin{dmath}[breakdepth={0}]

The default value for breakdepth is 2. Even when breaks are allowed inside de-
limiters, they are marked as less desirable than breaks outside delimiters. Most
of the time a break will not be taken within delimiters until the alternatives have
been exhausted.

Options for the dgroup environment: all of the above, and also

\begin{dgroup}[noalign]
\begin{dgroup}[brace]

By default the equations in a dgroup are mutually aligned on their relation
symbols (=, <, ≥, and the like). With the noalign option each equation is placed
individually without reference to the others.

The brace option means to place a large brace encompassing the whole group
on the same side as the equation number.

Options for the darray environment: all of the above (where sensible), and
also

\begin{darray}[cols={lcr@{\hspace{2em}}lcr}]

The value of the cols option for the darray environment should be a series of
column specs as for the array environment, with the following differences:

• For l, c, and r what you get is not text, but math, and displaystyle math at
that. To get text you must use a ’p’ column specifier, or put an \mbox in
each of the individual cells.

• Vertical rules don’t connect across lines.

11 The flexisym package

The flexisym package does some radical changes in the setup for math symbols to
allow their definitions to change dynamically throughout a document. The breqn
package uses this to make symbols of classes 2, 3, 4, 5 run special functions inside
an environment such as dmath that provide the necessary support for automatic
line breaking.

The method used to effect these changes is to change the definitions of
\DeclareMathSymbol and \DeclareMathDelimiter, and then re-execute the stan-
dard set of LATEX math symbol definitions. Consequently, additional mathrel and
mathbin symbols defined by other packages will get proper line-breaking behav-
ior if the other package is loaded after the flexisym package and the symbols are
defined through the standard interface.

10

12 Caution! Warning!

Things to keep in mind when writing documents with the breqn package:

• The notation := must be written with the command \coloneq. Otherwise
the : and the = will be treated as two separate relation symbols with an
“empty RHS” between them, and they will be printed on separate lines.

• Watch out for constructions like ^+ where a single binary operator or binary
relation symbol is subscripted or superscripted. When the breqn or flexisym
package is used, braces are mandatory in such constructions: ^{+}. This
applies for both display and in-line math.

• If you want LATEX to make intelligent decisions about line breaks when vert
bars are involved, use proper pairing versions of the vert-bar symbols accord-
ing to context: \lvert n\rvert instead of |n|. With the nondirectional |
there is no way for LATEX to reliably deduce which potential breakpoints are
inside delimiters (more highly discouraged) and which are not.

• If you use the german package or some other package that turns double quote
" into a special character, you may encounter some problems with named
math symbols of type mathbin, mathrel, mathopen, or mathclose in moving
arguments. For example, \leq in a section title will be written to the .aux
file as something like \mathchar "3214. This situation probably ought to
be improved, but for now use \protect.

• Watch out for the [character at the beginning of a dmath or similar envi-
ronment, if it is supposed to be interpreted as mathematical content rather
than the start of the environment’s optional argument.

This is OK:

\begin{dmath}
[\lambda,1]...
\end{dmath}

This will not work as expected:

\begin{dmath}[\lambda,1]...\end{dmath}

• Watch out for unpaired delimiter symbols (in display math only):

() [] \langle \rangle \{ \} \lvert \rvert ...

11

If an open delimiter is used without a close delimiter, or vice versa, it is
normally harmless but may adversely affect line breaking. This is only for
symbols that have a natural left or right directionality. Unpaired \vert and
so on are fine.

When a null delimiter is used as the other member of the pair (\left. or
\right.) this warning doesn’t apply.

• If you inadvertently apply \left or \right to something that is not a de-
limiter, the error messages are likely to be a bit more confusing than usual.
The normal LATEX response to an error such as

\left +

is an immediate message

! Missing delimiter (. inserted).

When the breqn package is in use, LATEX will fail to realize anything is wrong
until it hits the end of the math formula, or a closing delimiter without a
matching opening delimiter, and then the first message is an apparently
pointless

! Missing \endgroup inserted.

13 Examples

Knuth, SNA p74

Example 1
Replace j by $h-j$ and by $k-j$ in these sums to get [cf.~(26)]
\begin{dmath}[label={sna74}]
\frac{1}{6} \left(\sigma(k,h,0) +\frac{3(h-1)}{h}\right)
+\frac{1}{6} \left(\sigma(h,k,0) +\frac{3(k-1)}{k}\right)

=\frac{1}{6} \left(\frac{h}{k} +\frac{k}{h} +\frac{1}{hk}\right)
+\frac{1}{2} -\frac{1}{2h} -\frac{1}{2k},

\end{dmath}
which is equivalent to the desired result.

Replace j by h− j and by k − j in these sums to get [cf. (26)]

(13.2)

1
6

(
σ(k, h, 0) +

3(h− 1)
h

)
+

1
6

(
σ(h, k, 0) +

3(k − 1)
k

)
=

1
6

(
h

k
+
k

h
+

1
hk

)
+

1
2
− 1

2h
− 1

2k
,

12

which is equivalent to the desired result.

Knuth, SNA 4.6.2, p387

Example 2
\newcommand\mx[1]{\begin{math}#1\end{math}}% math expression
%
Now every column which has no circled entry is completely zero;
so when $k=6$ and $k=7$ the algorithm outputs two more vectors,
namely
\begin{dseries}[frame]
\mx{v^{[2]} =(0,5,5,0,9,5,1,0)},
\mx{v^{[3]} =(0,9,11,9,10,12,0,1)}.
\end{dseries}
From the form of the matrix A after $k=5$, it is evident that
these vectors satisfy the equation $vA =(0,\dotsc,0)$.

math expression
Now every column which has no circled entry is completely zero; so when k = 6

and k = 7 the algorithm outputs two more vectors, namely

(13.3)v[2] = (0, 5, 5, 0, 9, 5, 1, 0) , v[3] = (0, 9, 11, 9, 10, 12, 0, 1) .

From the form of the matrix A after k = 5, it is evident that these vectors satisfy
the equation vA = (0, . . . , 0).

Example 3
\begin{dmath*}
T(n) \hiderel{\leq} T(2^{\lceil\lg n\rceil})
\leq c(3^{\lceil\lg n\rceil}
-2^{\lceil\lg n\rceil})

<3c\cdot3^{\lg n}
=3c\,n^{\lg3}

\end{dmath*}.

T (n) ≤ T (2dlg ne) ≤ c(3dlg ne − 2dlg ne)
< 3c · 3lg n

= 3c nlg 3 .

Example 4
The reduced minimal Gr\"obner basis for I^q_3 consists of
\begin{dgroup*}
\begin{dmath*}

13

H_1^3 = x_1 + x_2 + x_3
\end{dmath*},
\begin{dmath*}
H_2^2 = x_1^2 + x_1 x_2 + x_2^2 - q_1 - q_2
\end{dmath*},
\begin{dsuspend}
and
\end{dsuspend}
\begin{dmath*}
H_3^1 = x_1^3 - 2x_1 q_1 - x_2 q_1
\end{dmath*}.
\end{dgroup*}

The reduced minimal Gröbner basis for Iq
3 consists of

H3
1 = x1 + x2 + x3 ,

H2
2 = x2

1 + x1x2 + x2
2 − q1 − q2 ,

and
H1

3 = x3
1 − 2x1q1 − x2q1 .

Implementation
The package version here is Michael’s v0.90 updated by Bruce Miller. Michael’s
changes between v0.90 and his last v0.94 will be incorporated where applicable.

The original sources of breqn and related files exist in a non-dtx format devised
by Michael Downes himself. Lars Madsen has kindly written a Perl script for
transforming the original source files into near-perfect dtx state, requiring only
very little hand tuning. Without his help it would have been nigh impossible to
incorporate the original sources with Michael’s comments. A big, big thank you
to him.

14 Introduction

The breqn package provides environments dmath, dseries, and dgroup for dis-
played equations with automatic line breaking, including automatic indention of
relation symbols and binary operator symbols at the beginning of broken lines.
These environments automatically pull in following punctuation so that it can
be written in a natural way. The breqn package also provides a darray environ-
ment similar to the array environment but using \displaystyle for all the array
cells and providing better interline spacing (because the vertical ruling feature
of array is dropped). These are all autonumbered environments like equation

14

and have starred forms that don’t add a number. For a more comprehensive and
detailed description of the features and intended usage of the breqn package see
breqndoc.tex.

15 Strategy

Features of particular note are the ability to have linebreaks even within a
\left–\right pair of delimiters, and the automatic alignment on relations and
binary operators of a split equation. To make dmath handle all this, we begin by
setting the body of the equation in a special paragraph form with strategic line
breaks whose purpose is not to produce line breaks in the final printed output but
rather to mark significant points in the equation and give us entry points for un-
packing \left–\right boxes. After the initial typesetting, we take the resulting
stack of line fragments and, working backward, splice them into a new, single-line
paragraph; this will eventually be poured into a custom parshape, after we do some
measuring to calculate what that parshape should be. This streamlined horizontal
list may contain embedded material from user commands intended to alter line
breaks, horizontal alignment, and interline spacing; such material requires special
handling.

To make the ‘shortskip’ possibility work even for multiline equations, we must
plug in a dummy TEX display to give us the value of \predisplaysize, and
calculate for ourselves when to apply the short skips.

In order to measure the equation body and do various enervating calculations
on whether the equation number will fit and so on, we have to set it in a box.
Among other things, this means that we can’t unhbox it inside $$. . . $$, or even
$. . . $: TEX doesn’t allow you to \unhbox in math mode. But we do want to un-
hbox it rather than just call \box, otherwise we can’t take advantage of available
shrink from \medmuskip to make equations shrink to fit in the available width.
So even for simple one-line equations we are forced to fake a whole display with-
out going through TEX’s primitive display mechanism (except for using it to get
\predisplaysize as mentioned above).

In the case of a framed equation body, the current implementation is to set
the frame in a separate box, of width zero and height zero, pinned to the upper
left corner of the equation body, and then print the equation body on top of it.
For attaching an equation number it would be much simpler to wrap the equation
body in the frame and from then on treat the body as a single box instead of
multiple line boxes. But I had a notion that it might be possible some day to
support vertical stretching of the frame.

16 Prelim

This package doesn’t work with LATEX 2.09, nor with other versions of LATEX earlier
than 1994/12/01.
1 〈∗package〉

15

2 \NeedsTeXFormat{LaTeX2e}

Declare package name and date.
3 \ProvidesPackage{breqn}[2008/08/13 v0.98a]

17 Package options

Most options are set with the \options command (which calls \setkeys) because
the standard package option mechanism doesn’t provide support for key-value
syntax.

First we need to get the catcodes sorted out.
4 \edef\breqnpopcats{%

5 \catcode\number‘\"=\number\catcode‘\"

6 \relax}

7 \AtEndOfPackage{\breqnpopcats}%

8 \catcode‘\^=7 \catcode‘_=8 \catcode‘\"=12 \relax

9 \DeclareOption{mathstyleoff}{%

10 \PassOptionsToPackage{mathstyleoff}{flexisym}%

11 }

Process options.
12 \ProcessOptions\relax

18 Required packages

The flexisym package makes it possible to attach extra actions to math symbols,
in particular mathbin, mathrel, mathopen, and mathclose symbols. Normally it
would suffice to call \RequirePackage without any extra testing, but the nature of
the package is such that it is likely to be called earlier with different (no) options.
Then is it really helpful to be always warning the user about ‘Incompatible Package
Options!’? I don’t think so.
13 \@ifpackageloaded{flexisym}{}{%

14 \RequirePackage{flexisym}[2007/12/19]

15 \edef\breqnpopcats{\breqnpopcats

16 \catcode\number‘\^=\number\catcode‘\^

17 \catcode\number‘_=\number\catcode‘_

18 }%

19 \catcode‘\^=7 \catcode‘_=8 \catcode‘\"=12 \relax

20 }

The keyval package for handling equation options and calc to ease writing compu-
tations.
21 \RequirePackage{keyval,calc}\relax

And add an \options cmd for processing package options that require an
argument. Maybe this will get added to the keyval package eventually.
22 \@ifundefined{options}{%

16

\options Get the package options and run setkeys on them.
23 \newcommand{\options}[2]{%

24 \expandafter\options@a\csname opt@#1.sty\endcsname{#2}%

25 \setkeys{#1}{#2}%

26 }

\options@a

\options@b

\options@c

\options@d

Redefine \opt@pkgname.sty as we go along to take out the options that are han-
dled and leave the ones that are not.
27 \def\options@a#1#2{%

28 \edef\@tempa{\options@b#2,\@empty\@nil}%

29 \ifx#1\relax \let#1\@empty\fi

30 \xdef#1{#1\ifx#1\@empty\@xp\@gobble\@tempa\@empty\else\@tempa \fi}%

31 }

Add the next option, and recurse if there remain more options.
32 \def\options@b#1,#2#3\@nil{%

33 \options@c#1 \@nil

34 \ifx#2\@empty \else\options@b#2#3\@nil\fi

35 }

Discard everything after the first space.
36 \def\options@c#1 #2\@nil{\options@d#1=\@nil}

Discard everything after the first = sign; add a comma only if the remainder is
not empty.
37 \def\options@d#1=#2\@nil{\ifx\@empty #1\@empty\else,\fi#1}

The tail of the \@ifundefined test.
38 }{}% end @ifundefined test

19 Some useful tools

\@nx

\@xp

The comparative brevity of \@nx and \@xp is valuable not so much for typing
convenience as for reducing visual clutter in code sections that require a lot of
expansion control.
39 \let\@nx\noexpand

40 \let\@xp\expandafter

\@emptytoks Constant empty token register, analogous to \@empty.
41 \@ifundefined{@emptytoks}{\newtoks\@emptytoks}{}

\f@ur Constants 0–3 are provided in plain TEX, but not 4.
42 \chardef\f@ur=4

\inf@bad \inf@bad is for testing box badness.
43 \newcount\inf@bad \inf@bad=1000000

17

\maxint We want to use \maxint rather than coerced \maxdimen for \linepenalty in one
place.
44 \newcount\maxint \maxint=2147483647

\int@a

\int@b

\int@b

Provide some shorter aliases for various scratch registers.
45 \let\int@a=\@tempcnta

46 \let\int@b=\@tempcntb

47 \let\int@c=\count@

\dim@a

\dim@b

\dim@c

\dim@d

\dim@e

\dim@A

Same for dimen registers.
48 \let\dim@a\@tempdima

49 \let\dim@b\@tempdimb

50 \let\dim@c\@tempdimc

51 \let\dim@d\dimen@

52 \let\dim@e\dimen@ii

53 \let\dim@A\dimen@i

\skip@a

\skip@b

\skip@c

Same for skip registers.
54 \let\skip@a\@tempskipa

55 \let\skip@b\@tempskipb

56 \let\skip@c\skip@

\toks@a

\toks@b

\toks@c

\toks@d

\toks@e

\toks@f

Same for token registers.
57 \let\toks@a\@temptokena

58 \let\toks@b\toks@

59 \toksdef\toks@c=2

60 \toksdef\toks@d=4

61 \toksdef\toks@e=6

62 \toksdef\toks@f=8

\abs@num We need an absolute value function for comparing penalties.
63 \def\abs@num#1{\ifnum#1<\z@-\fi#1}

\@ifnext

\@ifnexta

The \@ifnext function is a variation of \@ifnextchar that doesn’t skip over
intervening whitespace. We use it for the optional arg of \\nside dmath etc.
because we don’t want unwary users to be tripped up by an unexpected attempt
on LATEX’s part to interpret a bit of math as an optional arg:

\begin{equation}
...\\
[z,w]...
\end{equation}

.
64 \def\@ifnext#1#2#3{%

65 \let\@tempd= #1\def\@tempa{#2}\def\@tempb{#3}%

66 \futurelet\@tempc\@ifnexta

67 }

18

Switch to \@tempa iff the next token matches.
68 \def\@ifnexta{\ifx\@tempc\@tempd \let\@tempb\@tempa \fi \@tempb}

\@ifstar Similarly let’s remove space-skipping from \@ifstar because in some rare case of
\\nside an equation, followed by a space and a * where the * is intended as the
math binary operator, it would be a disservice to gobble the star as an option of
the \\ommand. In all other contexts the chance of having a space before the star
is extremely small: either the command is a control word which will get no space
token after it in any case because of TEX’s tokenization rules; or it is a control
symbol such as \\”*” which is exceedingly unlikely to be written as \\”*” by any
one who really wants the * to act as a modifier for the \\ommand.
69 \def\@ifstar#1#2{%

70 \let\@tempd*\def\@tempa*{#1}\def\@tempb{#2}%

71 \futurelet\@tempc\@ifnexta

72 }

\@optarg Utility function for reading an optional arg without skipping over any intervening
spaces.
73 \def\@optarg#1#2{\@ifnext[{#1}{#1[#2]}}

\@True

\@False

\@Not

\@And

After \let\foo\@True the test

\if\foo

evaluates to true. Would rather avoid \newif because it uses three csnames per
Boolean variable; this uses only one.
74 \def\@True{00}

75 \def\@False{01}

76 \def\@Not#1{0\ifcase#11 \or\@xp 1\else \@xp 0\fi}

77 \def\@And#1#2{0\ifcase#1#2 \@xp 0\else \@xp 1\fi}

78 \def\@Or#1#2{0\ifnum#1#2<101 \@xp 0\else \@xp 1\fi}

79 \def\theb@@le#1{\if#1 True\else False\fi}

\freeze@glue Remove the stretch and shrink from a glue register.
80 \def\freeze@glue#1{#11#1\relax}

\z@rule

\keep@glue

Note well the intentional absence of \relax at the end of the replacement text of
\z@rule; use it with care.
81 \def\z@rule{\vrule\@width\z@}% no \relax ! use with care

Different ways to keep a bit of glue from disappearing at the beginning of a line
after line breaking:

• Zero-thickness rule

• Null character

• \vadjust{} (The TEXbook, Exercise ??)

19

The null character idea would be nice except it creates a mathord which then
screws up math spacing for e.g., a following unary minus sign. (the vrule is trans-
parent to the math spacing). The vadjust is the cheapest in terms of box mem-
ory—it vanishes after the pass through TEX’s paragrapher. It is what I would have
used, except that the equation contents get run through two paragraphing passes,
once for breaking up LR boxes and once for the real typesetting. If \keep@glue
were done with an empty vadjust, it would disappear after the first pass and—in
particular—the pre-bin-op adjustment for relation symbols would disappear at a
line break.
82 \def\keep@glue{\z@rule\relax}

\replicate This is a fully expandable way of making N copies of a token list. Based on a post
of David Kastrup to comp.text.tex circa January 1999. The extra application of
\number is needed for maximal robustness in case the repeat count N is given in
some weird TEX form such as "E9 or \count9.
83 % usage: \message{H\replicate{5}{i h}ow de doo dee!}

84 \begingroup \catcode‘\&=11

85 \gdef\replicate#1{%

86 \csname &\expandafter\replicate@a\romannumeral\number\number#1 000q\endcsname

87 }

88 \endgroup

\replicate@a

89 \long\def\replicate@a#1#2\endcsname#3{#1\endcsname{#3}#2}

\8m fix
90 \begingroup \catcode‘\&=11

91 \long\gdef\&m#1#2{#1\csname \endcsname{#1}}

92 \endgroup

\8q fix
93 \@xp\let\csname\string &q\endcsname\@gobble

\mathchars@reset Need to patch up this function from flexisym a little, to better handle certain
constructed symbols like \neq.
94 \g@addto@macro\mathchars@reset{%

95 \let\@symRel\@secondoftwo \let\@symBin\@secondoftwo

96 \let\@symDeL\@secondoftwo \let\@symDeR\@secondoftwo

97 \let\@symDeB\@secondoftwo

98 }

\eq@cons LATEX’s \@cons appends to the end of a list, but we need a function that adds
material at the beginning.
99 \def\eq@cons#1#2{%

100 \begingroup \let\@elt\relax \xdef#1{\@elt{#2}#1}\endgroup

101 }

20

\@saveprimitive If some preceding package redefined one of the primitives that we must change, we
had better do some checking to make sure that we are able to save the primitive
meaning for internal use. This is handled by the \@saveprimitive function.
We follow the example of \@@input where the primitive meaning is stored in
an internal control sequence with a @@ prefix. Primitive control sequences can be
distinguished by the fact that \string and \meaning return the same information.
Well, not quite all: \nullfont and \topmark and the other \...mark primitives
being the exceptions.

102 \providecommand{\@saveprimitive}[2]{%

103 \begingroup

104 \edef\@tempa{\string#1}\edef\@tempb{\meaning#1}%

105 \ifx\@tempa\@tempb \global\let#2#1%

106 \else

If [arg1] is no longer primitive, then we are in trouble unless [arg2] was already
given the desired primitive meaning somewhere else.

107 \edef\@tempb{\meaning#2}%

108 \ifx\@tempa\@tempb

109 \else \@saveprimitive@a#1#2%

110 \fi

111 \fi

112 \endgroup

113 }

Aux function, check for the special cases. Most of the time this branch will be
skipped so we can stuff a lot of work into it without worrying about speed costs.

114 \providecommand\@saveprimitive@a[2]{%

115 \begingroup

116 \def\@tempb##1#1##2{\edef\@tempb{##2}\@car{}}%

117 \@tempb\nullfont{select font nullfont}%

118 \topmark{\string\topmark:}%

119 \firstmark{\string\firstmark:}%

120 \botmark{\string\botmark:}%

121 \splitfirstmark{\string\splitfirstmark:}%

122 \splitbotmark{\string\splitbotmark:}%

123 #1{\string#1}%

124 \edef\@tempa{\expandafter\strip@prefix\meaning\@tempb}%

125 \edef\@tempb{\meaning#1}%

126 \ifx\@tempa\@tempb \global\let#2#1%

127 \else

128 \PackageError{breqn}%

129 {Unable to properly define \string#2; primitive

130 \noexpand#1no longer primitive}\@eha

131 \fi

132 \fi

133 \endgroup

134 }

\@@math

\@@endmath

\@@display

\@@enddisplay

Move the math-start and math-end functions into control sequences. If I were
redesigning TEX I guess I’d put these functions into primitive control words instead

21

of linking them to a catcode. That way TEX would not have to do the special
lookahead at a $ to see if there’s another one coming up. Of course that’s related
to the question of how to provide user shorthand for common constructions: TEX,
or an editing interface of some sort.

135 \begingroup \catcode‘\$=\thr@@ % just to make sure

136 \global\let\@@math=$ \gdef\@@display{$$}% $$$

137 \endgroup

138 \let\@@endmath=\@@math

139 \let\@@enddisplay=\@@display

\@@insert

\@@mark

\@@vadjust

Save the primitives \vadjust, \insert, \mark because we will want to change
them locally during equation measuring to keep them from getting in the way
of our vertical decomposition procedures. We follow the example of \@@input,
\@@end, \@@par where the primitive meaning is stored in an internal control se-
quence with a @@ prefix.

140 \@saveprimitive\vadjust\@@vadjust

141 \@saveprimitive\insert\@@insert

142 \@saveprimitive\mark\@@mark

20 Debugging

Debugging help.
143 〈∗trace〉
144 \errorcontextlines=2000\relax

\breqn@debugmsg Print a debugging message.
145 \long\def\breqn@debugmsg#1{\GenericInfo{||}{||=\space#1}}

\debugwr Sometimes the newline behavior of \message is unsatisfactory; this provides an
alternative.

146 \def\debugwr#1{\immediate\write\sixt@@n{||= #1}}

\debug@box Record the contents of a box in the log file, without stopping.
147 \def\debug@box#1{%

148 \batchmode{\showboxbreadth\maxdimen\showboxdepth99\showbox#1}%

149 \errorstopmode

150 }

\eqinfo Show lots of info about the material before launching into the trials.
151 \def\eqinfo{%

152 \debug@box\EQ@copy

153 \wlog{!! EQ@copy: \the\wd\EQ@copy\space x

154 \the\ht\EQ@copy+\the\dp\EQ@copy

155 }%

156 }

22

\debug@para Check params that affect line breaking.
157 \def\debug@para{%

158 \debugwr{\hsize\the\hsize, \parfillskip\the\parfillskip}%

159 \breqn@debugmsg{\leftskip\the\leftskip, \rightskip\the\rightskip}%

160 \breqn@debugmsg{\linepenalty\the\linepenalty, \adjdemerits\the\adjdemerits}%

161 \breqn@debugmsg{\pretolerance\the\pretolerance, \tolerance\the\tolerance,

162 \parindent\the\parindent}%

163 }

164 〈/trace〉

21 The \listwidth variable

The dimen variable \listwidth is \linewidth plus \leftmargin plus \rightmargin,
which is typically less than \hsize if the list depth is greater than one. In case a
future package will provide this variable, define it only if not yet defined.

165 \@ifundefined{listwidth}{\newdimen\listwidth}{}

166 \listwidth=\z@

22 Parameters

Here follows a list of parameters needed.

\eqfontsize

\eqcolor

\eqmargin

\eqindent

\eqbinoffset

\eqnumside

\eqnumplace

\eqnumsep

\eqnumfont

\eqnumform

\eqnumsize

\eqnumcolor

\eqlinespacing

\eqlineskip

\eqlineskiplimit

\eqstyle

\eqinterlinepenalty

\intereqpenalty

\intereqskip

Note: avoid M, m, P, p because they look like they might be the start of a keyword
‘minus’ or ‘plus’. Then TEX looks further to see if the next letter is i or l. And if
the next thing is an undefined macro, the attempt to expand the macro results in
an error message.

167 \def\eqfontsize{} % Inherit from context [NOT USED?]

168 \def\eqcolor{black} % Default to black [NOT USED?]

169 \newdimen\eqnumsep \eqnumsep=10pt % Min space between equ number and body

170 \newdimen\eqmargin \eqmargin=8pt % For ‘multline’ gap emulation

The \eqindent and \eqnumside variables need to have their values initialized
from context, actually. But that takes a bit of work, which is postponed till later.

171 \def\eqindent{C}% % C or I, centered or indented

172 \def\eqnumside{R}% % R or L, right or left

173 \def\eqnumplace{M}% % M or T or B, middle top or bottom

Typesetting the equation number is done thus:

{\eqnumcolor \eqnumsize \eqnumfont{\eqnumform{\eq@number}}}

.
174 %d\eqnumfont{\upshape}% % Upright even when surrounding text is slanted

175 \def\eqnumfont{}% % Null for easier debugging [mjd,1997/09/26]

176 \def\eqnumform#1{(#1\@@italiccorr)} % Add parens

177 \def\eqnumsize{} % Allow numbers to have different typesize ...

23

Tricky questions on \eqnumsize. Should the default be \normalsize? Then the
user can scale down the equation body with \small and not affect the equation
number. Or should the default be empty? Then in large sections of smaller text,
like the dangerous bend stuff in TEXbook, the equation number size will keep in
synch with the context. Maybe need an \eqbodysize param as well to allow
separating the two cases.

178 \def\eqnumcolor{} % ... or color than eq body e.g. \color{blue}

179 \newlength\eqlinespacing \eqlinespacing=14pt plus2pt % Base-to-base space between lines

180 \newlength\eqlineskip \eqlineskip=3pt plus2pt % Min space if eqlinespacing too small

181 \newdimen\eqlineskiplimit \eqlineskiplimit=2pt % Threshold for switching to eqlineskip

The value of \eqbinoffset should include a negative shrink component that
cancels the shrink component of medmuskip, otherwise there can be a noticeable
variation in the indent of adjacent lines if one is shrunken a lot and the other isn’t.

182 \newmuskip \eqbinoffset \eqbinoffset=15mu minus-3mu % Offset from mathrel alignment pt for mathbins

183 \newmuskip\eqdelimoffset \eqdelimoffset=2mu % Additional offset for break inside delims

184 \newdimen\eqindentstep \eqindentstep=8pt % Indent used when LHS wd is n/a or too large

185 \newtoks\eqstyle % Customization hook

186 \newcount\eqbreakdepth \eqbreakdepth=2 % Allow breaks within delimiters to this depth

187 \newcount \eqinterlinepenalty \eqinterlinepenalty=10000 % No page breaks between equation lines

188 \newcount \intereqpenalty \intereqpenalty=1000 % Pagebreak penalty between equations [BRM: Was \@M]

189 \newlength \intereqskip \intereqskip=3pt plus2pt % Additional vert space between equations

190 \newcount\prerelpenalty \prerelpenalty=-\@M % Linebreak penalty before mathrel symbols

191 \newcount\prebinoppenalty \prebinoppenalty=888 % Linebreak penalty before mathbins

When breaking equations we never right-justify, so a stretch component of the
muskip is never helpful and sometimes it is definitely undesirable. Note that thick/
medmuskips frozen inside a fraction or radical may turn out noticeably larger than
neighboring unfrozen ones. Nonetheless I think this way is the best compromise
short of a new TEX that can make those built-up objects shrink horizontally in
proportion; the alternative is to pretty much eliminate the shrink possibility com-
pletely in displays.

192 \newmuskip \Dmedmuskip \Dmedmuskip=4mu minus 3mu % medmuskip in displays

193 \newmuskip \Dthickmuskip \Dthickmuskip=5mu minus 2mu % thickmuskip in displays

And now some internal variables. 1997/10/22: some of these are dead branches
that need to be pruned.

MH: Started cleaning up a bit. No more funny loops.
194 \def\eq@number{} % Internal variable

195 \newlength\eqleftskip \eqleftskip=\@centering % Space on the left [NOT USED?]

196 \newlength\eqrightskip \eqrightskip=\@centering % Space on the right [NOT USED?]

197 \newlength\eq@vspan \eq@vspan=\z@skip % Glue used to vcenter the eq number

198 \newmuskip\eq@binoffset \eq@binoffset=\eqbinoffset % Roughly, \eqbinoffset + \eqdelimoffset

199 \newsavebox\EQ@box % Storage for equation body

200 \newsavebox\EQ@copy % For eq body sans vadjust/insert/mark material

201 \newsavebox\EQ@numbox % For equation number

202 \newdimen\eq@wdNum % width of number + separation [NEW]

203 \newsavebox\GRP@numbox % For group number [NEW]

204 \newdimen\grp@wdNum % width of number + separation [NEW]

24

205 %%B\EQ@vimbox % Vadjust, insert, or mark material

206 %%B\EQ@vimcopy % Spare copy of same

207 %%B\eq@impinging % Temporary box for measuring number placement

208 \newcount \eq@lines % Internal counter, actual number of lines

209 \newcount \eq@curline % Loop counter

210 \newcount \eq@badness % Used in testing for overfull lines

211 \newcount \EQ@vims % For bookkeeping

212 \def\@eq@numbertrue{\let\eq@hasNumber\@True}%

213 \def\@eq@numberfalse{\let\eq@hasNumber\@False}%

214 \let\eq@hasNumber\@False

Here for the dimens, it would be advisable to do some more careful management
to conserve dimen registers. First of all, most of the dimen registers are needed
in the measuring phase, which is a tightly contained step that happens after the
contents of the equation have been typeset into a box and before any external
functions have a chance to regain control—e.g.,, the output routine. Therefore it
is possible to make use of the the dimen registers 0–9, reserved by convention for
scratch use, without fear of conflict with other macros. But I don’t want to use
them directly with the available names:

\dimen@ \dimen@i \dimen@ii \dimen3 \dimen4 ... \dimen9

. It would be much more useful to have names for these registers indicative of way
they are used.

Another source whence dimen registers could be borrowed is the amsmath
package, which allocates six registers for equation-measuring purposes. We can
reuse them under different names since the amsmath functions and our functions
will never be used simultaneously.

\eqnshift@ \alignsep@ \tagshift@ \tagwidth@ \totwidth@ \lineht@

215 \newdimen\eq@dp % Depth of last line

216 \newdimen\eq@wdL % Width of the left-hand-side

217 \newdimen\eq@wdT % Total width for framing

218 \newdimen\eq@wdMin % Width of narrowest line in equation

219 \newdimen\grp@wdL % Max width of LHS’s in a group

220 \newdimen\grp@wdR % Max RHS of all equations in a group

221 \newdimen\grp@wdT

222 \newdimen\eq@wdRmax

223 \newdimen\eq@firstht % Height of first line

BRM: measure the condition too.
224 \newdimen\eq@wdCond

225 \newdimen\eq@indentstep % Indent amount when LHS is not present

226 \newdimen\eq@linewidth % Width actually used for display

227 \newdimen\grp@linewidth % Max eq@linewidth over a group

Maybe \eq@hshift could share the same register as \mathindent [mjd,1997/10/22].
228 \newdimen\eq@hshift

229 \let\eq@isIntertext\@False

25

Init \eq@indentstep to a nonzero value so that we can detect and refrain from
clobbering a user setting of zero. And \eq@sidespace to \maxdimen because that
is the right init before computing a min.

230 \eq@indentstep=\maxdimen

231 \newdimen\eq@given@sidespace

\eq@overrun MH: Appears to be unused.
Not a dimen register; don’t need to advance it.

232 \def\eq@overrun{0pt}

To initialize \eqnumside and \eqindent properly, we may need to grub around
a bit in \@filelist. However, if the amsmath package was used, we can use
its option data. More trouble: if a documentclass sends an option of leqno to
amsmath by default, and it gets overridden by the user with a reqno documentclass
option, then amsmath believes itself to have received both options.

233 \@ifpackagewith{amsmath}{leqno}{%

234 \@ifpackagewith{amsmath}{reqno}{}{\def\eqnumside{L}}%

235 }{%

If the amsmath package was not used, the next method for testing the leqno option
is to see if leqno.clo is present in \@filelist.

236 \def\@tempa#1,leqno.clo,#2#3\@nil{%

237 \ifx @#2\relax\else \def\eqnumside{L}\fi

238 }%

239 \@xp\@tempa\@filelist,leqno.clo,@\@nil

Even that test may fail in the case of amsart if it does not load amsmath. Then we
have to look whether \iftagsleft@ is defined, and if so whether it is true. This
is tricky if you want to be careful about conditional nesting and don’t want to put
anything in the hash table unnecessarily.

240 \if L\eqnumside

241 \else

242 \@ifundefined{iftagsleft@}{}{%

243 \edef\eqnumside{%

244 \if TT\csname fi\endcsname\csname iftagsleft@\endcsname

245 L\else R\fi

246 }%

247 }

248 \fi

249 }

A similar sequence of tests handles the ‘fleqn or not fleqn’ question for the article
and amsart documentclasses.

250 \@ifpackagewith{amsmath}{fleqn}{%

251 \def\eqindent{I}%

252 }{%

253 \def\@tempa#1,fleqn.clo,#2#3\@nil{%

254 \ifx @#2\relax\else \def\eqindent{I}\fi

255 }%

26

256 \@xp\@tempa\@filelist,fleqn.clo,@\@nil

257 \if I\eqindent

258 \else

259 \@ifundefined{if@fleqn}{}{%

260 \edef\eqindent{%

261 \if TT\csname fi\endcsname\csname if@fleqn\endcsname

262 I\else C\fi

263 }%

264 }%

265 \fi

266 }

BRM: This conditional implies we must use ALL indented or ALL centered?
267 %\if I\eqindent

268 \@ifundefined{mathindent}{%

269 \newdimen\mathindent

270 }{%

271 \@ifundefined{@mathmargin}{}{%

272 \mathindent\@mathmargin

273 }%

274 }

275 %\fi

23 Measuring equation components

Measure the left-hand side of an equation. This function is called by mathrel
symbols. For the first mathrel we want to discourage a line break more than for
following mathrels; so \mark@lhs gobbles the following \rel@break and substi-
tutes a higher penalty.

Maybe the LHS should be kept in a separate box.

\EQ@hasLHS Boolean: does this equation have a “left-hand side”?
276 \let\EQ@hasLHS=\@False

\EQ@QED If nonempty: the qed material that should be incorporated into this equation after
the final punctuation.

277 \let\EQ@QED=\@empty

\mark@lhs

278 \def\mark@lhs#1{%

279 \ifnum\lr@level<\@ne

280 \let\mark@lhs\relax

281 \global\let\EQ@hasLHS=\@True

282 \global\let\EQ@prebin@space\EQ@prebin@space@a

283 \mark@lhs@a

But the penalty for the first mathrel should still be lower than a binoppenalty. If
not, when the LHS contains a binop, the split will occur inside the LHS rather than

27

at the mathrel. On the other hand if we end up with a multline sort of equation
layout where the RHS is very short, the break before the relation symbol should
be made less desirable than the breakpoints inside the LHS. Since a lower penalty
takes precedence over a higher one, we start by putting in the highest relpenalty;
during subsequent measuring if we find that that RHS is not excessively short
then we put in an extra “normal” relpenalty when rejoining the LHS and RHS.

284 \penalty9999 % instead of normal \rel@break

285 % else no penalty = forbid break

286 \fi

287 }

\mark@lhs@a Temporarily add an extra thickmuskip to the LHS; it will be removed later. This is
necessary to compensate for the disappearance of the thickmuskip glue preceding
a mathrel if a line break is taken at that point. Otherwise we would have to make
our definition of mathrel symbols more complicated, like the one for mathbins.
The penalty of 2 put in with vadjust is a flag for \eq@repack to suggest that the
box containing this line should be measured to find the value of \eq@wdL. The
second vadjust ensures that the normal prerelpenalty and thickmuskip will not
get lost at the line break during this preliminary pass.

BRM: I originally thought the \mskip\thickmuskip was messing up summa-
tion limits in LHS. But I may have fixed that problem by fixing other things. . .

288 \def\mark@lhs@a{%

289 \mskip\thickmuskip \@@vadjust{\penalty\tw@}\penalty-\@Mi\@@vadjust{}%

290 }

\hiderel If you want the LHS to extend past the first mathrel symbol to a following one,
mark the first one with \hiderel:

a \hiderel{=} b = c...

.

I’m not sure now why I didn’t use \begingroup \endgroup here

mjd,1999/01/21

.

291 \newcommand\hiderel[1]{\mathrel{\advance\lr@level\@ne#1}}

\m@@Bin

\m@@Rel

\bin@break

\rel@break

\bin@mark

\rel@mark

\d@@Bin

\d@@Rel

cf. flexisym handling of mathbins and mathrels. These are alternate definitions of
\m@Bin and \m@Rel, activated by \display@setup.

292 \let\m@@Bin\m@Bin

293 \let\m@@Rel\m@Rel

294 \let\EQ@prebin@space\relax

295 \def\EQ@prebin@space@a{\mskip-\eq@binoffset \keep@glue \mskip\eq@binoffset}

296 \def\bin@break{\ifnum\lastpenalty=\z@\penalty\prebinoppenalty\fi

297 \EQ@prebin@space}

298 \def\rel@break{%

299 \ifnum\abs@num\lastpenalty <\abs@num\prerelpenalty

28

300 \penalty\prerelpenalty

301 \fi

302 }

303 \def\d@@Bin{\bin@break \m@@Bin}

304 \def\d@@Rel{\mark@lhs \rel@break \m@@Rel}

The difficulty of dealing properly with the subscripts and superscripts sometimes
appended to mathbins and mathrels is one of the reasons that we do not attempt
to handle the mathrels as a separate ‘column’ a la eqnarray.

\m@@symRel

\d@@symRel

\m@@symBin

\d@@symBin

\m@@symDel

\d@@symDel

\m@@symDeR

\d@@symDeR

\m@@symDeB

\d@@symDeB

\m@@symDeA

\d@@symDeA

More of the same.
305 \let\m@@symRel\@symRel \def\d@@symRel{\mark@lhs \rel@break \m@@symRel}

306 \let\m@@symBin\@symBin \def\d@@symBin{\bin@break \m@@symBin}

307 \let\m@@symDel\@symDel

308 \let\m@@symDeR\@symDeR

309 \let\m@@symDeB\@symDeB

310 \let\m@@symDeA\@symDeA

\display@setup

\everydisplay

Setup. Note that LATEX reserves the primitive \everydisplay under the name
\frozen@everydisplay. BRM: Disable this! It also affects non-breqn math!!!!

311 %\global\everydisplay\expandafter{\the\everydisplay \display@setup}

Change some math symbol function calls.
312 \def\display@setup{%

313 \medmuskip\Dmedmuskip \thickmuskip\Dthickmuskip

314 \let\m@Bin\d@@Bin \let\m@Rel\d@@Rel

315 \let\@symRel\d@@symRel \let\@symBin\d@@symBin

316 \let\m@DeL\d@@DeL \let\m@DeR\d@@DeR \let\m@DeB\d@@DeB

317 \let\m@DeA\d@@DeA

318 \let\@symDeL\d@@symDeL \let\@symDeR\d@@symDeR

319 \let\@symDeB\d@@symDeB \let\@symDeA\d@@symDeA

320 \let\left\eq@left \let\right\eq@right \global\lr@level\z@

321 \global\eq@wdCond\z@ %BRM: new

If we have an embedded array environment (for example), we don’t want to have
each math cell within the array resetting \lr@level globally to 0—not good! And
in general I think it is safe to say that whenever we have a subordinate level of
boxing we want to revert to a normal math setup.

322 \everyhbox{\everyhbox\@emptytoks

323 \let\display@setup\relax \textmath@setup \let\textmath@setup\relax

324 }%

325 \everyvbox{\everyvbox\@emptytoks

326 \let\display@setup\relax \textmath@setup \let\textmath@setup\relax

327 }%

328 }

The \textmath@setup function is needed for embedded inline math inside text
inside a display.

BRM: DS Experiment: Variant of \display@setup for use within dseries en-
vironmnents

29

329 \def\dseries@display@setup{%

330 \medmuskip\Dmedmuskip \thickmuskip\Dthickmuskip

331 \let\m@Bin\d@@Bin

332 %\let\m@Rel\d@@Rel

333 % \let\@symRel\d@@symRel

334 \let\@symBin\d@@symBin

335 \let\m@DeL\d@@DeL \let\m@DeR\d@@DeR \let\m@DeB\d@@DeB

336 \let\m@DeA\d@@DeA

337 \let\@symDeL\d@@symDeL \let\@symDeR\d@@symDeR

338 \let\@symDeB\d@@symDeB \let\@symDeA\d@@symDeA

339 \let\left\eq@left \let\right\eq@right \global\lr@level\z@

340 \everyhbox{\everyhbox\@emptytoks

341 \let\display@setup\relax \textmath@setup \let\textmath@setup\relax

342 }%

343 \everyvbox{\everyvbox\@emptytoks

344 \let\display@setup\relax \textmath@setup \let\textmath@setup\relax

345 }%

346 \displaystyle

347 }

348 \def\textmath@setup{%

349 \let\m@Bin\m@@Bin \let\m@Rel\m@@Rel

350 \let\@symRel\m@@symRel \let\@symBin\m@@symBin

351 \let\m@DeL\m@@DeL \let\m@DeR\m@@DeR \let\m@DeB\m@@DeB

352 \let\m@DeA\m@@DeA

353 \let\@symDeL\m@@symDeL \let\@symDeR\m@@symDeR

354 \let\@symDeB\m@@symDeB \let\@symDeA\m@@symDeA

355 \let\left\@@left \let\right\@@right

356 }

\if@display

\everydisplay

The test \ifinner is unreliable for distinguishing whether we are in a displayed
formula or an inline formula: any display more complex than a simple one-line
equation typically involves the use of $ \displaystyle . . . $ instead of $$. . . $$.
So we provide a more reliable test. But it might have been provided already by
the amsmath package.

357 \@ifundefined{@displaytrue}{%

358 \@xp\newif\csname if@display\endcsname

359 \everydisplay\@xp{\the\everydisplay \@displaytrue}%

360 }{}

Is there any reason to maintain separate \everydisplay and
\eqstyle?

24 The dmath and dmath* environments

Options for the dmath and dmath* environments.

\begin{dmath}[label={eq:xyz}]
\begin{dmath}[labelprefix={eq:},label={xyz}]

30

WSPR: added the option for a label prefix, designed to be used in the preamble
like so:

\setkeys{breqn}{labelprefix={eq:}}

361 \define@key{breqn}{label}{%

362 \edef\next@label{\noexpand\label{\next@label@pre#1}}%

363 \let\next@label@pre\@empty}

364 \define@key{breqn}{labelprefix}{\def\next@label@pre{#1}}

365 \global\let\next@label\@empty

366 \global\let\next@label@pre\@empty

Allow a variant number.

\begin{dmath}[number={\nref{foo}\textprime}]

367 \define@key{breqn}{number}{\def\eq@number{#1}%

368 \let\@currentlabel\eq@number

369 }

\begin{dmath}[shiftnumber]
\begin{dmath}[holdnumber]

Holding or shifting the number.
370 \define@key{breqn}{shiftnumber}{\let\eq@shiftnumber\@True}

371 \define@key{breqn}{holdnumber}{\let\eq@holdnumber\@True}

\begin{dmath}[density={.5}]

372 \define@key{breqn}{density}{\def\eq@density@factor{#1}}

\begin{dmath}[indentstep={1em}]

To change the amount of indent for post-initial lines. Note: for lines that be-
gin with a mathbin symbol there is a fixed amount of indent already built in
(\eqbinoffset) and it cannot be reduced through this option. The indentstep
amount is the indent used for lines that begin with a mathrel symbol.

373 \define@key{breqn}{indentstep}{\eqindentstep#1\relax}

\begin{dmath}[compact]
\begin{dmath}[compact=-2000]

To make mathrels stay inline to the extent possible, use the compact option. Can
give a numeric value in the range −10000 . . . 10000 to adjust the behavior. −10000:
always break at a rel symbol; 10000: never break at a rel symbol.

374 \define@key{breqn}{compact}[-99]{\prerelpenalty=#1\relax}

\begin{dmath}[layout={S}]%

31

Specify a particular layout. We take care to ensure that \eq@layout ends up
containing one and only one letter.

375 \define@key{breqn}{layout}[?]{%

376 \edef\eq@layout{\@car#1?\@nil}%

377 }

\begin{dmath}[spread={1pt}]

To change the interline spacing in a particular equation.
378 \define@key{breqn}{spread}{%

379 \addtolength\eqlinespacing{#1}%

380 \addtolength\eqlineskip{#1}%

381 \eqlineskiplimit\eqlineskip

382 }

To change the amount of space on the side for “multline” layout.
383 \define@key{breqn}{sidespace}{%

384 \setlength\eq@given@sidespace{#1}%

385 }

\begin{dmath}[style={\small}]

The style option is mainly intended for changing the type size of an equation
but as a matter of fact you could put arbitrary LATEX code here—thus the option
name is ‘style’ rather than just ‘typesize’. In order for this option to work when
setting options globally, we need to put the code in \eqstyle rather than execute
it directly.

386 \define@key{breqn}{style}{\eqstyle\@xp{\the\eqstyle #1}}

\begin{dmath}[shortskiplimit={1em}]

If the line immediately preceeding a display has length l, the first line of the
display is indented i, and a shortskip limit s is set, then the spacing above the
display is equal to \abovedisplayshortskip if l+ s < i and \abovedisplayskip
otherwise. The default shortskip limit is 2 em which is what TEX hardcodes but
this parameter overrides that.

387 \define@key{breqn}{shortskiplimit}{\def\eq@shortskiplimit{#1}}

388 \def\eq@shortskiplimit{2em}

\begin{dmath}[frame]

The frame option merely puts a framebox around the body of the equation. To
change the thickness of the frame, give the thickness as the argument of the option.
For greater control, you can change the appearance of the frame by redefining
\eqframe. It must be a command taking two arguments, the width and height of
the equation body. The top left corner of the box produced by \eqframe will be
pinned to the top-left corner of the equation body.

389 \define@key{breqn}{frame}[\fboxrule]{\def\eq@frame{T}%

390 \dim@a#1\relax\edef\eq@framewd{\the\dim@a}%

32

Until such time as we provide a frame implementation that allows the frame to
stretch and shrink, we’d better remove any stretch/shrink from the interline glue
in this case.

391 \freeze@glue\eqlinespacing \freeze@glue\eqlineskip

392 }

393 \define@key{breqn}{fullframe}[]{\def\eq@frame{U}%

394 \freeze@glue\eqlinespacing \freeze@glue\eqlineskip

395 }

396 \def\eq@frame{F} % no frame

397 \def\eq@framewd{\fboxrule}

Wishful thinking?

\begin{dmath}[frame={width={2pt},color={blue},sep={2pt}}]

To change the space between the frame and the equation there is a framesep
option.

398 \define@key{breqn}{framesep}[\fboxsep]{%

399 \if\eq@frame F\def\eq@frame{T}\fi

400 \dim@a#1\relax \edef\eq@framesep{\the\dim@a}%

401 \freeze@glue\eqlinespacing \freeze@glue\eqlineskip

402 }

403 \def\eq@framesep{\fboxsep}

\begin{dmath}[background={red}]

Foreground and background colors for the equation. By default the background
area that is colored is the size of the equation, plus fboxsep. If you need anything
fancier for the background, you’d better do it by defining \eqframe in terms of
\colorbox or \fcolorbox.

404 \define@key{breqn}{background}{\def\eq@background{#1}%

405 \freeze@glue\eqlinespacing \freeze@glue\eqlineskip

406 }

407 % \end{macrocode}

408 % \begin{literalcode}

409 % \begin{dmath}[color={purple}]

410 % \end{literalcode}

411 % \begin{macrocode}

412 \define@key{breqn}{color}{\def\eq@foreground{#1}}

\begin{dmath}[center]
\begin{dmath}[nocenter]

The center option means add leftskip stretch to make the individual lines be
centered; this is the default for dseries.

413 \define@key{breqn}{center}[]{\let\eq@centerlines\@True}

414 \define@key{breqn}{nocenter}[]{\let\eq@centerlines\@False}

415 \let\eq@centerlines\@False

\begin{dgroup}[noalign]

33

Equation groups normally have alignment of the primary relation symbols across
the whole group. The noalign option switches that behavior.

416 \define@key{breqn}{noalign}[]{\let\grp@aligned\@False}

417 \let\grp@aligned\@True % default

\begin{dgroup}[breakdepth={2}]

Break depth of 2 means that breaks are allowed at mathbin symbols inside two
pairs of delimiters, but not three.

418 \define@key{breqn}{breakdepth}{\eqbreakdepth#1\relax}

\begin{darray}[cols={lcrlcr}]

The cols option only makes sense for the darray environment but we liberally
allow all the options to be used with all the environments and just ignore any
unsensible ones that happen to come along.

419 \define@key{breqn}{cols}{\global\let\@preamble\@empty

420 \darray@mkpream#1\@percentchar

421 }

FORMAT STATUS

\def\eq@frame{T}%
CLM works tolerably
\def\eqindent{C}\def\eqnumside{L}\def\eqnumplace{M}
CLT works tolerably
\def\eqindent{C}\def\eqnumside{L}\def\eqnumplace{T}
ILM
\def\eqindent{I}\def\eqnumside{L}\def\eqnumplace{M}\mathindent40\p@
ILT
\def\eqindent{I}\def\eqnumside{L}\def\eqnumplace{T}\mathindent40\p@
Indended w/left number

work ok if mathindent is larger than number width,
but then equations must fit into smaller space.
Is shiftnumber allowed to put eqn at left, instead of indent?

CRM
\def\eqindent{C}\def\eqnumside{R}\def\eqnumplace{M}
CRB
\def\eqindent{C}\def\eqnumside{R}\def\eqnumplace{B}
IRM
\def\eqindent{I}\def\eqnumside{R}\def\eqnumplace{M}\mathindent10\p@
IRB
\def\eqindent{I}\def\eqnumside{R}\def\eqnumplace{B}\mathindent10\p@

The main environments.
BRM: The following incorporates several changes: 1) modifications supplied

by MJD to fix the eaten \paragraph problem. 2) Added \display@setup here,
rather than globally.

34

\dmath

\enddmath

For the dmath environment we don’t want the standard optional arg processing
because of the way it skips over whitespace, including newline, while looking for
the [char; which is not good for math material. So we call \@optarg instead.

422 \newenvironment{dmath}{%

423 \let\eq@hasNumber\@True \@optarg\@dmath{}}{}

424 \def\@dmath[#1]{%

425 〈trace〉 \breqn@debugmsg{=== DMATH ==}%

426 \everydisplay\expandafter{\the\everydisplay \display@setup}%

427 \if@noskipsec \leavevmode \fi

428 \if@inlabel \leavevmode \global\@inlabelfalse \fi

429 \if\eq@group\else\eq@prelim\fi

430 \setkeys{breqn}{#1}%

431 \the\eqstyle

The equation number might have been overridden in #1.
432 \eq@setnumber

Start up the displayed equation by reading the contents into a box register. Enclose
this phase in an extra group so that modified \hsize and other params will be
auto-restored afterwards.

433 \begingroup

434 \eq@setup@a

435 \eq@startup

436 }

Before it finishes off the box holding the equation body, \enddmath needs to look
ahead for punctuation (and \qed?).

437 \def\enddmath#1{\check@punct@or@qed}

438 \def\end@dmath{%

439 \gdef\EQ@setwdL{}% Occasionally undefined ???

440 \eq@capture

441 \endgroup

442 \EQ@setwdL

Measure (a copy of) the equation body to find the minimum width required to get
acceptable line breaks, how many lines will be required at that width, and whether
the equation number needs to be shifted to avoid overlapping. This information
will then be used by \eq@finish to do the typesetting of the real equation body.

443 \eq@measure

Piece together the equation from its constituents, recognizing current constraints.
If we are in an equation group, this might just save the material on a stack for
later processing.

444 \if\eq@group \grp@push \else \eq@finish\fi

445 }

\dmath*

\enddmath*

Ah yes, now the lovely dmath* environment.
446 \newenvironment{dmath*}{%

447 \let\eq@hasNumber\@False \@optarg\@dmath{}%

448 }{}

35

449 \@namedef{end@dmath*}{\end@dmath}

450 \@namedef{enddmath*}#1{\check@punct@or@qed}

\eq@prelim If \everypar has a non-null value, it’s probably some code from \@afterheading
that sets \clubpenalty and/or removes the parindent box. Both of those actions
are irrelevant and interfering for our purposes and need to be deflected for the
time being. If an equation appears at the very beginning of a list item (possibly
from a trivlist such as proof), we need to trigger the item label.

451 \def\eq@prelim{%

452 \if@inlabel \indent \par \fi

453 \if@nobreak \global\@nobreakfalse \predisplaypenalty\@M \fi

454 \everypar\@emptytoks

If for some reason dmath is called between paragraphs, \noindent is better than
\leavevmode, which would produce an indent box and an empty line to hold it. If
we are in a list environment, \par is defined as {\@@par} to preserve \parshape.

455 \noindent

456 \eq@nulldisplay

457 \par %% \eq@saveparinfo %% needs work

458 \let\intertext\breqn@intertext

459 }

\breqn@parshape@warning Warning message extracted to a separate function to streamline the calling func-
tion.

460 \def\breqn@parshape@warning{%

461 \PackageWarning{breqn}{%

462 Complex paragraph shape cannot be followed by this equation}%

463 }

\eq@prevshape Storage; see \eq@saveparinfo.
464 \let\eq@prevshape\@empty

\eq@saveparinfo Save the number of lines and parshape info for the text preceding the equation.
465 \def\eq@saveparinfo{%

466 \count@\prevgraf \advance\count@-\thr@@ % for the null display

467 \edef\eq@prevshape{\prevgraf\the\count@\space}%

468 \ifcase\parshape

469 % case 0: no action required

470 \or \edef\eq@prevshape{\eq@prevshape

471 \parshape\@ne\displayindent\displaywidth\relax

472 }%

Maybe best to set \eq@prevshape the same in the else case also. Better than
nothing.

473 \else

474 \breqn@parshape@warning

475 \fi

476 }

36

\eq@setnumber If the current equation number is not explicitly given, then use an auto-generated
number, unless the no-number switch has been thrown (dmath*). \theequation
is the number form to be used for all equations, \eq@number is the actual value
for the current equation (might be an exception to the usual sequence).

477 \def\eq@setnumber{%

478 \eq@wdNum\z@

479 \if\eq@hasNumber

480 \ifx\eq@number\@empty

481 \stepcounter{equation}\let\eq@number\theequation

482 \fi

483 % \fi

This sets up numbox, etc, even if unnumbered?????
484 \ifx\eq@number\@empty

485 \else

Put the number in a box so we can use its measurements in our number-
placement calculations. The extra braces around \eqnumform make it possible
for \eqnumfont to have either an \itshape (recommended) or a \textit value.

486 〈trace〉 \breqn@debugmsg{Number \eq@number}%

487 \set@label{equation}\eq@number

488 \global\sbox\EQ@numbox{%

489 \next@label \global\let\next@label\@empty

490 \eqnumcolor\eqnumsize\eqnumfont{\eqnumform{\eq@number}}%

491 }%

492 \global\eq@wdNum\wd\EQ@numbox\global\advance\eq@wdNum\eqnumsep

493 % \let\eq@hasNumber\@True % locally true

494 \fi

495 \fi

496 }

\eq@finish The information available at this point from preliminary measuring includes the
number of lines required, the width of the equation number, the total height of
the equation body, and (most important) the parshape spec that was used in
determining height and number of lines.

Invoke the equation formatter for the requested centering/indentation having
worked out the best parshape. BRM: This portion is extensively refactored to get
common operations together (so corrections get consistently applied).

MH: I’ve destroyed Bruce’s nice refactoring a bit to get the abovedisplayskips
correct for both groups of equations and single dmath environments. I will have
to redo that later.

497 \newcount\eq@final@linecount

498 \let\eq@GRP@first@dmath\@True

499 \def\eq@finish{%

500 \begingroup

501 〈trace〉 \breqn@debugmsg{Formatting equation}%

502 〈trace〉 \debug@showmeasurements

503 \if F\eq@frame\else

504 \freeze@glue\eqlinespacing \freeze@glue\eqlineskip

37

505 \fi

506 % \eq@topspace{\vskip\parskip}% Set top spacing

507 \csname eq@\eqindent @setsides\endcsname % Compute \leftskip,\rightskip

508 \adjust@parshape\eq@parshape% Final adjustment of parshape for left|right skips

If we are in an a group of equations we don’t want to calculate the top space for
the first one as that will be delayed until later when the space for the group is
calculated. However, we do need to store the leftskip used here as that will be
used later on for calculating the top space.

509 \if\eq@group

510 \if\eq@GRP@first@dmath

511 \global\let\eq@GRP@first@dmath\@False

512 \xdef\dmath@first@leftskip{\leftskip=\the\leftskip\relax}%

513 〈trace〉 \breqn@debugmsg{Stored\space\dmath@first@leftskip}

514 \else

515 \eq@topspace{\vskip\parskip}% Set top spacing

516 \fi

517 \else

518 \eq@topspace{\vskip\parskip}% Set top spacing

519 \fi

520 〈trace〉 \debug@showformat

We now know the final line count of the display. If it is a single-line display, we
want to know as that greatly simplifies the equation tag placement (until such a
time where this algorithm has been straightened out).

521 \afterassignment\remove@to@nnil

522 \eq@final@linecount=\expandafter\@gobble\eq@parshape\@nnil

Now, invoke the appropriate typesetter according to number placement
523 \if\eq@hasNumber

524 \if\eq@shiftnumber

525 \csname eq@typeset@\eqnumside Shifted\endcsname

526 \else

If there is only one line and the tag doesn’t have to be shifted, we call a special
procedure to put the tag correctly.

527 \ifnum\eq@final@linecount=\@ne

528 \csname eq@typeset@\eqnumside @single\endcsname

529 \else

530 \csname eq@typeset@\eqnumside\eqnumplace\endcsname

531 \fi

532 \fi

533 \else

534 \eq@typeset@Unnumbered

535 \fi

536 \endgroup

537 \eq@botspace

538 }

These are temporary until the tag position algorithm gets rewritten. At least
the tag is positioned correctly for single-line displays. The horizontal frame posi-

38

tion is not correct but the problem lies elsewhere.
539 \def\eq@typeset@L@single{%

540 \nobreak

541 \eq@params\eq@parshape

542 \nointerlineskip\noindent

543 \add@grp@label

544 \rlap{\kern-\leftskip\box\EQ@numbox}%

545 \if F\eq@frame

546 \else

547 \rlap{\raise\eq@firstht\hbox to\z@{\eq@addframe\hss}}%

548 \fi

549 \eq@dump@box\unhbox\EQ@box \@@par

550 }

551 \def\eq@typeset@R@single{%

552 \nobreak

553 \eq@params\eq@parshape

554 \nointerlineskip\noindent

555 \add@grp@label

556 \if F\eq@frame

557 \else

558 \rlap{\raise\eq@firstht\hbox to\z@{\eq@addframe\hss}}%

559 \fi

560 \rlap{\kern-\leftskip\kern\linewidth\kern-\wd\EQ@numbox\copy\EQ@numbox}%

561 \eq@dump@box\unhbox\EQ@box

562 \@@par

563 }

25 Special processing for end-of-equation

At the end of a displayed equation environment we need to peek ahead for two
things: following punction such as period or command that should be pulled in
for inclusion at the end of the equation; and possibly also an \end{proof} with
an implied “qed” symbol that is traditionally included at the end of the display
rather than typeset on a separate line. We could require that the users type
\qed explicitly at the end of the display when they want to have the display take
notice of it. But the reason for doing that would only be to save work for the
programmer; the most natural document markup would allow an inline equation
and a displayed equation at the end of a proof to differ only in the environment
name:

... \begin{math} ... \end{math}.
\end{proof}

versus

...
\begin{dmath}
...
\end{dmath}.

39

\end{proof}

. The technical difficulties involved in supporting this markup within LATEX 2e
are, admittedly, nontrivial. Nonetheless, let’s see how far we can go.

The variations that we will support are only the most straightforward ones:

\end{dmath}.
\end{proof}

or

\end{dmath}.
Perhaps a comment
\end{proof}

. If there is anything more complicated than a space after the period we will not
attempt to scan any further for a possible \end{proof}. This includes material
such as:

\begin{figure}...\end{figure}%
\footnote{...}
\renewcommand{\foo}{...}
\par

or even a blank line—because in LATEX a blank line is equivalent to \par and the
meaning of \par is “end-paragraph”; in my opinion if explicit end-of-paragraph
markup is given before the end of an element, it has to be respected, and the
preceding paragraph has to be fully finished off before proceeding further, even
inside an element like “proof” whose end-element formatting requires integration
with the end of the paragraph text. And TEX nically speaking, a \par token that
comes from a blank line and one that comes from the sequence of characters \
p a r are equally explicit. I hope to add support for \footnote in the future,
as it seems to be a legitimate markup possibility in that context from a purely
logical point of view, but there are additional technical complications if one wants
to handle it in full generality

mjd,1999/02/08

.

\peek@branch This is a generalized “look at next token and choose some action based on it”
function.

564 \def\peek@branch#1#2{%

565 \let\peek@b#1\let\peek@space#2\futurelet\@let@token\peek@a

566 }

567 \def\peek@skipping@spaces#1{\peek@branch#1\peek@skip@space}

568 \def\peek@a{%

569 \ifx\@let@token\@sptoken \expandafter\peek@space

570 \else \expandafter\peek@b\fi

571 }

572 \lowercase{\def\peek@skip@space} {\futurelet\@let@token\peek@a}%

40

\check@punct For this one we need to recognize and grab for inclusion any of the following to-
kens: ,;.!?, both catcode 12 (standard LATEX value) and catcode 13 (as might
hold when the Babel package is being used). We do not support a space pre-
ceding the punctuation since that would be considered simply invalid markup if
a display-math environment were demoted to in-line math; and we want to keep
their markup as parallel as possible. If punctuation does not follow, then the
\check@qed branch is not applicable.

573 \def\check@punct{\futurelet\@let@token\check@punct@a}

574 \def\check@punct@a{%

575 \edef\@tempa{%

576 \ifx\@let@token\@sptoken\@nx\finish@end

577 \else\ifx\@let@token ,\@nx\check@qed

578 \else\ifx\@let@token .\@nx\check@qed

579 \else\check@punct@b % check the less common possibilities

580 \fi\fi\fi

581 }%

582 \@tempa

583 }

584 \begingroup

585 \toks@a{%

586 \ifx\@let@token ;\@nx\check@qed

587 \else\ifx\@let@token ?\@nx\check@qed

588 \else\ifx\@let@token !\@nx\check@qed

589 }

590 \toks@c{\fi\fi\fi}% matching with \toks@a

591 \catcode‘\.=\active \catcode‘\,=\active \catcode‘\;=\active

592 \catcode‘\?=\active \catcode‘\!=\active

593 \toks@b{%

594 \else\ifx\@let@token ,\@nx\check@qed

595 \else\ifx\@let@token .\@nx\check@qed

596 \else\ifx\@let@token ;\@nx\check@qed

597 \else\ifx\@let@token ?\@nx\check@qed

598 \else\ifx\@let@token !\@nx\check@qed

599 \else\@nx\finish@end

600 \fi\fi\fi\fi\fi

601 }

602 \xdef\check@punct@b{%

603 \the\toks@a\the\toks@b\the\toks@c

604 }

605 \endgroup

606 \let\found@punct\@empty

607 \def\check@qed#1{%

608 \gdef\found@punct{#1}%

609 \peek@skipping@spaces\check@qed@a

610 }

611 \def\check@qed@a{%

612 \ifx\end\@let@token \@xp\check@qed@b

613 \else \@xp\finish@end

614 \fi

41

615 }

For each environment ENV that takes an implied qed at the end, the control
sequence ENVqed must be defined; and it must include suitable code to yield the
desired results in a displayed equation.

616 \def\check@qed@b#1#2{%

617 \@ifundefined{#2qed}{}{%

618 \toks@\@xp{\found@punct\csname#2qed\endcsname}%

619 \xdef\found@punct{\the\toks@}%

620 }%

621 \finish@end

622 \end{#2}%

623 }

\latex@end

\finish@end

The lookahead for punctuation following a display requires mucking about with
the normal operation of \end. Although this is not exactly something to be done
lightly, on the other hand this whole package is so over-the-top anyway, what’s a
little more going to hurt? And rationalizing this aspect of equation markup is a
worthy cause. Here is the usual definition of \end.

\def\end#1{
\csname end#1\endcsname \@checkend{#1}%
\expandafter\endgroup\if@endpe\@doendpe\fi
\if@ignore \global\@ignorefalse \ignorespaces \fi

}

We can improve the chances of this code surviving through future minor changes
in the fundamental definition of \end by taking a little care in saving the original
meaning.

624 \def\@tempa#1\endcsname#2\@nil{\def\latex@end##1{#2}}

625 \expandafter\@tempa\end{#1}\@nil

626 \def\end#1{\csname end#1\endcsname \latex@end{#1}}%

Why don’t we call \CheckCommand here? Because that doesn’t help end users
much; it works better to use it during package testing by the maintainer.

If a particular environment needs to call a different end action, the end com-
mand of the environment should be defined to gobble two args and then call a
function like \check@punct@or@qed.

627 \def\check@punct@or@qed#1{%

628 \xdef\found@punct{\@empty}% BRM: punctuation was being remembered past this eqn.

629 % WSPR: err, why isn’t that just \global\let\found@punct\@empty ?

630 \def\finish@end{\csname end@#1\endcsname\latex@end{#1}}%

631 \check@punct

632 }

\eqpunct User-settable function for handling the punctuation at the end of an equation.
You could, for example, define it to just discard the punctuation.

633 \newcommand\eqpunct[1]{\thinspace#1}

42

\set@label \set@label just sets \@currentlabel but it takes the counter as an argument,
in the hope that LATEX will some day provide an improved labeling system that
includes type info on the labels.

634 \providecommand\set@label[2]{\protected@edef\@currentlabel{#2}}

\eq@topspace

\eq@botspace

The action of \eq@topspace is complicated by the need to test whether the ‘short’
versions of the display skips should be used. This can be done only after the final
parshape and indent have been determined, so the calls of this function are buried
relatively deeply in the code by comparison to the calls of \eq@botspace. This
also allows us to optimize slightly by setting the above-skip with \parskip instead
of \vskip. #1 is either \noindent or \vskip\parskip.

BRM: Hmm; we need to do *@setspace BEFORE this for small skips to work!
635 \def\eq@topspace#1{%

636 \begingroup

637 \global\let\EQ@shortskips\@False

If we are in dgroup or dgroup* and not before the top one, we just insert
\intereqskip. Otherwise we must check for shortskip.

638 \if\@And{\eq@group}{\@Not\eq@GRP@first@dmath}%

639 〈trace〉\breqn@debugmsg{Between lines}%

640 \parskip\intereqskip \penalty\intereqpenalty

641 〈trace〉\breqn@debugmsg{parskip=\the\parskip}%
642 \else

643 \eq@check@shortskip

644 \if\EQ@shortskips

645 \parskip\abovedisplayshortskip

646 \aftergroup\belowdisplayskip\aftergroup\belowdisplayshortskip

BRM: Not exactly TEX’s approach, but seems right. . .
647 \ifdim\predisplaysize>\z@\nointerlineskip\fi

648 \else

649 \parskip\abovedisplayskip

650 \fi

651 \fi

652 \if F\eq@frame

653 \else

654 \addtolength\parskip{\eq@framesep+\eq@framewd}%

655 \fi

656 〈∗trace〉
657 \breqn@debugmsg{Topspace: \theb@@le\EQ@shortskips, \parskip=\the\parskip,

658 \predisplaysize=\the\predisplaysize}%

659 〈/trace〉
660 #1%

661 \endgroup

662 }

\eq@check@shortskip

663 \def\eq@check@shortskip {%

664 \global\let\EQ@shortskips\@False

665 \setlength\dim@a{\abovedisplayskip+\ht\EQ@numbox}%

43

Here we work around the hardwired standard TeX value and use the designer
parameter instead.

666 \ifdim\leftskip<\predisplaysize

667 \else

If the display was preceeded by a blank line, \predisplaysize is −\maxdimen
and so we should insert a fairly large skip to separate paragraphs, i.e., no short
skip. Perhaps this should be a third parameter \abovedisplayparskip.

668 \ifdim -\maxdimen=\predisplaysize

669 \else

670 \if R\eqnumside

671 \global\let\EQ@shortskips\@True

672 \else

673 \if\eq@shiftnumber

674 \else

675 \if T\eqnumplace

676 \ifdim\dim@a<\eq@firstht

677 \global\let\EQ@shortskips\@True

678 \fi

679 \else

680 \setlength\dim@b{\eq@vspan/2}%

681 \ifdim\dim@a<\dim@b

682 \global\let\EQ@shortskips\@True

683 \fi

684 \fi

685 \fi

686 \fi

687 \fi

688 \fi

689 }

At the end of an equation, need to put in a pagebreak penalty and some vertical
space. Also set some flags to remove parindent and extra word space if the current
paragraph text continues without an intervening \par.

690 \def\eq@botspace{%

691 \penalty\postdisplaypenalty

Earlier calculations will have set \belowdisplayskip locally to \belowdisplayshortskip
if applicable. So we can just use it here.

692 \if F\eq@frame

693 \else

694 \addtolength\belowdisplayskip{\eq@framesep+\eq@framewd}%

695 \fi

696 \vskip\belowdisplayskip

697 \@endpetrue % kill parindent if current paragraph continues

698 \global\@ignoretrue % ignore following spaces

699 \eq@resume@parshape

700 }

44

\eq@resume@parshape This should calculate the total height of the equation, including space above and
below, and set prevgraf to the number it would be if that height were taken up by
normally-spaced normal-height lines. We also need to restore parshape if it had a
non-null value before the equation. Not implemented yet.

701 \def\eq@resume@parshape{}

26 Preprocessing the equation body

\eq@startup Here is the function that initially collects the equation material in a box.

702 \def\eq@startup{%

703 \global\let\EQ@hasLHS\@False

704 \setbox\z@\vbox\bgroup

705 \noindent \@@math \displaystyle

706 \penalty-\@Mi

707 }

This setup defines the environment for the first typesetting pass, note the
\hsize value for example.

708 \def\eq@setup@a{%

709 \everymath\everydisplay

710 %\let\@newline\eq@newline % future possibility?

711 \let\\\eq@newline

712 \let\insert\eq@insert \let\mark\eq@mark \let\vadjust\eq@vadjust

713 \hsize\maxdimen \pretolerance\@M

Here it is better not to use \@flushglue (0pt plus1fil) for \rightskip, or else
a negative penalty (such as −99 for \prerelpenalty) will tempt TEX to use
more line breaks than necessary in the first typesetting pass. Ideal values for
\rightskip and \linepenalty are unclear to me, but they are rather sensitively
interdependent. Choice of 10000 pt for rightskip is derived by saying, let’s use a
value smaller than 1 fil and smaller than \hsize, but more than half of \hsize
so that if a line is nearly empty, the glue stretch factor will always be less than
2.0 and so the badness will be less than 100 and so TEX will not issue badness
warnings.

714 \linepenalty\@m

715 \rightskip\z@\@plus\@M\p@ \leftskip\z@skip \parfillskip\z@skip

716 \clubpenalty\@ne \widowpenalty\z@ \interlinepenalty\z@

After a relation symbol is discovered, binop symbols should start including a
special offset space. But until then \EQ@prebin@space is a no-op.

717 \global\let\EQ@prebin@space\relax

Set binoppenalty and relpenalty high to prohibit line breaks after mathbins and
mathrels. As a matter of fact, the penalties are then omitted by TEX, since bare
glue without a penalty is not a valid breakpoint if it occurs within mathon–mathoff
items.

718 \binoppenalty\@M \relpenalty\@M

719 }

45

The contents of an equation after the initial typesetting pass, as shown by
\showlists. This is the material on which the \eq@repack function operates.

The equation was

a=b +\left(\frac{c\sp 2}{2} -d\right) +(e -f) +g

. The contents are shown in four parts in this figure and the next three. The
first part contains two line boxes, one for the mathon node and one for the LHS.

\hbox(0.0+0.0)x16383.99998, glue set 1.6384
.\mathon
.\penalty -10000
.\glue(\rightskip) 0.0 plus 10000.0
\penalty 1
\glue(\baselineskip) 7.69446
\hbox(4.30554+0.0)x16383.99998, glue set 1.63759
.\OML/cmm/m/it/10 a
.\glue 2.77771 minus 1.11108
.\penalty -10001
.\glue(\rightskip) 0.0 plus 10000.0
\penalty 2
\glue(\lineskip) 1.0
...

Figure 1: Preliminary equation contents, part 1

46

This is the first part of the RHS, up to the \right, where a line break has been
forced so that we can break open the left-right box.

...
\penalty 2
\glue(\lineskip) 1.0
\hbox(14.9051+9.50012)x16383.99998, glue set 1.63107
.\penalty -99
.\glue(\thickmuskip) 2.77771 minus 1.11108
.\OT1/cmr/m/n/10 =
.\glue(\thickmuskip) 2.77771 minus 1.11108
.\OML/cmm/m/it/10 b
.\penalty 888
.\glue -10.5553
.\rule(*+*)x0.0
.\penalty 10000
.\glue 10.5553
.\glue(\medmuskip) 2.22217 minus 1.66663
.\OT1/cmr/m/n/10 +
.\glue(\medmuskip) 2.22217 minus 1.66663
.\hbox(14.9051+9.50012)x43.36298
..\hbox(0.39998+23.60025)x7.36115, shifted -14.10013
...\OMX/cmex/m/n/5 \hat \hat R
..\hbox(14.9051+6.85951)x11.21368
...\hbox(14.9051+6.85951)x11.21368
... [fraction contents, elided]

..\penalty 5332

..\glue -10.5553

..\rule(*+*)x0.0

..\penalty 10000

..\glue 10.5553

..\glue(\medmuskip) 2.22217 minus 1.66663

..\OMS/cmsy/m/n/10 \hat \hat @

..\glue(\medmuskip) 2.22217 minus 1.66663

..\OML/cmm/m/it/10 d

..\hbox(0.39998+23.60025)x7.36115, shifted -14.10013

...\OMX/cmex/m/n/5 \hat \hat S

.\penalty -10000

.\glue(\rightskip) 0.0 plus 10000.0
\penalty 3
\glue(\lineskip) 1.0
...

Figure 2: Preliminary equation contents, part 2

47

This is the remainder of the RHS after the post-\right split.

...
\penalty 3
\glue(\lineskip) 1.0
\hbox(7.5+2.5)x16383.99998, glue set 1.63239
.\penalty 888
.\glue -10.5553
.\rule(*+*)x0.0
.\penalty 10000
.\glue 10.5553
.\glue(\medmuskip) 2.22217 minus 1.66663
.\OT1/cmr/m/n/10 +
.\glue(\medmuskip) 2.22217 minus 1.66663
.\OT1/cmr/m/n/10 (
.\OML/cmm/m/it/10 e
.\penalty 5332
.\glue -10.5553
.\rule(*+*)x0.0
.\penalty 10000
.\glue 10.5553
.\glue(\medmuskip) 2.22217 minus 1.66663
.\OMS/cmsy/m/n/10 \hat \hat @
.\glue(\medmuskip) 2.22217 minus 1.66663
.\OML/cmm/m/it/10 f
.\kern1.0764
.\OT1/cmr/m/n/10)
.\penalty 888
.\glue -10.5553
.\rule(*+*)x0.0
.\penalty 10000
.\glue 10.5553
.\glue(\medmuskip) 2.22217 minus 1.66663
.\OT1/cmr/m/n/10 +
.\glue(\medmuskip) 2.22217 minus 1.66663
.\OML/cmm/m/it/10 g
.\kern0.35878
.\penalty -10000
.\glue(\rightskip) 0.0 plus 10000.0
\glue(\baselineskip) 9.5
...

Figure 3: Preliminary equation contents, part 3

48

This is the mathoff fragment.

...
\glue(\baselineskip) 9.5
\hbox(0.0+0.0)x16383.99998, glue set 1.6384
.\mathoff
.\penalty 10000
.\glue(\parfillskip) 0.0
.\glue(\rightskip) 0.0 plus 10000.0

Figure 4: Preliminary equation contents, part 4

\eq@capture

\eq@punct

If an equation ends with a \right delim, the last thing on the math list will
be a force-break penalty. Then don’t redundantly add another forcing penalty.
(question: when does a penalty after a linebreak not disappear? Answer: when
you have two forced break penalties in a row). Ending punctuation, if any, goes
into the last box with the mathoff kern. If the math list ends with a slanted letter,
then there will be an italic correction added after it by TEX. Should we remove
it? I guess so.

26.1 Capturing the equation

BRM: There’s a problem here (or with \ss@scan). If the LHS has \left
\right pairs, ß@scan gets involved. It seems to produce a separate box marked
w/\penalty 3. But it appears that \eq@repack is only expecting a single box for
the LHS; when it measures that box it’s missing the (typically larger) bracketted
section, so the LHS is measured =¿ 0pt (or very small). I’m not entirely clear
what Michael had in mind for this case; whether it’s an oversight, or whether
I’ve introduced some other bug. At any rate, my solution is to measure the RHS
(accumulated in \EQ@box), at the time of the relation, and subtract that from the
total size.

720 \newdimen\eq@wdR\eq@wdR\z@%BRM

721 \def\eq@capture{%

722 \ifnum\lastpenalty>-\@M \penalty-\@Mi \fi

We want to keep the mathoff kern from vanishing at the line break, so that we
can reuse it later.

723 \keep@glue\@@endmath

724 \eq@addpunct

725 \@@par

726 \eq@wdL\z@

First snip the last box, which contains the mathoff node, and put it into \EQ@box.
Then when we call \eq@repack it will recurse properly.

727 \setbox\tw@\lastbox

728 \global\setbox\EQ@box\hbox{\unhbox\tw@\unskip\unskip\unpenalty}%

729 \unskip\unpenalty

49

730 \global\setbox\EQ@copy\copy\EQ@box

731 %% \global\setbox\EQ@vimcopy\copy\EQ@vimbox

732 \clubpenalty\z@

733 %\batchmode\showboxbreadth\maxdimen\showboxdepth99\showlists\errorstopmode

734 \eq@wdR\z@%BRM: eq@wdL patch

735 \eq@repack % recursive

Finally, add the mathon item to \EQ@box and \EQ@copy.
736 \setbox\tw@\lastbox

737 \global\setbox\EQ@box\hbox{\unhcopy\tw@\unskip\unpenalty \unhbox\EQ@box}%

738 \global\setbox\EQ@copy\hbox{\unhbox\tw@\unskip\unpenalty \unhbox\EQ@copy}%

739 %\batchmode\showbox\EQ@copy \showthe\eq@wdL\errorstopmode

740 \ifdim\eq@wdR>\z@% BRM: eq@wdL patch

741 \setlength\dim@a{\wd\EQ@box-\eq@wdR

742 % Apparently missing a \thickmuskip = 5mu = 5/18em=0.27777777777.. ?

743 + 0.2777777777777em}% FUDGE??!?!?!

744 \ifdim\dim@a>\eq@wdL

745 〈∗trace〉
746 \breqn@debugmsg{Correcting LHS from \the\eq@wdL\space to

747 \the\dim@a = \the\wd\EQ@box - \the\eq@wdR}%

748 〈/trace〉
749 \eq@wdL\dim@a

750 \xdef\EQ@setwdL{\eq@wdL\the\eq@wdL\relax}%

751 \fi

752 \fi

753 〈∗trace〉
754 \breqn@debugmsg{Capture: total length=\the\wd\EQ@box \MessageBreak

755 ==== has LHS=\theb@@le\EQ@hasLHS, \eq@wdL=\the\eq@wdL, \eq@wdR=\the\eq@wdR,

756 \MessageBreak

757 ==== \eq@wdCond=\the\eq@wdCond}%

758 〈/trace〉
759 \egroup % end vbox started earlier

760 〈∗trace〉
761 %\debugwr{EQ@box}\debug@box\EQ@box

762 %\debugwr{EQ@copy}\debug@box\EQ@copy

763 〈/trace〉
764 }

Now we have two copies of the equation, one in \EQ@box, and one in \EQ@copy
with inconvenient stuff like inserts and marks omitted.

\eq@addpunct is for tacking on text punctuation at the end of a display, if any
was captured by the ‘gp’ lookahead.

765 \def\eq@addpunct{%

766 \ifx\found@punct\@empty

767 \else \eqpunct{\found@punct}%

768 \fi

769 % BRM: Added; the punctuation kept getting carried to following environs

770 \xdef\found@punct{\@empty}%

771 \EQ@afterspace

772 }

50

Needed for the dseries environment, among other things.
773 \global\let\EQ@afterspace\@empty

\eq@repack The \eq@repack function looks at the information at hand and proceeds accord-
ingly.

TeX Note: this scans BACKWARDS from the end of the math.
774 \def\eq@repack{%

775 % A previous penalty of 3 on the vertical list means that we need

776 % to break open a left-right box.

777 % \begin{macrocode}

778 \ifcase\lastpenalty

779 % case 0: normal case

780 \setbox\tw@\lastbox

781 \eq@repacka\EQ@copy \eq@repacka\EQ@box

782 \unskip

783 \or % case 1: finished recursing

Grab the mathon object since we need it to inhibit line breaking at bare glue
nodes later.

784 \unpenalty

785 \setbox\tw@\lastbox

786 \eq@repacka\EQ@copy \eq@repacka\EQ@box

787 \@xp\@gobble

788 \or % case 2: save box width = LHS width

Don’t need to set \EQ@hasLHS here because it was set earlier if applicable.
789 \unpenalty

790 \setbox\tw@\lastbox

791 \setbox\z@\copy\tw@ \setbox\z@\hbox{\unhbox\z@\unskip\unpenalty}%

792 \addtolength\eq@wdL{\wd\z@}

793 \setlength\eq@wdR{\wd\EQ@box}% BRM: eq@wdL patch

794 \xdef\EQ@setwdL{\eq@wdL\the\eq@wdL\relax}%

At this point, box 2 typically ends with

.\mi10 a

.\glue 2.77771 plus 2.77771

.\penalty -10001

.\glue(\rightskip) 0.0 plus 10000.0

and we want to ensure that the thickmuskip glue gets removed. And we now
arrange for \EQ@copy and \EQ@box to keep the LHS in a separate subbox; this
is so that we can introduce a different penalty before the first relation symbol if
necessary, depending on the layout decisions that are made later.

795 \global\setbox\EQ@copy\hbox{%

796 \hbox{\unhcopy\tw@\unskip\unpenalty\unskip}%

797 \box\EQ@copy

798 }%

799 \global\setbox\EQ@box\hbox{%

800 \hbox{\unhbox\tw@\unskip\unpenalty\unskip}%

801 \box\EQ@box

51

802 }%

803 \unskip

804 \or % case 3: unpack left-right box

805 \unpenalty

806 \eq@lrunpack

807 \else

808 \breqn@repack@err

809 \fi

810 \eq@repack % RECURSE

811 }

Error message extracted to streamline calling function.
812 \def\breqn@repack@err{%

813 \PackageError{breqn}{eq@repack penalty neq 0,1,2,3}\relax

814 }

\eq@repacka We need to transfer each line into two separate boxes, one containing everything
and one that omits stuff like \inserts that would interfere with measuring.

815 \def\eq@repacka#1{%

816 \global\setbox#1\hbox{\unhcopy\tw@ \unskip

817 \count@-\lastpenalty

818 \ifnum\count@<\@M \else \advance\count@-\@M \fi

819 \unpenalty

If creating the measure copy, ignore all cases above case 3 by folding them into
case 1.

820 \ifx\EQ@copy#1\ifnum\count@>\thr@@ \count@\@ne\fi\fi

821 \ifcase\count@

822 % case 0, normal line break

823 \penalty-\@M % put back the linebreak penalty

824 \or % case 1, do nothing (end of equation)

825 \relax

826 \or % case 2, no-op (obsolete case)

827 \or % case 3, transfer vspace and/or penalty

828 \ifx#1\EQ@box \eq@revspace \else \eq@revspaceb \fi

829 \or % case 4, put back an insert

830 \eq@reinsert

831 \or % case 5, put back a mark

832 \eq@remark

833 \or % case 6, put back a vadjust

834 \eq@readjust

835 \else % some other break penalty

836 \penalty-\count@

837 \fi

838 \unhbox#1}%

839 }

\eq@nulldisplay Throw in a null display in order to get predisplaysize etc.. My original approach
here was to start the null display, then measure the equation, and set a phantom
of the equation’s first line before ending the null display. That would allow finding

52

out if TEX used the short displayskips instead of the normal ones. But because
of some complications with grouping and the desirability of omitting unnecessary
invisible material on the vertical list, it seems better to just collect information
about the display (getting \prevdepth requires \halign) and manually perform
our own version of TEX’s shortskip calculations. This approach also gives greater
control, e.g.,, the threshold amount of horizontal space between predisplaysize and
the equation’s left edge that determines when the short skips kick in becomes a
designer-settable parameter rather than hardwired into TEX.

840 \def\eq@nulldisplay{%

841 \begingroup \frozen@everydisplay\@emptytoks

842 \@@display

843 \predisplaypenalty\@M \postdisplaypenalty\@M

844 \abovedisplayskip\z@skip \abovedisplayshortskip\z@skip

845 \belowdisplayskip\z@skip \belowdisplayshortskip\z@skip

846 \xdef\EQ@displayinfo{%

847 \prevgraf\the\prevgraf \predisplaysize\the\predisplaysize

848 \displaywidth\the\displaywidth \displayindent\the\displayindent

849 \listwidth\the\linewidth

Not sure how best to test whether leftmargin should be added. Let’s do this for
now [mjd,1997/10/08].

850 \ifdim\displayindent>\z@

851 \advance\listwidth\the\leftmargin

852 \advance\listwidth\the\rightmargin

853 \fi

854 \relax}%

An \halign containing only one \cr (for the preamble) puts no box on the vertical
list, which means that no \baselineskip will be added (so we didn’t need to set
it to zero) and the previous value of prevdepth carries through. Those properties
do not hold for an empty simple equation without \halign.

855 \halign{##\cr}%

856 \@@enddisplay

857 \par

858 \endgroup

859 \EQ@displayinfo

860 }

\eq@newline

\eq@newlinea

\eq@newlineb

Here we use \@ifnext so that in a sequence like

...\\
[a,b]

LATEX does not attempt to interpret the [a,b] as a vertical space amount. We
would have used \eq@break in the definition of \eq@newlineb except that it
puts in a \keep@glue object which is not such a good idea if a mathbin symbol
follows—the indent of the mathbin will be wrong because the leading negative
glue will not disappear as it should at the line break.

861 \def\eq@newline{%

862 \@ifstar{\eq@newlinea\@M}{\eq@newlinea\eqinterlinepenalty}}

53

863 \def\eq@newlinea#1{%

864 \@ifnext[{\eq@newlineb{#1}}{\eq@newlineb{#1}[\maxdimen]}}

865 \def\eq@newlineb#1[#2]{\penalty-\@M}

\eq@revspace

\eq@revspaceb

When \eq@revspace (re-vspace) is called, we are the end of an equation line; we
need to remove the existing penalty of −10002 in order to put a vadjust object in
front of it, then put back the penalty so that the line break will still take place in
the final result.

866 \def\eq@revspace{%

867 \global\setbox\EQ@vimbox\vbox{\unvbox\EQ@vimbox

868 \unpenalty

869 \global\setbox\@ne\lastbox}%

870 \@@vadjust{\unvbox\@ne}%

871 \penalty-\@M

872 }

The b version is used for the \EQ@copy box.
873 \def\eq@revspaceb{%

874 \global\setbox\EQ@vimcopy\vbox{\unvbox\EQ@vimcopy

875 \unpenalty

876 \global\setbox\@ne\lastbox}%

877 \@@vadjust{\unvbox\@ne}%

878 \penalty-\@M

879 }

\eq@break The function \eq@break does a preliminary linebreak with a flag penalty.
880 \def\eq@break#1{\penalty-1000#1 \keep@glue}

27 Choosing optimal line breaks

The question of what line width to use when breaking an equation into several
lines is best examined in the light of an extreme example. Suppose we have a
two-column layout and a displayed equation falls inside a second-level list with
nonzero leftmargin and rightmargin. Then we want to try in succession a number
of different possibilities. In each case if the next possibility is no wider than the
previous one, skip ahead to the one after.

1. First try linewidth(2), the linewidth for the current level-2 list.

2. If we cannot find adequate linebreaks at that width, next try listwidth(2),
the sum of leftmargin, linewidth, and rightmargin for the current list.

3. If we cannot find linebreaks at that width, next try linewidth (1) (skipping
this step if it is no larger then listwidth(2)).

4. If we cannot find linebreaks at that width, next try listwidth(1).

5. If we cannot find linebreaks at that width, next try column width.

54

needs work

Figure 5: first-approximation parshape for equations

6. If we cannot find linebreaks at that width, next try text width.

7. If we cannot find linebreaks at that width, next try equation width, if it
exceeds text width (i.e.,, if the style allows equations to extend into the
margins).

At any given line width, we run through a series of parshape trials and, essen-
tially, use the first one that gives decent line breaks. But the process is a bit more
complicated in fact. In order to do a really good job of setting up the parshapes,
we need to know how many lines the equation will require. And of course the
number of lines needed depends on the parshape! So as our very first trial we
run a simple first-approximation parshape (Figure 5) whose main purpose is to
get an estimate on the number of lines that will be needed; it chooses a uniform
indent for all lines after the first one and does not take any account of the equation
number. A substantial majority of equations only require one line anyway, and
for them this first trial will succeed. In the one-line case if there is an equation
number and it doesn’t fit on the same line as the equation body, we don’t go on to
other trials because breaking up the equation body will not gain us anything—we
know that we’ll have to use two lines in any case—so we might as well keep the
equation body together on one line and shift the number to a separate line.

If we learn from the first trial that the equation body requires more than one
line, the next parshape trial involves adjusting the previous parshape to leave room
for the equation number, if present. If no number is present, again no further trials
are needed.

Some remarks about parshape handling. The TEX primitive doesn’t store the
line specs anywhere, \the\parshape only returns the number of line specs. This
makes it well nigh impossible for different packages that use \parshape to work
together. Not that it would be terribly easy for the package authors to make inter-
package collaboration work, if it were possible. If we optimistically conjecture that
someone some day may take on such a task, then the thing to do, obviously, is
provide a parshape interface that includes a record of all the line specs. For that
we designate a macro \@parshape which includes not only the line specs, but also
the line count and even the leading \parshape token. This allows it to be directly
executed without an auxiliary if-empty test. It should include a trailing \relax
when it has a nonempty value.

881 \let\@parshape\@empty

The function \eq@measure runs line-breaking trials on the copy of the equation
body that is stored in the box register \EQ@copy, trying various possible layouts
in order of preference until we get successful line breaks, where ‘successful’ means
there were no overfull lines. The result of the trials is, first, a parshape spec that
can be used for typesetting the real equation body in \EQ@box, and second, some
information that depends on the line breaks such as the depth of the last line, the

55

height of the first line, and positioning information for the equation number. The
two main variables in the equation layout are the line width and the placement of
the equation number, if one is present.

\eq@measure Run linebreak trials on the equation contents and measure the results.
882 \def\eq@measure{%

If an override value is given for indentstep in the env options, use it.
883 \ifdim\eq@indentstep=\maxdimen \eq@indentstep\eqindentstep \fi

If \eq@linewidth is nonzero at this point, it means that the user specified a
particular target width for this equation. In that case we override the normal list
of trial widths.

884 \ifdim\eq@linewidth=\z@ \else \edef\eq@linewidths{{\the\eq@linewidth}}\fi

885 \begingroup \eq@params

886 \leftskip\z@skip

Even if \hfuzz is greater than zero a box whose contents exceed the target width
by less then hfuzz still has a reported badness value of 1000000 (infinitely bad).
Because we use inf-bad to test whether a particular trial succeeds or fails, we want
to make such boxes return a smaller badness. To this end we include an \hfuzz
allowance in \rightskip. In fact, \eq@params ensures that \hfuzz for equations
is at least 1pt.

887 \rightskip\z@\@plus\columnwidth\@minus\hfuzz

888 % \eqinfo

889 \global\EQ@continue{\eq@trial}%

890 \eq@trial % uses \eq@linewidths

891 \eq@failout % will be a no-op if the trial succeeded

892 \endgroup

‘local’ parameter settings are passed outside the endgroup through \EQ@trial.
893 \EQ@trial

894 }

895 〈∗trace〉
896 \def\debug@showmeasurements{%

897 \breqn@debugmsg{=> \number\eq@lines\space lines}%

898 \begingroup

899 \def\@elt##1X##2{\MessageBreak==== \space\space##1/##2}%

900 \let\@endelt\@empty

901 \breqn@debugmsg{=> trial info:\eq@measurements}%

902 \breqn@debugmsg{=> bounding box: \the\eq@wdT x\the\eq@vspan, badness=\the\eq@badness}%

903 \let\@elt\relax \let\@endelt\relax

904 \endgroup

905 }

906 \def\debug@showmeasurements{%

907 \begingroup

908 \def\@elt##1X##2{\MessageBreak==== ##1/##2}%

909 \let\@endelt\@empty

910 \breqn@debugmsg{===> Measurements: \number\eq@lines\space lines

911 \eq@measurements

56

912 \MessageBreak

913 ==== bounding box: \the\eq@wdT x\the\eq@vspan, badness=\the\eq@badness

914 \MessageBreak

915 ==== \leftskip=\the\leftskip, \rightskip=\the\rightskip}%

916 \endgroup

917 }

918 〈/trace〉

Layout Trials Driver Basically, trying different sequences of parshapes.

\EQ@trial Init.
919 \let\EQ@trial\@empty

\EQ@continue This is a token register used to carry trial info past a group boundary with only
one global assignment.

920 \newtoks\EQ@continue

\EQ@widths This is used for storing the actual line-width info of the equation contents after
breaking.

921 \let\EQ@widths\@empty

\EQ@fallback

922 \let\EQ@fallback\@empty

\eq@linewidths This is the list of target widths for line breaking.
== BRM:

Odd; I don’t think I’ve seen this use anything but \displaywidth...
923 \def\eq@linewidths{\displaywidth\linewidth\columnwidth}

\eq@trial The \eq@trial function tries each candidate line width in \eq@linewidths until
an equation layout is found that yields satisfactory line breaks.

924 \def\eq@trial{%

925 \ifx\@empty\eq@linewidths

926 \global\EQ@continue{}%

927 \else

928 \iffalse{\fi \@xp\eq@trial@a \eq@linewidths}%

929 \fi

930 \the\EQ@continue

931 }

\eq@trial@a The \eq@trial@a function reads the leading line width from \eq@linewidths; if
the new line width is greater than the previous one, start running trials with
it; otherwise do nothing with it. Finally, run a peculiar \edef that leaves
\eq@linewidths redefined to be the tail of the list. If we succeed in finding
satisfactory line breaks for the equation, we will reset \EQ@continue in such a
way that it will terminate the current trials. An obvious branch here would be
to check whether the width of \EQ@copy is less than \eq@linewidth and go im-
mediately to the one-line case if so. However, if the equation contains more than

57

one RHS, by default each additional RHS starts on a new line—i.e.,, we want the
ladder layout anyway. So we choose the initial trial on an assumption of multiple
lines and leave the one-line case to fall out naturally at a later point.

932 \def\eq@trial@a#1{%

933 \dim@c#1\relax

934 \if T\eq@frame \eq@frame@adjust\dim@c \fi

935 \ifdim\dim@c>\eq@linewidth

936 \eq@linewidth\dim@c

937 〈trace〉 \breqn@debugmsg{Choose Shape for width(#1)=\the\eq@linewidth}%

938 \let\eq@trial@b\eq@trial@d

939 \csname eq@try@layout@\eq@layout\endcsname

940 〈trace〉 \else

941 〈trace〉 \breqn@debugmsg{Next width (#1) is shorter; skip it}%

942 \fi

943 \edef\eq@linewidths{\iffalse}\fi

944 }

945 \def\eq@frame@adjust#1{%

946 %\addtolength#1{-2\eq@framewd-2\eq@framesep}%

947 \dim@a\eq@framewd \advance\dim@a\eq@framesep

948 \advance#1-2\dim@a

949 }

== Note cu-
rious control structure. Try to understand interaction of \EQ@fallback, \EQ@continue,
\eq@failout

950 \def\eq@trial@succeed{%

951 \aftergroup\@gobbletwo % cancel the \EQ@fallback code; see \eq@trial@c (?)

952 \global\EQ@continue{\eq@trial@done}%

953 }

\eq@trial@done Success.
954 \def\eq@trial@done{%

955 〈trace〉 \breqn@debugmsg{End trial: Success!}%

956 \let\eq@failout\relax

957 }

\eq@trial@init This is called from \eq@trial@b to initialize or re-initialize certain variables as
needed when running one or more trials at a given line width. By default assume
success, skip the fallback code.

958 \def\eq@trial@init{\global\let\EQ@fallback\eq@nextlayout}

\eq@nextlayout In the fallback case cancel the current group to avoid unnecessary group nesting
(with associated save-stack cost, etc.).

959 \def\eq@nextlayout#1{%

960 \endgroup

961 〈trace〉 \breqn@debugmsg{Nope ... that ain’t gonna work.}%

962 \begingroup #1%

963 }

58

\eq@failout .
964 \def\eq@failout{%

965 〈trace〉\breqn@debugmsg{End trial: failout}%

966 \global\let\EQ@trial\EQ@last@trial

967 }

\eq@trial@save Save the parameters of the current trial.
968 \def\eq@trial@save#1{%

969 〈∗trace〉
970 % \begingroup \def\@elt##1X##2{\MessageBreak==== \space\space##1/##2}\let\@endelt\@empty\breqn@debugmsg{=> trial info:\eq@measurements}%

971 % \breqn@debugmsg{=> bounding box: \the\eq@wdT x\the\eq@vspan, badness=\the\eq@badness\MessageBreak}%

972 % \let\@elt\relax \let\@endelt\relax

973 % \endgroup

974 〈/trace〉
975 \xdef#1{%

976 \eq@linewidth\the\eq@linewidth

977 % save info about the fit

978 \eq@lines\the\eq@lines \eq@badness\the\eq@badness \def\@nx\eq@badline{\eq@badline}%

979 % save size info

980 \eq@wdT\the\eq@wdT \eq@wdMin\the\eq@wdMin

981 \eq@vspan\the\eq@vspan \eq@dp\the\eq@dp \eq@firstht\the\eq@firstht

982 % save info about the LHS

983 \eq@wdL\the\eq@wdL \def\@nx\EQ@hasLHS{\EQ@hasLHS}%

984 % save info about the numbering

985 \def\@nx\eq@hasNumber{\eq@hasNumber}%

986 % save info about the chosen layout

987 \def\@nx\eq@layout{\eq@layout}%

988 \def\@nx\eq@parshape{\@parshape}%

989 \def\@nx\eq@measurements{\eq@measurements}%

990 \def\@nx\adjust@rel@penalty{\adjust@rel@penalty}%

991 \def\@nx\eq@shiftnumber{\eq@shiftnumber}%

992 \def\@nx\eq@isIntertext{\@False}%

993 }%

994 }

\eq@trial@b By default this just runs \eq@trial@c; cf. \eq@trial@d.
995 \def\eq@trial@b{\eq@trial@c}

\eq@trial@c Run the equation contents through the current parshape.
996 \def\eq@trial@c#1#2{%

997 〈trace〉 \breqn@debugmsg{Trying layout "#1" with\MessageBreak==== parshape\space\@xp\@gobble\@parshape}%

998 \begingroup

999 \eq@trial@init

1000 \def\eq@layout{#1}%

1001 \setbox\z@\vbox{%

1002 \hfuzz\maxdimen

1003 \eq@trial@p % run the given parshape

1004 \if\@Not{\eq@badline}%

1005 \eq@trial@save\EQ@trial

59

If there is a number, try the same parshape again with adjustments to make room
for the number.

This is an awkward place for this: It only allows trying to fit the number w/the
SAME layout shape!

1006 \if\eq@hasNumber\eq@retry@with@number\fi

1007 \if L\eq@layout \eq@check@density

1008 \else

1009 \if\@Not{\eq@badline}%

1010 \eq@trial@succeed

1011 \fi

1012 \fi

1013 \else

1014 \eq@trial@save\EQ@last@trial

1015 \fi

1016 }%

1017 \EQ@fallback{#2}%

1018 \endgroup

1019 }

\eq@trial@d

1020 \def\eq@trial@d#1#2{\eq@trial@c{#1}{}}

\eq@check@density

1021 \def\eq@check@density{%

1022 〈trace〉 \breqn@debugmsg{Checking density for layout L}%

1023 \if\@Or{\@Not\EQ@hasLHS}{\eq@shortLHS}%

1024 〈trace〉 \breqn@debugmsg{Density check: No LHS, or is short; OK}%

1025 \eq@trial@succeed

1026 \else\if\eq@dense@enough

1027 \eq@trial@succeed

1028 \fi\fi

1029 }

\eq@shortLHS Test to see if we need to apply the \eq@dense@enough test.
1030 \def\eq@shortLHS{\ifdim\eq@wdL>.44\eq@wdT 1\else 0\fi 0}

\def\eq@shortLHS{\@False} ==

\eq@trial@p Run a trial with the current \@parshape and measure it.
1031 \def\eq@trial@p{%

1032 \@parshape %

1033 \eq@dump@box\unhcopy\EQ@copy

1034 {\@@par}% leave \parshape readable

1035 \eq@lines\prevgraf

1036 \eq@fix@lastline

1037 \let\eq@badline\@False

1038 \if i\eq@layout \ifnum\eq@lines>\@ne \let\eq@badline\@True \fi\fi

1039 \eq@curline\eq@lines % loop counter for eq@measure@lines

1040 \let\eq@measurements\@empty

60

1041 \eq@ml@record@indents

1042 \eq@measure@lines

1043 \eq@recalc

1044 〈trace〉 \debug@showmeasurements

1045 }

\adjust@rel@penalty Normally this is a no-op.
1046 \let\adjust@rel@penalty\@empty

\eq@fix@lastline Remove parfillskip from the last line box.
1047 \def\eq@fix@lastline{%

1048 \setbox\tw@\lastbox \dim@b\wd\tw@

1049 \eq@dp\dp\tw@

Remove \parfillskip but retain \rightskip. Need to keep the original line
width for later shrink testing.

1050 \nointerlineskip\hbox to\dim@b{\unhbox\tw@

1051 \skip@c\lastskip \unskip\unskip\hskip\skip@c

1052 }%

1053 }

\eq@recalc Calculate \eq@wdT et cetera.
1054 \def\eq@recalc{%

1055 \eq@wdT\z@ \eq@wdMin\maxdimen \eq@vspan\z@skip \eq@badness\z@

1056 \let\@elt\eq@recalc@a \eq@measurements \let\@elt\relax

1057 }

\eq@recalc@a

1058 \def\eq@recalc@a#1x#2+#3\@endelt{%

1059 \eq@firstht#2\relax

1060 \let\@elt\eq@recalc@b

1061 \@elt#1x#2+#3\@endelt

1062 }

\eq@recalc@b

1063 \def\eq@recalc@b#1X#2,#3x#4+#5@#6\@endelt{%

1064 \setlength\dim@a{#2+#3}%

1065 \ifdim\dim@a>\eq@wdT \eq@wdT\dim@a \fi

1066 \ifdim\dim@a<\eq@wdMin \eq@wdMin\dim@a \fi

1067 \eq@dp#5\relax

1068 \addtolength\eq@vspan{#1+#4+\eq@dp}%

Record the max badness of all the lines in \eq@badness.
1069 \ifnum#6>\eq@badness \eq@badness#6\relax\fi

1070 }

\eq@layout A value of ? for \eq@layout means that we should deduce which layout to use
by looking at the size of the components. Any other value means we have a
user-specified override on the layout.

61

Layout Definitions. Based on initial equation measurements, we can choose a
sequence of candidate parshapes that the equation might fit into. We accept the
first shape that ‘works’, else fall to next one. [The sequence is hardcoded in the
\eq@try@layout@¡shape¿ Would it be useful be more flexible? (eg. try layouts
LDA, in order...)]

1071 \def\eq@layout{?}

\eq@try@layout@? This is a branching function used to choose a suitable layout if the user didn’t
specify one in particular.

Default layout: Try Single line layout first, else try Multiline layouts
1072 \@namedef{eq@try@layout@?}{%

1073 \let\eq@trial@b\eq@trial@c

1074 \edef\@parshape{\parshape 1 0pt \the\eq@linewidth\relax}%

1075 % \eq@trial@b{i}{\eq@try@layout@multi}%

1076 \setlength\dim@a{\wd\EQ@copy-2em}% Fudge; can’t shrink more than this?

1077 % if we’re in a numbered group, try hard to fit within the numbers

1078 \dim@b\eq@linewidth

1079 \if\eq@shiftnumber\else\if\eq@group

1080 \if\eq@hasNumber\addtolength\dim@b{-\wd\EQ@numbox-\eqnumsep}%

1081 \else\if\grp@hasNumber\addtolength\dim@b{-\wd\GRP@numbox-\eqnumsep}%

1082 \fi\fi\fi\fi

1083 \ifdim\dim@a<\dim@b% Do we even have a chance of fitting to one line?

1084 〈trace〉 \breqn@debugmsg{Choose Shape: (\the\wd\EQ@copy) may fit in \the\dim@b}%

BRM: assuming it might fit, don’t push too hard
1085 \setlength\dim@b{\columnwidth-\dim@a+\eq@wdCond}%

1086 \rightskip\z@\@plus\dim@b\@minus\hfuzz

1087 \eq@trial@b{i}{\eq@try@layout@multi}%

1088 \else

1089 〈∗trace〉
1090 \breqn@debugmsg{Choose Shape: Too long (\the\wd\EQ@copy) for one line

1091 (free width=\the\dim@b)}%

1092 〈/trace〉
1093 \eq@try@layout@multi

1094 \fi

1095 }

Layout Multiline layout: If no LHS, try Stepped(S) layout Else try Stepped(S),
Ladder(L), Drop-ladder(D) or Stepladder(l), depending on LHS length.

1096 \def\eq@try@layout@multi{%

1097 \if\EQ@hasLHS

1098 \ifdim\eq@wdL>\eq@linewidth

1099 〈trace〉 \breqn@debugmsg{Choose Shape: LHS \the\eq@wdL > linewidth}%

Find the total width of the RHS. If it is relatively short, a step layout is the thing
to try.

1100 \setlength\dim@a{\wd\EQ@copy-\eq@wdL}%

1101 \ifdim\dim@a<.25\eq@linewidth \eq@try@layout@S

1102 \else \eq@try@layout@l

1103 \fi

62

1104 % BRM: Originally .7: Extreme for L since rhs has to wrap within the remaining 30+%!

1105 \else\ifdim\eq@wdL>.50\eq@linewidth

1106 〈∗trace〉
1107 \breqn@debugmsg{Choose Shape: LHS (\the\eq@wdL) > .50 linewidth (linewidth=\the\eq@linewidth)}%

1108 〈/trace〉
1109 \eq@try@layout@D

1110 \else

1111 〈trace〉 \breqn@debugmsg{Choose Shape: LHS (\the\eq@wdL) not extraordinarily wide}%

1112 \eq@try@layout@L

1113 \fi\fi

1114 \else

1115 〈trace〉 \breqn@debugmsg{Choose Shape: No LHS here}%

Try one-line layout first, then step layout.
1116 \eq@try@layout@S % (already checked case i)

1117 \fi

1118 }

\eq@try@layout@D Change the penalty before the first mathrel symbol to encourage a break there.
Layout D=Drop-Ladder Layout, for wide LHS.

LOOOOOOOONG LHS
= RHS
= ...

If fails, try Almost-Columnar layout
1119 \def\eq@try@layout@D{%

1120 \setlength\dim@a{\eq@linewidth -\eq@indentstep}%

1121 \edef\@parshape{\parshape 2

1122 0pt \the\eq@wdL\space \the\eq@indentstep\space \the\dim@a\relax

1123 }%

1124 \def\adjust@rel@penalty{\penalty-99 }%

1125 \eq@trial@b{D}{\eq@try@layout@A}%

1126 }

\eq@try@layout@L Try a straight ladder layout. Preliminary filtering ensures that \eq@wdL is less
than 70 of the current line width.

Layout L=Ladder layout
LHS = RHS

= RHS
...

If fails, try Drop-ladder layout. NOTE: This is great for some cases (multi rela-
tions?), but tends to break really badly when it fails....

1127 \def\eq@try@layout@L{%

1128 \setlength\dim@b{\eq@linewidth-\eq@wdL}%

1129 \edef\@parshape{\parshape 2 0pt \the\eq@linewidth\space

1130 \the\eq@wdL\space \the\dim@b\relax

1131 }%

1132 \eq@trial@b{L}{\eq@try@layout@D}%

1133 }

63

\eq@try@layout@S In the “stepped” layout there is no LHS, or LHS is greater than the line width
and RHS is small. Then we want to split up the equation into lines of roughly
equal width and stagger them downwards to the right, leaving a small amount of
whitespace on both sides. But also, if there is an equation number, we want to try
first a layout that leaves room for the number. Otherwise it would nearly always
be the case that the number would get thrown on a separate line.

Layout S=Stepped layout, typically no LHS or very long, variations on

STUFF
+ MORE STUFF ...
+ MORE STUFF ...

If fails, try Almost-Columnar layout
1134 \def\eq@try@layout@S{%

1135 \setlength\dim@b{\eq@linewidth-2\eqmargin}% \advance\dim@b-1em%

About how many lines will we need if dim@b is the line width?
1136 \int@a\wd\EQ@copy \divide\int@a\dim@b

Adjust the target width by number of lines times indentstep. We don’t need to
decrement \int@a because TEX division is integer division with truncation.

1137 \addtolength\dim@b{-\int@a\eq@indentstep}%

Adjust for equation number. But try not to leave too little room for the equation
body.

1138 \if\eq@hasNumber

1139 \ifdim\dim@b>15em%

1140 % \advance\dim@b-\eqnumsep \advance\dim@b-\wd\EQ@numbox

1141 \addtolength\dim@b{-\eq@wdNum}%

1142 \fi

1143 \fi

Now some hand-waving to set up the parshape.
1144 \int@b\z@

1145 \def\@tempa{\dim}%

1146 \edef\@parshape{\parshape 2 0pt \the\dim@b\space

1147 \the\eqmargin\space\the\dim@b\relax}%

1148 \eq@trial@b{S}{\eq@try@layout@A}%

1149 }

\eq@try@layout@l This is the “step-ladder” layout: similar to the drop-ladder layout but the LHS is
too wide and needs to be broken up.

Layout l = Stepladder Similar to Drop-Ladder, but LHS is long and needs to
be broken up. If fails, try Almost-Columnar layout

1150 \def\eq@try@layout@l{%

1151 \setlength\dim@a{\eq@linewidth -\eq@indentstep}%

1152 \int@a\eq@wdL \divide\int@a\dim@a

1153 \advance\int@a\tw@

1154 \edef\@parshape{\parshape \number\int@a\space

1155 0pt \the\eq@linewidth

1156 }%

64

1157 \advance\int@a-\tw@

1158 \setlength\dim@b{2\eq@indentstep}%

1159 \setlength\dim@c{\eq@linewidth -\dim@b}%

1160 \edef\@parshape{\@parshape

1161 \replicate{\int@a}{\space\the\eq@indentstep\space\the\dim@a}%

1162 \space\the\dim@b\space\the\dim@c\relax

1163 }%

1164 \eq@trial@b{l}{\eq@try@layout@A}%

1165 }

\eq@try@layout@A In the “almost-columnar” layout, which is the layout of last resort, we let all lines
run to the full width and leave the adjusting of the indents to later.

Layout A = Almost-Columnar layout. Pretty much straight full width, more
of a last-resort. If fails, give up.

1166 \def\eq@try@layout@A{%

1167 \edef\@parshape{\parshape 1 0pt \the\eq@linewidth\relax}%

1168 \if\EQ@hasLHS \def\adjust@rel@penalty{\penalty-99 }\fi

1169 \eq@trial@b{A}{}%

1170 }

\eq@shiftnumber MH: Should be moved to a section where all keys are set to defaults.
1171 \let\eq@shiftnumber\@False

\eq@retry@with@number@a Number placement adjustments
1172 \def\eq@retry@with@number{%

1173 \if\eq@shiftnumber

1174 〈trace〉 \breqn@debugmsg{Place number: Shifted number requested}%

1175 \else

Condition and right numbers? We’re just going to have to shift.
1176 \ifdim\eq@wdCond>\z@\if R\eqnumside

1177 〈trace〉 \breqn@debugmsg{Place number: Condition w/Right number => Shift number}%

1178 \let\eq@shiftnumber\@True

1179 \fi\fi

Compute free space.
1180 % \dim@b\eqnumsep\advance\dim@b\wd\EQ@numbox

1181 \dim@b\eq@wdNum

1182 \if L\eqnumside

1183 \ifdim\@totalleftmargin>\dim@b\dim@b\@totalleftmargin\fi

1184 \else

1185 \addtolength\dim@b{\@totalleftmargin}%

1186 \fi

1187 \setlength\dim@a{\eq@linewidth-\dim@b}%\advance\dim@a1em\relax% Allowance for shrink?

Set up test against 1-line case only if not in a group
1188 \int@a\@ne\if\eq@group\int@a\maxint\fi

Now check for cases.
1189 \if\eq@shiftnumber % Already know we need to shift

1190 \else\ifdim\eq@wdT<\dim@a % Fits!

65

left & right skips will be done later, and parshape adjusted if needed.
1191 〈trace〉 \breqn@debugmsg{Place number: eqn and number fit together}%

1192 % \else\ifnum\eq@lines=\int@a % Shift, if single line, unless inside a dgroup.

NOTE: this is too strong for dgroup!
1193 〈∗trace〉
1194 % \breqn@debugmsg{Place number: single line too long with number => Shift number \the\int@a}%

1195 〈/trace〉
1196 % \let\eq@shiftnumber\@True

1197 \else

Retry: use leftskip for space for number(for now; whether right/left) & adjust
parshape

1198 % \leftskip\wd\EQ@numbox\advance\leftskip\eqnumsep

1199 \setlength\leftskip{\eq@wdNum}%

1200 \setlength\rightskip{\z@\@plus\dim@a}%

1201 \adjust@parshape\@parshape

1202 〈∗trace〉
1203 \breqn@debugmsg{Place number: Try with \leftskip=\the\leftskip, \rightskip=\the\rightskip,

1204 \MessageBreak==== parshape\space\@xp\@gobble\@parshape}%

1205 〈/trace〉
1206 \nointerlineskip

1207 \edef\eq@prev@lines{\the\eq@lines}%

1208 \edef\eq@prev@badness{\the\eq@badness}% BRM

1209 \eq@trial@p

1210 \int@a\eq@prev@badness\relax\advance\int@a 50\relax%?

1211 \int@b\eq@prev@lines \if\eq@group\advance\int@b\@ne\fi% Allow 1 extra line in group

1212 \ifnum\eq@lines>\int@b % \eq@prev@lines

1213 〈trace〉 \breqn@debugmsg{Adjustment causes more breaks => Shift number}%

1214 \let\eq@shiftnumber\@True

1215 \else\if\eq@badline

1216 〈trace〉 \breqn@debugmsg{Adjustment causes bad lines (\the\eq@badness) => Shift}%

1217 \let\eq@shiftnumber\@True

1218 \else\ifnum\eq@badness>\int@a % BRM: New case

1219 〈∗trace〉
1220 \breqn@debugmsg{Adjustment is badder than previous

1221 (\the\eq@badness >> \eq@prev@badness) => Shift}%

1222 〈/trace〉
1223 \let\eq@shiftnumber\@True

1224 \else

1225 〈trace〉 \breqn@debugmsg{Adjustment succeeded}%

1226 \fi\fi%\fi

1227 \fi\fi\fi

If we got shifted, restore parshape, etc,
1228 \if\eq@shiftnumber

1229 \EQ@trial% Restore parshape & other params,

1230 \leftskip\z@\let\eq@shiftnumber\@True % But set shift & leftskip

1231 \edef\@parshape{\eq@parshape}% And copy saved parshape back to ‘working copy’ !?!?

1232 \fi

1233 \eq@trial@save\EQ@trial % Either way, save the trial state.

66

1234 \fi

1235 }

\adjust@parshape Varies depending on the layout.
Adjust a parshape variable for a given set of left|right skips. Note that the

fixed part of the left|right skips effectively comes out of the parshape widths (NOT
in addition to it). We also must trim the widths so that the sum of skips, indents
and widths add up to no more than the \eq@linewidth.

1236 \def\adjust@parshape#1{%

1237 \@xp\adjust@parshape@a#1\relax

1238 \edef#1{\temp@a}%

1239 }

\adjust@parshape@a

\adjust@parshape@b 1240 \def\adjust@parshape@a#1 #2\relax{%

1241 \setlength\dim@a{\leftskip+\rightskip}%

1242 \edef\temp@a{#1}%

1243 \adjust@parshape@b#2 @ @ \relax

1244 }

1245 \def\adjust@parshape@b#1 #2 {%

1246 \ifx @#1\edef\temp@a{\temp@a\relax}%

1247 \@xp\@gobble

1248 \else

1249 \dim@b#1\relax

1250 \dim@c#2\relax

1251 \addtolength\dim@c{\dim@a+\dim@b}%

1252 \ifdim\dim@c>\eq@linewidth\setlength\dim@c{\eq@linewidth}\fi

1253 \addtolength\dim@c{-\dim@b}%

1254 \edef\temp@a{\temp@a\space\the\dim@b\space\the\dim@c}%

1255 \fi

1256 \adjust@parshape@b

1257 }

\eq@ml@record@indents Plunk the parshape’s indent values into an array for easy access when constructing
\eq@measurements.

1258 \def\eq@ml@record@indents{%

1259 \int@a\z@

1260 \def\@tempa{%

1261 \advance\int@a\@ne

1262 \@xp\edef\csname eq@i\number\int@a\endcsname{\the\dim@a}%

1263 \ifnum\int@a<\int@b \afterassignment\@tempb \fi

1264 \dim@a

1265 }%

1266 \def\@tempb{\afterassignment\@tempa \dim@a}%

1267 \def\@tempc##1##2 {\int@b##2\afterassignment\@tempa\dim@a}%

1268 \@xp\@tempc\@parshape

1269 }

\@endelt This is a scan marker. It should get a non-expandable definition. It could be
\relax, but let’s try a chardef instead.

67

1270 \chardef\@endelt=‘\?

\eq@measurements This is similar to a parshape spec but for each line we record more info: space
above, indent, width x height + dp, and badness.

1271 \def\eq@measurements{%

1272 \@elt 4.5pt/5.0pt,66.0ptx6.8pt+2.4pt@27\@endelt

1273 ...

1274 }

\eq@measure@lines Loop through the list of boxes to measure things like total height (including in-
terline stretch), etc.. We check the actual width of the current line against the
natural width—after removing rightskip—in case the former is less than the latter
because of shrinkage. In that case we do not want to use the natural width for
RHS-max-width because it might unnecessarily exceed the right margin.

1275 \def\eq@measure@lines{%

1276 \let\eq@ml@continue\eq@measure@lines

1277 \setbox\tw@\lastbox \dim@b\wd\tw@ % find target width of line

1278 \setbox\z@\hbox to\dim@b{\unhbox\tw@}% check for overfull

1279 \eq@badness\badness

1280 \ifnum\eq@badness<\inf@bad \else \let\eq@badline\@True \fi

1281 \eq@ml@a \eq@ml@continue

1282 }

\eq@ml@a

1283 \def\eq@ml@a{%

1284 \setbox\tw@\hbox{\unhbox\z@ \unskip}% find natural width

1285 〈∗trace〉
1286 \ifnum\eq@badness<\inf@bad\else\breqn@debugmsg{!?! Overfull: \the\wd\tw@ >\the\dim@b}\fi

1287 〈/trace〉
Is actual width less than natural width?

1288 \ifdim\dim@b<\wd\tw@ \setlength\dim@a{\dim@b}% shrunken line

1289 \else \setlength\dim@a{\wd\tw@}% OK to use natural width

1290 \fi

1291 \addtolength\dim@a{-\leftskip}% BRM: Deduct the skip if we’re retrying w/number

If there’s no aboveskip, assume we’ve reached the top of the equation.
1292 \skip@a\lastskip \unskip \unpenalty

1293 \ifdim\skip@a=\z@

1294 \let\eq@ml@continue\relax % end the recursion

1295 \else

1296 % Sum repeated vskips if present

1297 \def\@tempa{%

1298 \ifdim \lastskip=\z@

1299 \else \addtolength\skip@a{\lastskip}\unskip\unpenalty \@xp\@tempa

1300 \fi

1301 }%

1302 \fi

1303 \edef\eq@measurements{\@elt

1304 \the\skip@a\space X% extra space to facilitate extracting only the

68

1305 % dimen part later

1306 \csname eq@i%

1307 \ifnum\eq@curline<\parshape \number\eq@curline

1308 \else\number\parshape

1309 \fi

1310 \endcsname,\the\dim@a x\the\ht\tw@+\the\dp\tw@ @\the\eq@badness\@endelt

1311 \eq@measurements

1312 }%

1313 \advance\eq@curline\m@ne

1314 \ifnum\eq@curline=\z@ \let\eq@ml@continue\relax\fi

1315 }

\eq@ml@vspace Handle an embedded vspace.
1316 \def\eq@ml@vspace{%

1317 \global\advance\eq@vspan\lastskip \unskip\unpenalty

1318 \ifdim\lastskip=\z@ \else \@xp\eq@ml@vspace \fi

1319 }

\eq@dense@enough

1320 \def\eq@dense@enough{%

1321 \ifnum\eq@lines<\thr@@

1322 〈trace〉 \breqn@debugmsg{Density check: less than 3 lines; OK}%

1323 \@True

1324 \else

1325 \ifdim\eq@wdL >.7\eq@wdT

1326 〈trace〉 \breqn@debugmsg{Density check: LHS too long; NOT OK}%

1327 \@False

1328 \else \@xp\@xp\@xp\eq@dense@enough@a

1329 \fi

1330 \fi

1331 }

\true@false@true

1332 \def\true@false@true{\fi\fi\iftrue\iffalse\iftrue}

\false@false@false

1333 \def\false@false@false{\fi\fi\iffalse\iffalse\iffalse}

\false@true@false

1334 \def\false@true@false{\fi\fi\iffalse\iftrue\iffalse}

\eq@density@factor This number specifies, for the ladder layout, how much of the equation’s bounding
box should contain visible material rather than whitespace. If the amount of
visible material drops below this value, then we switch to the drop-ladder layout.
The optimality of this factor is highly dependent on the equation contents; .475
was chosen as the default just because it worked well with the sample equation,
designed to be as average as possible, that I used for testing.

1335 \def\eq@density@factor{.475}

69

\eq@dense@enough@a Calculate whether there is more visible material than whitespace within the equa-
tion’s bounding box. Sum up the actual line widths and compare to the total
“area” of the bounding box. But if we have an extremely large number of lines,
fall back to an approximate calculation that is more conservative about the danger
of exceeding \maxdimen.

1336 \def\eq@dense@enough@a{%

1337 \@True \fi

1338 \ifnum\eq@lines>\sixt@@n

1339 \eq@dense@enough@b

1340 \else

1341 \dim@b\z@ \let\@elt\eq@delt \eq@measurements

1342 \dim@c\eq@density@factor\eq@wdT \multiply\dim@c\eq@lines

1343 〈trace〉 \breqn@debugmsg{Density check: black \the\dim@b/\eq@density@factor total \the\dim@c}%

1344 \ifdim\dim@b>\dim@c \true@false@true \else \false@false@false \fi

1345 \fi

1346 }

\eq@delt Args are space-above, indent, width, height, depth, badness.
1347 \def\eq@delt#1X#2,#3x#4+#5@#6\@endelt{\addtolength\dim@b{#3}}%

\eq@dense@enough@b This is an approximate calculation used to keep from going over \maxdimen if the
number of lines in our trial break is large enough to make that a threat. If l, t, n
represent left-side-width, total-width, and number of lines, the formula is

l/t < .4n/(.9n-1)

or equivalently, since rational arithmetic is awkward in TEX: b

l/t < 4n/(9n-10)

.
1348 \def\eq@dense@enough@b{%

1349 \int@b\eq@wdT \divide\int@b\p@

1350 \dim@b\eq@wdL \divide\dim@b\int@b

1351 \dim@c\eq@lines\p@ \multiply\dim@c\f@ur

1352 \int@b\eq@lines \multiply\int@b 9 \advance\int@b -10%

1353 \divide\dim@c\int@b

1354 〈trace〉 \breqn@debugmsg{Density check: l/t \the\dim@b\space< \the\dim@c\space 4n/(9n-10)?}%

1355 \ifdim\dim@b<\dim@c \true@true@true \else \false@true@false \fi

1356 }

\eq@parshape

1357 \let\eq@parshape\@empty

\eq@params The interline spacing and penalties in \eq@params are used during both prelimi-
nary line breaking and final typesetting.

1358 \def\eq@params{%

1359 \baselineskip\eqlinespacing

1360 \lineskip\eqlineskip \lineskiplimit\eqlineskiplimit

70

Forbid absolutely a pagebreak that separates the first line or last line of a multiline
equation from the rest of it. Or in other words: no equation of three lines or less
will be broken at the bottom of a page; instead it will be moved whole to the top
of the next page. If you really really need a page break that splits the first or
last line from the rest of the equation, you can always fall back to\pagebreak, I
suppose.

1361 \clubpenalty\@M \widowpenalty\@M \interlinepenalty\eqinterlinepenalty

1362 \linepenalty199 \exhyphenpenalty5000 % was 9999: make breaks at, eg. * a bit easier.

For equations, hfuzz should be at least 1pt. But we have to fake it a little because
we are running the equation through TEX’s paragrapher. In our trials we use
minus 1pt in the rightskip rather than hfuzz; and we must do the same during
final breaking of the equation, otherwise in borderline cases TEX will use two lines
instead of one when our trial indicated that one line would be enough.

1363 \ifdim\hfuzz<\p@ \hfuzz\p@ \fi

1364 %\hfuzz=2pt

1365 % \ifdim\hfuzz<2pt\relax \hfuzz2pt \fi

1366 \parfillskip\z@skip

1367 % \hfuzz\z@

Make sure we skip TEX’s preliminary line-breaking pass to save processing time.
1368 \tolerance9999 \pretolerance\m@ne

1369 }

28 Equation layout options

Using the notation C centered, I indented (applied to the equation body), T top, B
bottom, M middle, L left, R right (applied to the equation number), the commonly
used equation types are C, CRM, CRB, CLM, CLT, I, IRM, IRB, ILM, ILT. In
other words, CLM stands for Centered equation body with Left-hand Middle-
placed equation number, and IRB stands for Indented equation with Right-hand
Bottom-placed equation number.

Here are some general thoughts on how to place an equation tag. Currently it
does not work as desired: the L option positions the tag app. 10 lines below the
math expression, the RM doesn’t position the tag on the baseline for single-line
math expressions. Therefore I am going to first write what I think is supposed to
happen and then implement it.

Below is a small list where especially the two three specifications should be
quite obvious, I just don’t want to forget anything and it is important to the
implementation.

Definition 1 If a display consists of exactly one line, the tag should always be
placed on the same baseline as the math expression.

The remaining comments refer to multi-line displays.

Definition 2 If a tag is to be positioned at the top (T), it should be placed such
that the baseline of the tag aligns with the baseline of the top line of the
display.

71

Definition 3 If a tag is to be positioned at the bottom (B), it should be placed
such that the baseline of the tag aligns with the baseline of the bottom line
of the display.

Definition 4 If a tag is to be positioned vertically centered (M), it should be
placed such that the baseline of the tag is positioned exactly halfway between
the baseline of the top line of the display and the baseline of the bottom line
of the display.

Definitions 1–3 are almost axiomatic in their simplicity. Definition 4 is different
because I saw at least two possibilities for which area to span:

• Calculate distance from top of top line to the bottom of the bottom line,
position the vertical center of the tag exactly halfway between those two
extremes.

• Calculate the distance from the baseline of the top line to the baseline of the
bottom line, position the baseline of the tag exactly halfway between these
two extremes.

Additional combinations of these methods are possible but make little sense in my
opinion. I have two reasons for choosing the latter of these possibilities: Firstly,
two expressions looking completely identical with the exception of a superscript in
the first line or a subscript in the last line will have the tag positioned identically.
Secondly, then M means halfway between T and B positions which makes good
sense and then also automatically fulfills Definition 1.

From an implementation perspective, these definitions should also make it
possible to fix a deficiency in the current implementation, namely that the tag
does not influence the height of a display, even if the display is a single line. This
means that two single-line expressions in a dgroup can be closer together than
\intereqskip if the math expressions are (vertically) smaller than the tag.

29 Centered Right-Number Equations

\eq@dump@box #1 might be \unhbox or \unhcopy; #2 is the box name.
1370 \def\eq@dump@box#1#2{%

1371 %\debug@box#1%

1372 \noindent #1#2\setbox\f@ur\lastbox \setbox\tw@\lastbox

If the LHS contains shrinkable glue, in an L layout the alignment could be thrown
off if the first line is shrunk noticeably. For the time being, disable shrinking on
the left-hand side. The proper solution requires more work

mjd,1999/03/17

.
1373 \if L\eq@layout \box\tw@ \else\unhbox\tw@\fi

1374 \adjust@rel@penalty \unhbox\f@ur

1375 }

72

Various typesetting bits, invoked from \eq@finish BRM: This has been ex-
tensively refactored from the original breqn, initially to get left|right skips and
parshape used consistently, ultimately to get most things handled the same way,
in the same order.

Given that left and right skips have been set, typeset the frame, number and
equation with the given number side and placement

1376 \def\eq@typeset@Unnumbered{%

1377 \eq@typeset@frame

1378 \eq@typeset@equation

1379 }

1380 \def\eq@typeset@LM{%

1381 \setlength\dim@a{(\eq@vspan+\ht\EQ@numbox-\dp\EQ@numbox)/2}%

1382 \eq@typeset@leftnumber

1383 \eq@typeset@frame

1384 \eq@typeset@equation

1385 }

Typeset equation and left-top number (and shifted)
1386 \def\eq@typeset@LT{%

1387 \dim@a\eq@firstht

1388 \eq@typeset@leftnumber

1389 \eq@typeset@frame

1390 \eq@typeset@equation

1391 }

Typeset equation and left shifted number
1392 \def\eq@typeset@LShifted{%

1393 % place number

1394 \copy\EQ@numbox \penalty\@M

1395 \dim@a\eqlineskip

1396 \if F\eq@frame\else

1397 \setlength\dim@a{\eq@framesep+\eq@framewd}%

1398 \fi

1399 \kern\dim@a

1400 \eq@typeset@frame

1401 \eq@typeset@equation

1402 }

Typeset equation and right middle number
1403 \def\eq@typeset@RM{%

1404 \setlength\dim@a{(\eq@vspan+\ht\EQ@numbox-\dp\EQ@numbox)/2}%

1405 \eq@typeset@rightnumber

1406 \eq@typeset@frame

1407 \eq@typeset@equation

1408 }

Typeset equation and right bottom number
1409 \def\eq@typeset@RB{%

1410 % NOTE: is \eq@dp useful here

1411 \setlength\dim@a{\eq@vspan-\ht\EQ@numbox-\dp\EQ@numbox}%

73

1412 \eq@typeset@rightnumber

1413 \eq@typeset@frame

1414 \eq@typeset@equation

1415 }

Typeset equation and right shifted number
1416 \def\eq@typeset@RShifted{%

1417 % place number

1418 \eq@typeset@frame

1419 \eq@typeset@equation

1420 \penalty\@M

1421 \dim@a\eqlineskip

1422 \if F\eq@frame\else

1423 \addtolength\dim@a{\eq@framesep+\eq@framewd}%

1424 \fi

1425 \parskip\dim@a

1426 \hbox to\hsize{\hfil\copy\EQ@numbox}\@@par%

1427 }

Debugging aid to show all relevant formatting info for a given eqn.
1428 〈∗trace〉
1429 \def\debug@showformat{%

1430 \breqn@debugmsg{Formatting Layout:\eq@layout\space Center/indent: \eqindent\space

1431 Number placement \eqnumside\eqnumplace:

1432 \MessageBreak==== \eq@linewidth=\the\eq@linewidth, \@totalleftmargin=\the\@totalleftmargin,

1433 \MessageBreak==== Centered Lines=\theb@@le\eq@centerlines, Shift Number=\theb@@le\eq@shiftnumber,

1434 \MessageBreak==== \eq@wdT=\the\eq@wdT, \eq@wdMin=\the\eq@wdMin,

1435 \MessageBreak==== LHS=\theb@@le\EQ@hasLHS: \eq@wdL=\the\eq@wdL,

1436 \MessageBreak==== \eq@firstht=\the\eq@firstht, \eq@vspan=\the\eq@vspan

1437 \MessageBreak==== \eq@wdNum=\the\eq@wdNum

1438 \MessageBreak==== \eq@wdCond=\the\eq@wdCond, \conditionsep=\the\conditionsep,

1439 \MessageBreak==== \leftskip=\the\leftskip, \rightskip=\the\rightskip,

1440 \MessageBreak==== \abovedisplayskip=\the\abovedisplayskip,

1441 \MessageBreak==== \belowdisplayskip=\the\belowdisplayskip

1442 \MessageBreak==== parshape=\eq@parshape}%

1443 }

1444 〈/trace〉
Set left & right skips for centered equations, making allowances for numbers

(if any, right, left) and constraint.
Amazingly, I’ve managed to collect all the positioning logic for centered equa-

tions in one place, so it’s more manageable. Unfortunately, by the time it does all
it needs to do, it has evolved I’m (re)using so many temp variables, it’s becoming
unmanageble!

1445 \def\eq@C@setsides{%

1446 % \dim@c = space for number, if any, and not shifted.

1447 \dim@c\z@

1448 \if\eq@hasNumber\if\eq@shiftnumber\else

1449 \dim@c\eq@wdNum

1450 \fi\fi

74

1451 % \dim@e = space for condition(on right), if any and formula is only a single line.(to center nicely)

1452 % but only count it as being right-aligned if we’re not framing, since the frame must enclose it.

1453 \dim@e\z@

1454 \if F\eq@frame

1455 \ifnum\eq@lines=\@ne\ifdim\eq@wdCond>\z@

1456 \setlength\dim@e{\eq@wdCond+\conditionsep}%

1457 \fi\fi\fi

1458 % \dim@b = minimum needed on left max(totalleftmargin, left number space)

1459 \dim@b\z@

1460 \if L\eqnumside\ifdim\dim@b<\dim@c

1461 \dim@b\dim@c

1462 \fi\fi

1463 \ifdim\dim@b<\@totalleftmargin

1464 \dim@b\z@

1465 \else

1466 \addtolength\dim@b{-\@totalleftmargin}%

1467 \fi

1468 % \dim@d = minimum needed on right max(condition, right number space)

1469 \dim@d\dim@e

1470 \if R\eqnumside\ifdim\dim@d<\dim@c

1471 \dim@d\dim@c

1472 \fi\fi

1473 % \dim@a = left margin; initially half available space

1474 % \dim@c = right margin; ditto

1475 \setlength\dim@a{(\eq@linewidth-\eq@wdT+\dim@e+\@totalleftmargin)/2}%

1476 \dim@c=\dim@a

1477 % If too far to the left

1478 \ifdim\dim@a<\dim@b

1479 \addtolength\dim@c{\dim@a-\dim@b}%

1480 \ifdim\dim@c<\z@\dim@c=\z@\fi

1481 \dim@a=\dim@b

1482 % Or if too far to the right

1483 \else\ifdim\dim@c<\dim@d

1484 \addtolength\dim@a{\dim@c-\dim@d}%

1485 \ifdim\dim@a<\z@\dim@a=\z@\fi

1486 \dim@c=\dim@d

1487 \fi\fi

1488 % Now, \dim@d,\dim@e is the left & right glue to center each line for centerlines

1489 \setlength\dim@e{\eq@wdT-\eq@wdMin}\dim@d=\z@

NOTE: Need some work here centering when there’s a condition
1490 % \advance\dim@e-\eq@wdT\multiply\dim@e-1\relax

1491 % \if\eq@wdMin<\dim@e\dim@e\eq@wdMin\fi

1492 % \multiply\dim@e-1\relax\advance\dim@e\eq@wdT

1493 \dim@d\z@

1494 \if\eq@centerlines

1495 \divide\dim@e2\relax

1496 \dim@d=\dim@e

1497 \fi

1498 \setlength\leftskip{\dim@a\@plus\dim@d}%

75

1499 \addtolength\dim@e{\dim@c}%

1500 \setlength\rightskip{\z@\@plus\dim@e}%\@minus5\p@

1501 % Special case: if framing, reduce the stretchiness of the formula (eg. condition)

1502 % Or if we have a right number, FORCE space for it

1503 \dim@b\z@

1504 \if F\eq@frame\else

1505 \dim@b\dim@c

1506 \fi

1507 \if\@And{\eq@hasNumber}{\@Not{\eq@shiftnumber}}%

1508 \if R\eqnumside

1509 \dim@c\eq@wdNum

1510 \ifdim\dim@c>\dim@b

1511 \dim@b\dim@c

1512 \fi

1513 \fi

1514 \fi

1515 % If either of those cases requires hard rightskip, move that part from glue.

1516 \ifdim\dim@b>\z@

1517 \addtolength\dim@e{-\dim@c}%

1518 \rightskip\dim@b\@plus\dim@e%\@minus5\p@

1519 \fi

1520 % And peculiar further special case: in indented environs, width isn’t where it would seem

1521 \ifdim\eq@wdCond>\z@

1522 \addtolength\rightskip{-\@totalleftmargin}%

1523 \fi

1524 \parfillskip\z@skip

1525 }

Set the left and right side spacing for indented equations Some things handled
by eq@C@setsides that probably apply here????

• centerlines

• \@totalleftmargin: SHOULD we move farther right?

Leftskip is normally just the requested indentation
1526 \def\eq@I@setsides{%

1527 \leftskip\mathindent

But move left, if shifted number presumably because of clashed w/ number?
1528 \if\eq@shiftnumber

1529 \setlength\dim@a{\eq@linewidth-\eq@wdT-\mathindent}%

1530 \ifdim\dim@a<\z@

1531 \leftskip=\z@ % Or something minimal?

1532 \fi

1533 \fi

Push gently from right.
1534 \dim@a=\z@

1535 \setlength\dim@b{\eq@linewidth-\leftskip-\eq@wdMin}%

76

Special case: if framing be much more rigid(?)
1536 \if F\eq@frame

1537 \else

1538 \setlength\dim@a{\eq@linewidth-\leftskip-\eq@wdT}

1539 \addtolength\dim@b{-\dim@a}%

1540 \fi

1541 % Or force the space for right number, if needed

1542 % \begin{macrocode}

1543 \if\@And{\eq@hasNumber}{\@Not{\eq@shiftnumber}}%

1544 \if R\eqnumside

1545 \dim@c=\eq@wdNum

1546 \if\dim@c>\dim@a

1547 \addtolength\dim@b{-\dim@c}%

1548 \dim@a=\dim@c

1549 \fi

1550 \fi

1551 \fi

1552 \setlength\rightskip{\dim@a\@plus\dim@b \@minus\hfuzz }%\hfuzz\z@

1553 \parfillskip\z@skip

1554 }

Typesetting pieces: frame, equation and number (if any) \dim@a should
contain the downward displacement of number’s baseline

1555 \def\eq@typeset@leftnumber{%

1556 \setlength\skip@c{\dim@a-\ht\EQ@numbox}%

1557 \vglue\skip@c% NON discardable

1558 \copy\EQ@numbox \penalty\@M

1559 \kern-\dim@a

1560 }

1561 \def\eq@typeset@rightnumber{%

1562 \setlength\skip@c{\dim@a-\ht\EQ@numbox}%

1563 \vglue\skip@c% NON discardable

1564 \hbox to \hsize{\hfil\copy\EQ@numbox}\penalty\@M

1565 \kern-\dim@a

1566 }

1567 \def\eq@typeset@equation{%

1568 \nobreak

1569 \eq@params\eq@parshape

1570 \nointerlineskip\noindent

1571 \add@grp@label

1572 \eq@dump@box\unhbox\EQ@box\@@par

1573 }

30 Framing an equation

\eqframe The \eqframe function is called in vertical mode with the reference point at the top
left corner of the equation, including any allowance for \fboxsep. Its arguments

77

are the width and height of the equation body, plus fboxsep.
1574 \newcommand\eqframe[2]{%

1575 \begingroup

1576 \fboxrule=\eq@framewd\relax\fboxsep=\eq@framesep\relax

1577 \framebox{\z@rule\@height#2\kern#1}%

1578 \endgroup

1579 }

The frame is not typeset at the correct horizontal position. Will fix later.
1580 \def\eq@addframe{%

1581 \hbox to\z@{%

1582 \setlength\dim@a{\eq@framesep+\eq@framewd}%

1583 \kern-\dim@a

1584 \vbox to\z@{\kern-\dim@a

1585 \hbox{\eqframe{\eq@wdT}{\eq@vspan}}%

1586 \vss

1587 }%

1588 \hss

1589 }%

1590 }

1591 \def\eq@typeset@frame{%

1592 \if F\eq@frame\else

1593 % Tricky: put before \noindent, so it’s not affected by glue in \leftskip

1594 \nobreak\nointerlineskip

1595 \vbox to\eq@firstht{\moveright\leftskip\hbox to\z@{\eq@addframe\hss}\vss}%

1596 \kern-\eq@firstht

1597 \fi

1598 }

31 Delimiter handling

The special handling of delimiters is rather complex, but everything is driven
by two motives: to mark line breaks inside delimiters as less desirable than line
breaks elsewhere, and to make it possible to break open left-right boxes so that
line breaks between \left and \right delimiters are not absolutely prohibited.
To control the extent to which line breaks will be allowed inside delimiters, set
\eqbreakdepth to the maximum nesting depth. Depth 0 means never break inside
delimiters.

Note: \eqbreakdepth is not implemented as a LATEX counter because changes
done by \setcounter etc. are always global.

It would be natural to use grouping in the implementation—at an open delim-
iter, start a group and increase mathbin penalties; at a close delimiter, close the
group. But this gives us trouble in situations like the array environment, where
a close delimiter might fall in a different cell of the \halign than the open delim-
iter. Ok then, here’s what we want the various possibilities to expand to. Note
that \right and \biggr are being unnaturally applied to a naturally open-type
delimiter.

78

(-> \delimiter"4... \after@open
\left(->
\@@left \delimiter"4... \after@open

\right(->
\@@right \delimiter"4... \after@close

\biggl(->
\mathopen{\@@left \delimiter... \vrule...\@@right.}
\after@open

\biggr(->
\mathclose{\@@left \delimiter... \vrule...\@@right.}
\after@close

\bigg\vert ->
\mathord{\@@left \delimiter... \vrule...\@@right.}

\biggm\vert ->
\mathrel{\@@left \delimiter... \vrule...\@@right.}

First save the primitive meanings of \left and \right.
1599 \@saveprimitive\left\@@left

1600 \@saveprimitive\right\@@right

The variable \lr@level is used by the first mathrel in an equation to tell
whether it is at top level: yes? break and measure the LHS, no? keep going.

1601 \newcount\lr@level

It would be nice to have better error checking here if the argument is not a
delimiter symbol at all.

1602 \def\eq@left{%

1603 \@ifnext .{\eq@nullleft}{\begingroup \let\delimiter\eq@left@a}%

1604 }

1605 \def\eq@right{%

1606 \@ifnext .{\eq@nullright}{\begingroup \let\delimiter\eq@right@a}%

1607 }

The arguments are: #1 delim symbol, #2 .
1608 \def\eq@left@a#1 #2{\endgroup\@@left\delimiter#1 \after@open}

1609 \def\eq@right@a#1 #2{\endgroup

1610 \@@right\delimiter#1 \after@close \ss@scan{#1}%

1611 }

The null versions.
1612 \def\eq@nullleft#1{\@@left#1\after@open}

1613 \def\eq@nullright#1{\@@right#1\after@close}

Here is the normal operation of \biggl, for example.

\biggl ->\mathopen \bigg
{\mathopen}

\bigg #1->{\hbox {$\left #1\vbox to14.5\p@ {}\right .\n@space $}}
#1<-(

79

For paren matching:) Like \left, \biggl coerces its delimiter to be of mathopen
type even if its natural inclination is towards closing.

The function \delim@reset makes delimiter characters work just about the
same as they would in normal LATEX.

1614 \def\delim@reset{%

1615 \let\after@open\relax \let\after@close\relax

1616 \let\left\@@left \let\right\@@right

1617 }

If the amsmath or exscale package is loaded, it will have defined \bBigg@; if not,
the macros \big and variants will have hard-coded point sizes as inherited through
the ages from plain.tex. In this case we can kluge a little by setting \big@size
to \p@, so that our definition of \bBigg@ will work equally well with the different
multipliers.

1618 \@ifundefined{bBigg@}{% not defined

1619 \let\big@size\p@

1620 \def\big{\bBigg@{8.5}}\def\Big{\bBigg@{11.5}}%

1621 \def\bigg{\bBigg@{14.5}}\def\Bigg{\bBigg@{17.5}}%

1622 \def\biggg{\bBigg@{20.5}}\def\Biggg{\bBigg@{23.5}}%

1623 }{}

1624 \def\bBigg@#1#2{%

1625 {\delim@reset

1626 \left#2%

1627 \vrule\@height#1\big@size\@width-\nulldelimiterspace

1628 \right.

1629 }%

1630 }

.
1631 \def\bigl#1{\mathopen\big{#1}\after@open}

1632 \def\Bigl#1{\mathopen\Big{#1}\after@open}

1633 \def\biggl#1{\mathopen\bigg{#1}\after@open}

1634 \def\Biggl#1{\mathopen\Bigg{#1}\after@open}

1635 \def\bigggl#1{\mathopen\biggg{#1}\after@open}

1636 \def\Bigggl#1{\mathopen\Biggg{#1}\after@open}

1637

1638 \def\bigr#1{\mathclose\big{#1}\after@close}

1639 \def\Bigr#1{\mathclose\Big{#1}\after@close}

1640 \def\biggr#1{\mathclose\bigg{#1}\after@close}

1641 \def\Biggr#1{\mathclose\Bigg{#1}\after@close}

1642 \def\bigggr#1{\mathclose\biggg{#1}\after@close}

1643 \def\Bigggr#1{\mathclose\Biggg{#1}\after@close}

1644

1645 %% No change needed, I think. [mjd,1998/12/04]

1646 %%\def\bigm{\mathrel\big}

1647 %%\def\Bigm{\mathrel\Big}

1648 %%\def\biggm{\mathrel\bigg}

1649 %%\def\Biggm{\mathrel\Bigg}

1650 %%\def\bigggm{\mathrel\biggg}

1651 %%\def\Bigggm{\mathrel\Biggg}

80

\m@@DeL

\d@@DeL

\m@@DeR

\d@@DeR

\m@@DeB

\d@@DeB

Original definition of \m@DeL from flexisym is as follows. \m@DeR and \m@DeB are
the same except for the math class number.

\def\m@DeL#1#2#3{%
\delimiter"4\@xp\delim@a\csname sd@#1#2#3\endcsname #1#2#3 }

Save the existing meanings of \m@De[LRB].
1652 \let\m@@DeL\m@DeL \let\m@@DeR\m@DeR \let\m@@DeB\m@DeB

1653 \def\d@@DeL#1#2#3{%

1654 \delimiter"4\@xp\delim@a\csname sd@#1#2#3\endcsname #1#2#3 \after@open

1655 }

1656 \def\d@@DeR#1#2#3{%

1657 \delimiter"5\@xp\delim@a\csname sd@#1#2#3\endcsname #1#2#3 \after@close

1658 }

1659 \def\d@@DeB#1#2#3{%

1660 \delimiter"0\@xp\delim@a\csname sd@#1#2#3\endcsname #1#2#3 \after@bidir

1661 }

BRM: These weren’t defined, but apparently should be. Are these the right val-
ues???

1662 \let\m@@DeA\m@DeA\let\d@@DeA\m@DeA%

\after@open

\after@close

\after@bidir

\zero@bop

\bop@incr

\after@open and \after@close are carefully written to avoid the use of grouping
and to run as fast as possible. \zero@bop is the value used for \prebinoppenalty
at delimiter level 0, while \bop@incr is added for each level of nesting. The
standard values provide that breaks will be prohibited within delimiters below
nesting level 2.

1663 \let\after@bidir\@empty

1664 \mathchardef\zero@bop=888 \relax

1665 \mathchardef\bop@incr=4444 \relax

1666 \def\after@open{%

1667 \global\advance\lr@level\@ne

1668 \prebinoppenalty\bop@incr \multiply\prebinoppenalty\lr@level

1669 \advance\prebinoppenalty\zero@bop

1670 \ifnum\eqbreakdepth<\lr@level

1671 \let\m@Bin\m@@Bin

Inside delimiters, add some fillglue before binops so that a broken off portion will
get thrown flush right. Also shift it slightly further to the right to ensure that it
clears the opening delimiter.

1672 \else

1673 \eq@binoffset=\eqbinoffset

1674 \advance\eq@binoffset\lr@level\eqdelimoffset plus1fill\relax

1675 \def\dt@fill@cancel{\hskip\z@ minus1fill\relax}%

1676 \fi

1677 \penalty\@M % BRM: discourage break after an open fence?

1678 }

1679 \def\after@close{%

1680 \global\advance\lr@level\m@ne

1681 \prebinoppenalty\bop@incr \multiply\prebinoppenalty\lr@level

81

1682 \advance\prebinoppenalty\zero@bop

1683 \ifnum\eqbreakdepth<\lr@level

1684 \else \let\m@Bin\d@@Bin

1685 \fi

When we get back to level 0, no delimiters, remove the stretch component of
\eqbinoffset.

1686 \ifnum\lr@level<\@ne \eq@binoffset=\eqbinoffset\relax \fi

1687 }

\subsup@flag

\ss@scan

\ss@scan is called after a \right delimiter and looks ahead for sub and superscript
tokens. If sub and/or superscripts are present, we adjust the line-ending penalty
to distinguish the various cases (sub, sup, or both). This facilitates the later work
of excising the sub/sup box and reattaching it with proper shifting.

Sub/Superscript measurement
BRM: There’s possibly a problem here. When \ss@scan gets invoked after

a \left...\right pair in the LHS during \eq@measure, it produces an extra box
(marked with \penalty 3); Apparently \eq@repack expects only one for the LHS.
The end result is \eq@wdL =¿ 0.0pt !!! (or at least very small)

1688 \let\subsup@flag=\count@

1689 \def\ss@delim@a#1#2#3#4{\xdef\right@delim@code{\number"#2#3#4}}

The argument of \ss@scan is an expanded form of a right-delimiter macro. We
want to use the last three digits in the expansion to define \right@delim@code.
The assignment to a temp register is just a way to scan away the leading digits
that we don’t care about.

1690 \def\ss@scan#1{%

This part of the code.
1691 \begingroup

1692 \let\delim@a\ss@delim@a \@tempcnta#1\relax

1693 \endgroup

1694 \subsup@flag\@M \afterassignment\ss@scan@a \let\@let@token=}

1695 \def\ss@scan@a{%

1696 \let\breqn@next\ss@scan@b

1697 \ifx\@let@token\sb \advance\subsup@flag\@ne\else

1698 \ifx\@let@token\@@subscript \advance\subsup@flag\@ne\else

1699 \ifx\@let@token\@@subscript@other \advance\subsup@flag\@ne\else

1700 \ifx\@let@token\sp \advance\subsup@flag\tw@\else

1701 \ifx\@let@token\@@superscript \advance\subsup@flag\tw@\else

1702 \ifx\@let@token\@@superscript@other \advance\subsup@flag\tw@\else

1703 \ss@finish

1704 \let\breqn@next\relax

1705 \fi\fi\fi\fi\fi\fi

1706 \breqn@next\@let@token

1707 }

1708 \def\ss@scan@b#1#2{#1{%

hack! coff!

82

1709 \let\m@Bin\m@@Bin \let\m@Rel\m@@Rel

1710 #2}\afterassignment\ss@scan@a \let\@let@token=}%

We need to keep following glue from disappearing—e.g.,, a thickmuskip or med-
muskip from a following mathrel or mathbin symbol.

1711 \def\ss@finish{%

1712 \@@vadjust{\penalty\thr@@}%

1713 \penalty\right@delim@code \penalty-\subsup@flag \keep@glue

1714 }

\eq@lrunpack For \eq@lrunpack we need to break open a left-right box and reset it just in
case it contains any more special breaks. After it is unpacked the recursion of
\eq@repack will continue, acting on the newly created lines.

1715 \def\eq@lrunpack{\setbox\z@\lastbox

We remove the preceding glue item and deactivate baselineskip for the next line,
otherwise we would end up with three items of glue (counting parskip) at this
point instead of the single one expected by our recursive repacking procedure.

1716 \unskip \nointerlineskip

Then we open box 0, take the left-right box at the right end of it, and break that
open. If the line-ending penalty is greater than 10000, it means a sub and/or
superscript is present on the right delimiter and the box containing them must be
taken off first.

1717 \noindent\unhbox\z@ \unskip

1718 \subsup@flag-\lastpenalty \unpenalty

1719 \xdef\right@delim@code{\number\lastpenalty}%

1720 \unpenalty

1721 \ifnum\subsup@flag>\@M

1722 \advance\subsup@flag-\@M

1723 \setbox\tw@\lastbox

1724 \else \setbox\tw@\box\voidb@x

1725 \fi

1726 \setbox\z@\lastbox

1727 \ifvoid\tw@ \unhbox\z@

1728 \else \lrss@reattach % uses \subsup@flag, box\z@, box\tw@

1729 \fi

The reason for adding a null last line here is that the last line will contain parfillskip
in addition to rightskip, and a final penalty of 10000 instead of −1000N (1 ≤ N ≤
9), which would interfere with the usual processing. Setting a null last line and
discarding it dodges this complication. The penalty value −10001 is a no-op case
in the case statement of \eq@repacka.

1730 \penalty-\@Mi\z@rule\@@par

1731 \setbox\z@\lastbox \unskip\unpenalty

1732 %%{\showboxbreadth\maxdimen\showboxdepth99\showlists}%

1733 }

\lrss@reattach Well, for a small self-contained computation, carefully hand-allocated dimens
should be safe enough. But let the maintainer beware! This code cannot be

83

arbitrarily transplanted or shaken up without regard to grouping and interaction
with other hand-allocated dimens.

1734 \dimendef\sub@depth=8 \dimendef\sup@base=6

1735 \dimendef\prelim@sub@depth=4 \dimendef\prelim@sup@base=2

1736 \def\sym@xheight{\fontdimen5\textfont\tw@}

1737 \def\sup@base@one{\fontdimen13\textfont\tw@}

1738 \def\sub@base@one{\fontdimen16\textfont\tw@}

1739 \def\sub@base@two{\fontdimen17\textfont\tw@}

Note that only \sup@drop and \sub@drop come from the next smaller math style.
1740 \def\sup@drop{\fontdimen18\scriptfont\tw@}

1741 \def\sub@drop{\fontdimen19\scriptfont\tw@}

Provide a mnemonic name for the math axis fontdimen, if it’s not already defined.
1742 \providecommand{\mathaxis}{\fontdimen22\textfont\tw@}

Assumes box 2 contains the sub/sup and box 0 contains the left-right box. This
is just a repeat of the algorithm in tex.web, with some modest simplifications from
knowing that this is only going to be called at top level in a displayed equation,
thus always mathstyle = uncramped displaystyle.

1743 \def\lrss@reattach{%

1744 \begingroup

1745 % "The TeXbook" Appendix G step 18:

1746 \setlength\prelim@sup@base{\ht\z@-\sup@drop}%

1747 \setlength\prelim@sub@depth{\dp\z@ +\sub@drop}%

1748 \unhbox\z@

1749 \ifcase\subsup@flag % case 0: this can’t happen

1750 \or \lr@subscript % case 1: subscript only

1751 \or \lr@superscript % case 2: superscript only

1752 \else \lr@subsup % case 3: sub and superscript both

1753 \fi

1754 \endgroup

1755 }

1756 \def\lr@subscript{%

1757 \sub@depth\sub@base@one

1758 \ifdim\prelim@sub@depth>\sub@depth \sub@depth\prelim@sub@depth\fi

1759 \setlength\dim@a{\ht\tw@ -.8\sym@xheight}%

1760 \ifdim\dim@a>\sub@depth \sub@depth=\dim@a \fi

1761 \twang@adjust\sub@depth

1762 \lower\sub@depth\box\tw@

1763 }

1764 \def\lr@superscript{%

1765 \sup@base\sup@base@one

1766 \ifdim\prelim@sup@base>\sup@base \sup@base\prelim@sup@base\fi

1767 \setlength\dim@a{\dp\tw@ -.25\sym@xheight}%

1768 \ifdim\dim@a>\sup@base \sup@base\dim@a \fi

1769 \twang@adjust\sup@base

1770 \raise\sup@base\box\tw@

1771 }

84

1772 \def\lr@subsup{%

1773 \sub@depth\sub@base@two

1774 \ifdim\prelim@sub@depth>\sub@depth \sub@depth\prelim@sub@depth \fi

1775 \twang@adjust\sub@depth

1776 \lower\sub@depth\box\tw@

1777 }

For delimiters that curve top and bottom, the twang factor allows horizontal
shifting of the sub and superscripts so they don’t fall too far away (or too close
for that matter). This is accomplished by arranging for (e.g.,) \right\rangle
to leave a penalty N in the math list before the subsup penalty that triggers
\lrss@reattach, where N is the mathcode of \rangle (ignoring “small” variant).

1778 \def\twang@adjust#1{%

1779 \begingroup

1780 \@ifundefined{twang@\right@delim@code}{}{%

1781 \setlength\dim@d{#1-\mathaxis}%

1782 % put an upper limit on the adjustment

1783 \ifdim\dim@d>1em \dim@d 1em \fi

1784 \kern\csname twang@\right@delim@code\endcsname\dim@d

1785 }%

1786 \endgroup

1787 }

The method used to apply a “twang” adjustment is just an approximate solution
to a complicated problem. We make the following assumptions that hold true,
approximately, for the most common kinds of delimiters:

1. The right delimiter is symmetrical top to bottom.

2. There is an upper limit on the size of the adjustment.

3. When we have a superscript, the amount of left-skew that we want to apply
is linearly proportional to the distance of the bottom left corner of the su-
perscript from the math axis, with the ratio depending on the shape of the
delimiter symbol.

. By symmetry, Assumption 3 is true also for subscripts (upper left corner).
Assumption 2 is more obviously true for parens and braces, where the largest
super-extended versions consist of truly vertical parts with slight bending on the
ends, than it is for a \rangle. But suppose for the sake of expediency that it is
approximately true for rangle symbols also.

Here are some passable twang factors for the most common types of delimiters
in cmex10, as determined by rough measurements from magnified printouts.

vert bar, double vert: 0
square bracket: -.1

curly brace: -.25
parenthesis: -.33

rangle: -.4

85

Let’s provide a non-private command for changing the twang factor of a given
symbol.

1788 \newcommand{\DeclareTwang}[2]{%

1789 \ifcat.\@nx#1\begingroup

1790 \lccode‘\~=‘#1\lowercase{\endgroup \DeclareTwang{~}}{#2}%

1791 \else

1792 \@xp\decl@twang#1?\@nil{#2}%

1793 \fi

1794 }

Note that this is dependent on a fixed interpretation of the mathgroup number
#4 .

1795 \def\decl@twang#1#2#3#4#5#6#7\@nil#8{%

1796 \@namedef{twang@\number"#4#5#6}{#8}%

1797 }

1798 \DeclareTwang{\rangle}{-.4}

1799 \DeclareTwang{)}{-.33}

1800 \DeclareTwang{\rbrace}{-.25}

32 Series of expressions

The dseries environment is for a display containing a series of expressions of the
form ‘A, B’ or ‘A and B’ or ‘A, B, and C’ and so on. Typically the expressions
are separated by a double quad of space. If the expressions in a series don’t all fit
in a single line, they are continued onto extra lines in a ragged-center format.

1801 \newenvironment{dseries}{\let\eq@hasNumber\@True \@optarg\@dseries{}}{}%

1802 \def\enddseries#1{\check@punct@or@qed}%

And the unnumbered version of same.
1803 \newenvironment{dseries*}{\let\eq@hasNumber\@False \@optarg\@dseries{}}{}%

1804 \@namedef{enddseries*}#1{\check@punct@or@qed}%

1805 \@namedef{end@dseries*}{\end@dseries}%

1806 \def\@dseries[#1]{%

Turn off the special breaking behavior of mathrels etc. for math formulas embed-
ded in a dseries environment.

BRM: DS Expermient: Use alternative display setup.
1807 % \def\display@setup{\displaystyle}%

1808 \let\display@setup\dseries@display@setup

1809 % Question: should this be the default for dseries???

1810 % \let\eq@centerlines\@True

1811 \global\eq@wdCond\z@

BRM: use special layout for dseries
1812 % \@dmath[#1]%

1813 \@dmath[layout={M},#1]%

1814 \mathsurround\z@\@@math \penalty\@Mi

1815 \let\endmath\ends@math

1816 \def\premath{%

86

BRM: Tricky to cleanup space OR add space ONLY BETWEEN math!
1817 \ifdim\lastskip<.3em \unskip

1818 \else\ifnum\lastpenalty<\@M \dquad\fi\fi

1819 }%

BRM: Tricky; if a subformula breaks, we’d like to start the next on new line!
1820 \def\postmath{\unpenalty\eq@addpunct \penalty\intermath@penalty \dquad \@ignoretrue}%

1821 \ignorespaces

1822 }

1823 \def\end@dseries{%

1824 \unskip\unpenalty

1825 \@@endmath \mathsurround\z@ \end@dmath

1826 }

BRM: Try this layout for dseries: Essentially layout i, but w/o limit to 1 line.
And no fallback!

1827 \def\eq@try@layout@M{%

1828 \edef\@parshape{\parshape 1 0pt \the\eq@linewidth\relax}%

1829 \eq@trial@b{M}{}%

1830 }

BRM: Tricky to get right value here. Prefer breaks between formula if we’ve got
to break at all.

1831 %\def\intermath@penalty{-201}%

1832 \def\intermath@penalty{-221}%

BRM: A bit tighter than it was (1em minus.25em)
1833 %\newcommand\dquad{\hskip0.4em}

1834 \newcommand\dquad{\hskip0.6em minus.3em}

1835 \newcommand\premath{}\newcommand\postmath{}

Change the math environment to add \premath and \postmath. They are
no-ops except inside a dseries environment.

Redefinition of math environment to take advantage of dseries env.
1836 \renewenvironment{math}{%

1837 \leavevmode \premath

1838 \ifmmode\@badmath\else\@@math\fi

1839 }{%

1840 \ifmmode\@@endmath\else\@badmath\fi

1841 }

1842 \def\ends@math#1{\check@punct@or@qed}

1843 \def\end@math{%

1844 \ifmmode\@@endmath\else\@badmath\fi

1845 \postmath

1846 }

33 Equation groups

For many equation groups the strategy is easy: just center each equation indi-
vidually following the normal rules for a single equation. In some groups, each

87

equation gets its own number; in others, a single number applies to the whole
group (and may need to be vertically centered on the height of the group). In still
other groups, the equations share a parent number but get individual equation
numbers consisting of parent number plus a letter.

If the main relation symbols in a group of equations are to be aligned, then
the final alignment computations cannot be done until the end of the group—i.e.,,
the horizontal positioning of the first n−1 equations cannot be done immediately.
Yet because of the automatic line breaking, we cannot calculate an initial value
of RHS-max over the whole group unless we do a trial run on each equation first
to find an RHS-max for that equation. Once we know RHS-group-max and LHS-
group-max we must redo the trial set of each equation because they may affect
the line breaks. If the second trial for an equation fails (one of its lines exceeds
the available width), but the first one succeeded, fall back to the first trial, i.e.,
let that equation fall out of alignment with the rest of the group.

All right then, here is the general idea of the whole algorithm for group align-
ment. To start with, ignore the possibility of equation numbers so that our equa-
tion group has the form:

LHS[1] RHS[1,1] RHS[1,2] ... RHS[1,n[1]]
LHS[2] RHS[2,1] RHS[2,2] ... RHS[2,n[2]]
...

LHS[3] RHS[3,1] RHS[3,2] ... RHS[3,n[3]]

The number of RHS’s might not be the same for all of the equations. First,
accumulate all of the equation contents in a queue, checking along the way to find
the maximum width of all the LHS’s and the maximum width of all the RHS’s.
Call these widths maxwd L and maxwd R. Clearly if maxwd L + maxwd R is less
than or equal to the available equation width then aligning all of the equations is
going to be simple.

Otherwise we are going to have to break at least one of the RHS’s and/or at
least one of the LHS’s. The first thing to try is using maxwd L for the LHS’s
and breaking all the RHS’s as needed to fit in the remaining space. However, this
might be a really dumb strategy if one or more of the LHS’s is extraordinarily wide.
So before trying that we check whether maxwd L exceeds some threshold width
beyond which it would be unsensible not to break the LHS. Such as, max(one-
third of the available width; six ems), or something like that. Or how about this?
Compare the average LHS width and RHS width and divide up the available width
in the same ratio for line breaking purposes.

BRM: Fairly broad changes; it mostly didn’t work before (for me).

\begin{dgroup} produces a ‘numbered’ group The number is the next equa-
tion number. There are 2 cases:

• If ANY contained equations are numbered (\begin{dmath}), then they
will be subnumbered: eg 1.1a and the group number is not otherwise
displayed.

88

• If ALL contained equations are unnumbered (\begin{dmath*}) then
the group, as a whole, gets a number displayed, using the same number
placement as for equations.

\begin{dgroup*} produces an unnumbered group. Contained equations are
numbered, or not, as normal. But note that in the mixed case, it’s too late to
force the unnumbered eqns to \retry@with@number We’ll just do a simple
check of dimensions, after the fact, and force a shiftnumber if we’re stuck.

NOTE: Does this work for dseries, as well? (alignment?)

NOTE: Does \label attach to the expected thing?

For number placement We use shiftnumber placement on ALL equations if
ANY equations need it, or if an unnumbered equation is too wide to be
aligned, given that the group or other eqns are numbered. [does this latter
case interract with the chosen alignment?]

For Alignment As currently coded, it tries to align on relations, by default. If
LHS’s are not all present, or too long, it switches to left-justify. Maybe there
are other cases that should switch? Should there be a case for centered?

NOTE: Should there be some options to choose alignment?

\eq@group

\GRP@top 1847 \let\eq@group\@False

1848 \let\grp@shiftnumber\@False

1849 \let\grp@hasNumber\@False

1850 \let\grp@eqs@numbered\@False

1851 \let\grp@aligned\@True

Definition of the dgroup environment.
1852 \newenvironment{dgroup}{%

1853 \let\grp@hasNumber\@True\@optarg\@dgroup{}%

1854 }{%

1855 \end@dgroup

1856 }

And the.
1857 \newtoks\GRP@queue

1858 \newenvironment{dgroup*}{%

1859 \let\grp@hasNumber\@False\@optarg\@dgroup{}%

1860 }{%

1861 \end@dgroup

1862 }

1863 \def\@dgroup[#1]{%

1864 〈trace〉 \breqn@debugmsg{=== DGROUP ==}%

1865 \let\eq@group\@True \global\let\eq@GRP@first@dmath\@True

1866 \global\GRP@queue\@emptytoks \global\setbox\GRP@box\box\voidb@x

1867 \global\let\GRP@label\@empty

1868 \global\grp@wdL\z@\global\grp@wdR\z@\global\grp@wdT\z@

89

1869 \global\grp@linewidth\z@\global\grp@wdNum\z@

1870 \global\let\grp@eqs@numbered\@False

1871 \global\let\grp@aligned\@True

1872 \global\let\grp@shiftnumber\@False

1873 \eq@prelim

1874 \setkeys{breqn}{#1}%

1875 \if\grp@hasNumber \grp@setnumber \fi

1876 }

1877 \def\end@dgroup{%

1878 \EQ@displayinfo \grp@finish

1879 \if\grp@hasNumber\grp@resetnumber\fi

1880 }

If the amsmath package is not loaded the parentequation counter will not be de-
fined.

1881 \@ifundefined{c@parentequation}{\newcounter{parentequation}}{}

Init.
1882 \global\let\GRP@label\@empty

1883 \def\add@grp@label{%

1884 \ifx\@empty\GRP@label

1885 \else \GRP@label \global\let\GRP@label\@empty

1886 \fi

1887 }

Before sending down the ‘equation’ counter to the subordinate level, set the current
number in \EQ@numbox. The \eq@setnumber function does everything we need
here. If the child equations are unnumbered, \EQ@numbox will retain the group
number at the end of the group.

1888 \def\grp@setnumber{%

1889 \global\let\GRP@label\next@label \global\let\next@label\@empty

1890 % Trick \eq@setnumber to doing our work for us.

1891 \let\eq@hasNumber\@True

1892 \eq@setnumber

Define \theparentequation equivalent to current \theequation. \edef is nec-
essary to expand the current value of the equation counter. This might in rare
cases cause something to blow up, in which case the user needs to add \protect.

1893 \global\sbox\GRP@numbox{\unhbox\EQ@numbox}%

1894 \grp@wdNum\eq@wdNum

1895 \let\eq@hasNumber\@False

1896 \let\eq@number\@empty

1897 \eq@wdNum\z@

1898 %

1899 \protected@edef\theparentequation{\theequation}%

1900 \setcounter{parentequation}{\value{equation}}%

And set the equation counter to 0, so that the normal incrementing processes will
produce the desired results if the child equations are numbered.

1901 \setcounter{equation}{0}%

1902 \def\theequation{\theparentequation\alph{equation}}%

90

1903 〈trace〉 \breqn@debugmsg{Group Number \theequation}%

1904 }

At the end of a group, need to reset the equation counter.
1905 \def\grp@resetnumber{%

1906 \setcounter{equation}{\value{parentequation}}%

1907 }

1908 \newbox\GRP@box

1909 \newbox\GRP@wholebox

Save data for this equation in the group

• push the trial data onto end of \GRP@queue.

• push an hbox onto the front of \GRP@box containing: \EQ@box, \EQ@copy,
\penalty 1 and \EQ@numbox.

\grp@push For putting the equation on a queue.
1910 \def\grp@push{%

1911 \global\GRP@queue\@xp\@xp\@xp{\@xp\the\@xp\GRP@queue

1912 \@xp\@elt\@xp{\EQ@trial}%

1913 }%

1914 \global\setbox\GRP@box\vbox{%

1915 \hbox{\box\EQ@box\box\EQ@copy\penalty\@ne\copy\EQ@numbox}%

1916 \unvbox\GRP@box

1917 }%

1918 \EQ@trial

1919 \if\eq@isIntertext\else

1920 \ifdim\eq@wdL>\grp@wdL \global\grp@wdL\eq@wdL \fi

1921 \ifdim\eq@wdT>\grp@wdT \global\grp@wdT\eq@wdT \fi

1922 \setlength\dim@a{\eq@wdT-\eq@wdL}%

1923 \ifdim\dim@a>\grp@wdR \global\grp@wdR\dim@a \fi

1924 \ifdim\eq@linewidth>\grp@linewidth \global\grp@linewidth\eq@linewidth\fi

1925 \if\eq@hasNumber

1926 \global\let\grp@eqs@numbered\@True

1927 \ifdim\eq@wdNum>\grp@wdNum\global\grp@wdNum\eq@wdNum\fi

1928 \fi

1929 \if\EQ@hasLHS\else\global\let\grp@aligned\@False\fi

1930 \if D\eq@layout \global\let\grp@aligned\@False\fi % Layout D (usually) puts rel on 2nd line.

1931 \if\eq@shiftnumber\global\let\grp@shiftnumber\@True\fi % One eq shifted forces all.

1932 \fi

1933 }

\grp@finish Set accumulated equations from a dgroup environment.
BRM: Questionable patch!! When processing the \GRP@queue, put it into a

\vbox, then \unvbox it. This since there’s a bizarre problem when the \output
routine gets invoked at an inopportune moment: All the not-yet-processed
\GRP@queue ends up in the \@freelist and bad name clashes happen. Of course,
it could be due to some other problem entirely!!!

1934 \def\grp@finish{%

91

1935 % \debug@box\GRP@box

1936 % \breqn@debugmsg{\GRP@queue: \the\GRP@queue}%

== Now that we know the collective measurements, make final decision about
alignment & shifting. Check if alignment is still possible

1937 \setlength\dim@a{\grp@wdL+\grp@wdR-4em}% Allowance for shrink?

1938 \if\grp@aligned

1939 \ifdim\dim@a>\grp@linewidth

1940 \global\let\grp@aligned\@False

1941 \fi

1942 \fi

If we’re adding an unshifted group number that equations didn’t know about,
re-check shifting

1943 \addtolength\dim@a{\grp@wdNum }% Effective length

1944 \if\grp@shiftnumber

1945 \else

1946 \if\@And{\grp@hasNumber}{\@Not\grp@eqs@numbered}

1947 \ifdim\dim@a>\grp@linewidth

1948 \global\let\grp@shiftnumber\@True

1949 \fi

1950 \fi

1951 \fi

If we can still align, total width is sum of maximum LHS & RHS
1952 \if\grp@aligned

1953 \global\grp@wdT\grp@wdL

1954 \global\advance\grp@wdT\grp@wdR

1955 \fi

1956 〈∗trace〉
1957 \breqn@debugmsg{======= DGROUP Formatting

1958 \MessageBreak==== \grp@wdL=\the\grp@wdL, \grp@wdR=\the\grp@wdR

1959 \MessageBreak==== Shift Number=\theb@@le\grp@shiftnumber, Eqns. numbered=\theb@@le\grp@eqs@numbered

1960 \MessageBreak==== Aligned=\theb@@le\grp@aligned

1961 \MessageBreak==== \grp@wdNum=\the\grp@wdNum}%

1962 〈/trace〉
BRM: Originally this stuff was dumped directly, without capturing it in a \vbox

1963 \setbox\GRP@wholebox\vbox{%

1964 \let\@elt\eqgrp@elt

1965 \the\GRP@queue

1966 }%

If we’re placing a group number (not individual eqn numbers) NOTE: For now,
just code up LM number NOTE: Come back and handle other cases. NOTE:
Vertical spacing is off, perhaps because of inter eqn. glue

A bit of a hack to get the top spacing correct. Fix this logic properly some
day. Also, we do the calculation in a group for maximum safety.

1967 \global\let\eq@GRP@first@dmath\@True

1968 \begingroup

1969 \dmath@first@leftskip

92

1970 \eq@topspace{\vskip\parskip}%

1971 \endgroup

1972 \if\@And{\grp@hasNumber}{\@Not{\grp@eqs@numbered}}%

1973 % \eq@topspace{\vskip\parskip}%

1974 \if\grp@shiftnumber

1975 \copy\GRP@numbox \penalty\@M

1976 \kern\eqlineskip

1977 \else

1978 \setlength\dim@a{%

1979 (\ht\GRP@wholebox+\dp\GRP@wholebox+\ht\GRP@numbox-\dp\GRP@numbox)/2}%

1980 \setlength\skip@c{\dim@a-\ht\GRP@numbox}%

1981 \vglue\skip@c% NON discardable

1982 \copy\GRP@numbox \penalty\@M

1983 〈∗trace〉
1984 \breqn@debugmsg{GROUP NUMBER: preskip:\the\skip@c, postkern:\the\dim@a, height:\the\ht\GRP@wholebox,

1985 \MessageBreak==== box height:\the\ht\GRP@numbox, box depth:\the\dp\GRP@numbox}%

1986 〈/trace〉
1987 \kern-\dim@a

1988 \kern-\abovedisplayskip % To cancel the topspace above the first eqn.

1989 \fi

1990 \fi

1991 〈∗trace〉
1992 %\debug@box\GRP@wholebox

1993 〈/trace〉
1994 \unvbox\GRP@wholebox

1995 \let\@elt\relax

We’d need to handle shifted, right number here, too!!!
1996 \eq@botspace % not needed unless bottom number?

1997 }

\eqgrp@elt Mission is to typeset the next equation from the group queue.
The arg is an \EQ@trial

1998 \def\eqgrp@elt#1{%

1999 \global\setbox\GRP@box\vbox{%

2000 \unvbox\GRP@box

2001 \setbox\z@\lastbox

2002 \setbox\tw@\hbox{\unhbox\z@

2003 \ifnum\lastpenalty=\@ne

2004 \else

2005 \global\setbox\EQ@numbox\lastbox

2006 \fi

2007 \unpenalty

2008 \global\setbox\EQ@copy\lastbox

2009 \global\setbox\EQ@box\lastbox

2010 }%

2011 }%

2012 \begingroup \let\eq@botspace\relax

2013 #1%

2014 \if\eq@isIntertext

93

2015 \vskip\belowdisplayskip

2016 \unvbox\EQ@copy

2017 \else

2018 \grp@override

2019 \eq@finish

2020 \fi

2021 \endgroup

2022 }

Override the \eq@trial data as needed for this equation in this group NOTE:
w/ numbering variations (see above), we may need to tell \eq@finish to allocate
space for a number, but not actually have one

2023 \def\grp@override{%

For aligned (possibly becomes an option?) For now ASSUMING we started out
as CLM!!!

2024 \def\eqindent{I}%

compute nominal left for centering the group
2025 \setlength\dim@a{(\grp@linewidth-\grp@wdT)/2}%

Make sure L+R not too wide; should already have unset alignment
2026 \ifdim\dim@a<\z@\dim@a=\z@\fi

2027 \dim@b\if L\eqnumside\grp@wdNum\else\z@\fi

make sure room for number on left, if needed.
2028 \if\grp@shiftnumber\else

2029 \ifdim\dim@b>\dim@a\dim@a\dim@b\fi

2030 \fi

2031 \if\grp@aligned

2032 \addtolength\dim@a{\grp@wdL-\eq@wdL}%

2033 \fi

2034 \mathindent\dim@a

2035 \ifdim\dim@b>\dim@a

2036 \let\eq@shiftnumber\@True

2037 \fi

Could set \def\eqnumplace{T} (or even (m) if indentation is enough).
NOTE: Work out how this should interact with the various formats!!! NOTE:

should recognize the case where the LHS’s are a bit Wild, and then do simple left
align (not on relation)

2038 }

34 The darray environment

There are two potential applications for darray. One is like eqnarray where the
natural structure of the material crosses the table cell boundaries, and math op-
erator spacing needs to be preserved across cell boundaries. And there is also the
feature of attaching an equation number to each row. The other application is
like a regular array but with automatic displaystyle math in each cell and better

94

interline spacing to accommodate outsize cell contents. In this case it is difficult
to keep the vert ruling capabilities of the standard array environment without
redoing the implementation along the lines of Arseneau’s tabls package. Because
the vert ruling feature is at cross purposes with the feature of allowing interline
stretch and page breaks within a multiline array of equations, the darray environ-
ment is targeted primarily as an alternative to eqnarray, and does not support
vertical ruling.

Overall strategy for darray is to use \halign for the body. In the case of a
group, use a single halign for the whole group!

What about intertext?

That’s the most reliable way to get accurate column widths. Don’t spread the
halign to the column width, just use the natural width. Then, if we repack the
contents of the halign into \EQ@box and \EQ@copy, as done for dmath, and twiddle
a bit with the widths of the first and last cell in each row, we can use the same
algorithms for centering and equation number placement as dmath! As well as
handling footnotes and vadjust objects the same way.

We can’t just use \arraycolsep for darray, if we want to be able to change
it without screwing up interior arrays. So let’s make a new colsep variable. The
initial value is ‘2em, but let it shrink if necessary’.

2039 \newskip\darraycolsep \darraycolsep 20pt plus1fil minus12pt

Let’s make a nice big default setup with eighteen columns, split up into six sets
of lcr like eqnarray.

2040 \newcount\cur@row \newcount\cur@col

2041 \def\@tempa#1#2#3{%

2042 \cur@col#1 \hfil

2043 \setbox\z@\hbox{$\displaystyle####\m@th$}\@nx\col@box

2044 \tabskip\z@skip

2045 &\cur@col#2 \hfil

2046 \setbox\z@\hbox{$\displaystyle\mathord{}####\mathord{}\m@th$}\@nx\col@box

2047 \hfil

2048 &\cur@col#3 \setbox\z@\hbox{$\displaystyle####\m@th$}\@nx\col@box

2049 \hfil\tabskip\darraycolsep

2050 }

2051 \xdef\darray@preamble{%

2052 \@tempa 123&\@tempa 456&\@tempa 789%

2053 &\@tempa{10}{11}{12}&\@tempa{13}{14}{15}&\@tempa{16}{17}{18}%

2054 \cr

2055 }

2056 \@ifundefined{Mathstrut@}{\let\Mathstrut@\strut}{}

2057 \def\darray@cr{\Mathstrut@\cr}

2058 \def\col@box{%

2059 〈∗trace〉
2060 %\breqn@debugmsg{Col \number\cur@row,\number\cur@col: \the\wd\z@\space x \the\ht\z@+\the\dp\z@}%

2061 〈/trace〉
2062 \unhbox\z@

2063 }

95

2064 \newenvironment{darray}{\@optarg\@darray{}}{}

2065 \def\@darray[#1]{%

2066 〈trace〉 \breqn@debugmsg{=== DARRAY ==}%

2067 \if\eq@group\else\eq@prelim\fi

Init the halign preamble to empty, then unless the ‘cols’ key is used to provide a
non-null preamble just use the default darray preamble which is a multiple lcr.

2068 \global\let\@preamble\@empty

2069 \setkeys{breqn}{#1}%

2070 \the\eqstyle \eq@setnumber

2071 \ifx\@preamble\@empty \global\let\@preamble\darray@preamble \fi

2072 \check@mathfonts

2073 % \let\check@mathfonts\relax % tempting, but too risky

2074 \@xp\let\csname\string\ \endcsname\darray@cr

2075 \setbox\z@\vbox\bgroup

2076 \everycr{\noalign{\global\advance\cur@row\@ne}}%

2077 \tabskip\z@skip \cur@col\z@

2078 \global\cur@row\z@

2079 \penalty\@ne % flag for \dar@repack

2080 \halign\@xp\bgroup\@preamble

2081 }

Assimilate following punctuation.
2082 \def\enddarray#1{\check@punct@or@qed}

2083 \def\end@darray{%

2084 \ifvmode\else \eq@addpunct \Mathstrut@\fi\crcr \egroup

2085 \dar@capture

2086 \egroup

2087 }

The \dar@capture function steps back through the list of row boxes and grinds
them up in the best possible way.

2088 \def\dar@capture{%

2089 %% \showboxbreadth\maxdimen\showboxdepth99\showlists

2090 \eq@wdL\z@ \eq@wdRmax\z@

2091 \dar@repack

2092 }

The \dar@repack function is a variation of \eq@repack.
2093 \def\dar@repack{%

2094 \unpenalty

2095 \setbox\tw@\lastbox

2096 %\batchmode{\showboxbreadth\maxdimen\showboxdepth99\showbox\tw@}\errorstopmode

2097 \global\setbox\EQ@box\hbox{%

2098 \hbox{\unhcopy\tw@\unskip}\penalty-\@M \unhbox\EQ@box}%

2099 \global\setbox\EQ@copy\hbox{%

2100 \hbox{\unhbox\tw@\unskip}\penalty-\@M \unhbox\EQ@copy}%

2101 \unskip

2102 \ifcase\lastpenalty \else\@xp\@gobble\fi

2103 \dar@repack

2104 }

96

35 Miscellaneous

The \condition command. With the star form, set the argument in math mode
instead of text mode. In a series of conditions, use less space between members of
the series than between the conditions and the main equation body.

WSPR: tidied/fixed things up as it made sense to me but might have broken
something else!

2105 \newskip\conditionsep \conditionsep=10pt minus5pt%

2106 \newcommand{\conditionpunct}{,}

\condition

2107 \newcommand\condition{%

2108 \begingroup\@tempswatrue

2109 \@ifstar{\@tempswafalse \condition@a}{\condition@a}}

\condition@a

2110 \newcommand\condition@a[2][\conditionpunct]{%

2111 \unpenalty\unskip\unpenalty\unskip % BRM Added

2112 \hbox{#1}%

2113 \penalty -201\relax\hbox{}% Penalty to allow breaks here.

2114 \hskip\conditionsep

2115 \setbox\z@\if@tempswa\hbox{#2}\else\hbox{$\textmath@setup #2$}\fi

BRM’s layout is achieved with this line commented out but it has the nasty side-
effect of shifting the equation number to the next line:

2116 % \global\eq@wdCond\wd\z@

2117 \usebox\z@

2118 \endgroup}

The dsuspend environment. First the old one that didn’t work.
2119 \newenvironment{XXXXdsuspend}{%

2120 \global\setbox\EQ@box\vbox\bgroup \@parboxrestore

If we are inside a list environment, \displayindent and \displaywidth give us
\@totalleftmargin and \linewidth.

2121 \parshape 1 \displayindent \displaywidth\relax

2122 \hsize=\columnwidth \noindent\ignorespaces

2123 }{%

2124 \par\egroup

Let’s try giving \EQ@box the correct height for the first line and \EQ@copy the
depth of the last line.

2125 \global\setbox\GRP@box\vbox{%

2126 \vbox{\copy\EQ@box\vtop{\unvbox\EQ@box}}%

2127 \unvbox\GRP@box

2128 }%

Need to add a dummy element to \GRP@queue.
2129 \global\GRP@queue\@xp{\the\GRP@queue

2130 \@elt{\gdef\EQ@trial{}}%

97

2131 }%

2132 }

And then the one that does work.
2133 \newenvironment{dsuspend}{%

2134 \global\setbox\EQ@box\vbox\bgroup \@parboxrestore

2135 \parshape 1 \displayindent \displaywidth\relax

2136 \hsize=\columnwidth \noindent\ignorespaces

2137 }{%

2138 \par\egroup

2139 \global\setbox\GRP@box\vbox{%

2140 \hbox{\copy\EQ@box\vtop{\unvbox\EQ@box}}%

2141 \unvbox\GRP@box

2142 }%

2143 \global\GRP@queue\@xp{\the\GRP@queue

2144 % \@elt{\gdef\EQ@trial{\let\eq@isIntertext\@True}}%

2145 \@elt{\let\eq@isIntertext\@True}%

2146 }%

2147 }

Allow \intertext as a short form of the dsuspend environment; it’s more con-
venient to write, but it doesn’t support embedded verbatim because it reads the
material as a macro argument. To support simultaneous use of amsmath and breqn,
the user command \intertext is left alone until we enter a breqn environment.

2148 \newcommand\breqn@intertext[1]{\dsuspend#1\enddsuspend}

*

\discretionarytimes

Discretionary times sign. Standard LATEX definition serves only for inline math.
Should the thin space be included? Not sure.

2149 \renewcommand{*}{%

2150 \if@display

Since \eq@binoffset is mu-glue, we can’t use it directly with \kern but have to
measure it separately in a box.

2151 \setbox\z@\hbox{\mathsurround\z@$\mkern\eq@binoffset$}%

2152 \discretionary{}{%

2153 \kern\the\wd\z@ \textchar\discretionarytimes

2154 }{}%

2155 \thinspace

2156 \else

2157 \discretionary{\thinspace\textchar\discretionarytimes}{}{}%

2158 \fi

2159 }

This is only the symbol; it can be changed to some other symbol if desired.
2160 \newcommand{\discretionarytimes}{\times}

\nref This is like \ref but doesn’t apply font changes or other guff if the reference is
undefined. And it is fully expandable for use as a label value.

Can break with Babel if author uses active characters in label
key; need to address that

98

mjd,1999/01/21

.

2161 \def\nref#1{\@xp\@nref\csname r@#1\endcsname}

2162 \def\@nref#1#2{\ifx\relax#1??\else \@xp\@firstoftwo#1\fi}

2163 %%

36 Wrap-up

The usual endinput.
2164 〈/package〉

37 To do

1. Alignment for equation groups.

2. Use dpc’s code for package options in keyval form.

3. Encapsulate “break math” into a subroutine taking suitable arguments.

4. Need a density check for layout S when linewidth is very small.

5. Make := trigger a warning about using \coloneq instead.

6. Ill-centered multiline equation (three-line case) in test008.

7. Attaching a single group number.

8. Make sure to dump out box registers after done using them.

9. Do the implementation for \eq@resume@parshape.

10. Check on stackrel and buildrel and relbar and ???.

11. Test math symbols at the beginning of array cells.

12. Test \\md in and out of delims.

13. Framing the equation body: the parshape and number placement need ad-
justing when a frame is present.

14. Cascading line widths in list env.

15. Noalign option for dmath = multline arrangement?

16. Nocompact option, suggested 1998/05/19 by Andrew Swann.

17. \delbreak cmd to add discretionary space at a break within delimiters.

18. Reduce above/below skip when the number is shifted.

99

19. Need a \middelim command for marking a delimiter symbol as nondirec-
tional if it has an innate directionality ()[] etc..

20. \xrightarrow from amsmath won’t participate in line breaking unless some-
thing extra is done. Make \BreakingRel and \BreakingBin functions?

21. Placement of number in an indented quotation or abstract.

22. If LHSwd > 2em, it might be a good idea to try with eq@indentstep = 2em
before shifting the number. Currently this doesn’t happen if the first trial
pass (without the number) succeeds with indentstep = LHSwd > 2em.

23. Read past \end{enumerate} when checking for \end{proof}?

24. Look into using a “qed-list” of environment names instead of checking the
existence of \proofqed.

25. Pick up the vadjust/footnote/mark handling.

26. Forcing/prohibiting page breaks after/before an equation.

27. Adding a spanner brace on the left and individual numbers on the right
(indy-numbered cases).

28. Provide \shiftnumber, \holdnumber to override the decision.

29. Provide a mechanism for adjusting the vertical position of the number. Here
a version-specific selection macro would be useful.

\begin{dmath}[
style={\foredition{1}{\raisenumber{13pt}}}

]

30. Add an alignleft option for an equation group to mean, break and align to
a ladder layout as usual within the equations, but for the group alignment
used the leftmost point (for equations that don’t have an LHS, this makes
no difference).

31. Test with Arseneau’s wrapfig for parshape/everypar interaction.

32. Fix up the macro/def elements.

33. Convert the literal examples in section ‘Equation types and forms’ to typeset
form.

34. Compile comparison-examples: e.g.,, a standard equation env with big left-
right objects that don’t shrink, versus how shrinking can allow it to fit.

35. Frame the “figures” since they are mostly text.

Possible enhancements:

100

1. Provide a pull option meaning to pull the first and last lines out to the
margin, like the multline environment of the amsmath package. Maybe
this should get an optional argument, actually, to specify the amount of
space left at the margin.

2. With the draft option, one would like to see the equation labels in the left
margin. Need to check with the showkeys package.

3. Options for break preferences: if there’s not enough room, do we first shift
the number, or first try to break up the equation body?. In an aligned group,
does sticking to the group alignment take precedence over minimizing the
number of line breaks needed for individual equations?. And the general
preferences probably need to be overridable for individual instances.

4. Extend suppress-breaks-inside-delimiters support to inline math (suggestion
of Michael Doob).

5. Use belowdisplayshortskip above a dsuspend fragment if the fragment is only
one line and short enough compared to the equation line above it.

6. Add \eqfuzz distinct from \hfuzz. Make use of it in the measuring phase.

7. Provision for putting in a ‘continued’ note.

8. Conserve box mem: modify frac, sub, sup, overline, underline, sqrt, to turn
off \bin@break and (less urgently) \rel@break.

9. More explicit support for Russian typesetting conventions (cf Grinchuk ar-
ticle).

10. With package option refnumbers, leave unnumbered all uncited equations,
even if they are not done with the star form (Bertolazzi’s easyeqn idea).

11. In an equation group, use a vertical bracket with the equation number to
mark the lines contained in that equation.

12. For a two-line multline thingamabob, try to make sure that the lines overlap
in the middle by 2 em or whatever (settable design variable).

13. Provide a separate vertical column for the principal mathrel symbols and
center them within the column if they aren’t all the same width. Maybe an
option for dmath: relwidth=x, so that two passes are not required to get the
max width of all the mathrels. Or, no, just require it to be an halign or
provide a macro to be applied to all the shorter rels:

lhs \widerel{19pt}{=} ...
\xrightarrow{foo} ...

14. try to use vadjust for keepglue

101

