
TEXmuse’s Main Loop

Federico Garcia

August 31, 2005

This document accompanies the program TEXmuse in its first sub-
mission to CTAN. The program is incomplete, but as it stands it can
be called a ‘first stage’. But there is no dtx file as with a complete
package, that self-extracts and documents at the same time.

All the same, I wanted to provide something in the guise of a
documentation. This text contains a description of TEXmuse’s TEX
part (there is an equally substantial METAFONT part), that makes
clear at least the central ideas of a somewhat unfriendly code.

If you are looking for a guide to the user, the best is to go to the
end, where there is a sample with the user’s input, as well as to the
other samples (Bach’s Inventions) that are on-line with the package.
There are also other documents (a guide to installation and running
and a list of shortcomings and wants).

TEXmuse has been described in TUGboat 24/2. A second article
will appear in the next issue of TUGboat, containing pretty much the
present document. TEXmuse’s webpage is http://www.fedegarcia.
net/TeX/TeXmuse.html. This first stage was in part possible thanks
to a grant from the TEX Development Fund. Thanks!

Let’s begin with a simple case:������. This is the result of the

input string 5C4[EC]5GG. The numbers tell the rhythmic value (5 for the
quarter-, 4 for the eighth-note), and the letters tell the pitch. ‘[’ and ‘]’
create the beam of the second and third notes.

Of course, there are several c’s—the reference to ‘C’ as the first note would
not be sufficient to fix it where it appears in the example. TEXmuse was able
to fix it as c5 (c4 is the so-called ‘middle-c’, and this one is an octave higher

1

than that) because, in truth, the input started with \rangefrom{G4}. This
set g4, a4, b4, c5, d5, e5, and f5 as the default for each pitch. The code
for this, not devoid of interest, is in lines 165–185, with an auxiliary function
defined at 290.

But that is not part of TEXmuse’s main loop. The latter is rather about
what happens to the input at the different stages.

Quantization and the ‘matrix’

The first time TEXmuse collects rhythmic information: how long each note
is. In our first example, the result is the following ‘matrix’:

0:1.
64:1.
96:1.
128:1.
192:1.

9999:0.

This simple list registers the following facts: the first note is at position 0;
since it is a quarter-note, it has a ‘quantum value’ of 64q (the ‘rhythmic quan-
tum’ is defined as the 256th-note, a note with 6 flags, that naturally gets 1q).
Consequently, the next note, whatever it is, will be at 64. In this case it is
an eighth-note, with a value of 32q. Therefore, the next note appears at 96.
And so on.

All lines, in addition to the quantum position, have a 1. Each of them
means that there is a note at the indicated position. The exception is of
course the final 9999, that has been added as a marker of the end.

The translation of the input into such a quantized matrix is the first stage
of TEXmuse’s main loop: the ‘quantization’. Its true significance is actually
seen only when there is more than one staff. Look at this other example and
its matrix:

�������
0:1,1.
64:1,1.
96:0,1.

128:1,1.
192:1,1.
256:0,0.
9999: 0.

2

Here there is an instances of a positions with ‘0’ instead of ‘1’. The left
hand (bottom staff, first item after ‘:’ in the matrix lines) does not have a
note at position 96. And, on the other hand, even thought the left hand has
a quarter-note (actually a quarter-rest, but for the purposes it’s the same)
at position 64, the character is not one of a quarter-note (64q), but of an
eighth-note (32q).

The presence of 256 in this matrix, if you are wondering, is due to the
inclusion of the barline (as a result of ‘|’ in the input).

Note that \rangefrom has no meaning for the construction of the matrix.
As far as the matrix is concerned, all notes, and even rests, are the same—
there is no difference between c and d. Most other things, like accidentals
(flats, sharps, naturals), ties, or any other such additions, also mean nothing
for the matrix.

In fact, in lines 280–7, where TEXmuse is preparing things to ‘quantize’
the input, it declares

\let[\relax\let]\relax
\let|\quant@barline
\letA\quant@note\letB\quant@note\letC\quant@note\letD\quant@note
\letE\quant@note\letF\quant@note\letG\quant@note\letR\quant@note
\let\rangefrom\@gobble
\let\#\relax\let\n\relax\let\b\relax

Quantization is one of the things that happen always. TEXmuse has a number
(and will have more) ways of actually typesetting the musical text: \music,
for example, makes long musical text be breakable at the end of lines, and
appends a final, double bar at the end. \excerpt, on the contrary, typesets
the music in a single line. (This latter is what I have been using for examples
so far). Eventually, a \musicbox will allow setting the exact width of a box,
and \musicparbox will be a combination of \music and \musicbox.

But, in any case, all of these functions carry out the ‘quantization’. It is,
in fact, the first part of TEXmuse’s main loop, and is done by the command
\@quantization (defined by lines 411-36).

The auxiliary files

The second stage is actually also carried out by \@quantization, since this
allows performing only one loop through the different staves’ input. But it

3

must be considered a separate stage. It consists in the writing of ‘auxiliary’
files.

One auxiliary file is created for each instrument (i.e., each staff). These,
for example, are the files for \shortl and \shortr, the two staves of the last
example:

shortl.tms :

\next@note\q@n\add@note{c3}\@stem
\next@note\q@n\@rest{0}\relax
\next@note\q@n\add@note{c3}\@stem
\next@note\q@n\@rest{0}\end@of@block

\@bar@line{10}\relax

shortr.tms :

\next@note\q@n\add@note{c5}\@stem
\next@note\open@beam\e@n\add@note{e5}\add@tobeam
\next@note\e@n\add@note{c5}\add@tobeam\close@beam
\next@note\q@n\add@note{g4}\@stem
\next@note\q@n\add@note{g4}\@stem\end@of@block

\@bar@line{10}\relax

Although it cannot be visually shown here, one of the most important con-
ventions of TEXmuse’s is that each ‘block’ is set to a single line in these
files. Both of the files shown have actually only two lines (here set to the
left margin of the listing), one starting with \next@note. . . , and the other
containing ‘\@bar@line{10}\relax’.

As you can see, each of the ‘blocks’ (conceive of blocks as equivalent
to measures, for the moment) is basically a list of notes, separated from
each other by \next@note, and closed by \end@of@block. Each item in the
list—i.e., each note—is composed of several elements:

\next@note ‘value’ ‘additional stuff’ ‘note’ ‘rhyhtmic notation’

The ‘value’ is the rhythmic value: eighth-note, sixteenth-note, quarter-note,
etc. In the example we have instances of \q@n (quarter-note) and \e@n

(eighth-note).
The ‘note’ is the note itself—or the rest. So this is always either \add@note

or \@rest (with their arguments). When the ability for several note-heads
per note is implemented, this will be repeatable.

The ‘rhythmic notation’ refers to the graphical way a rhythmic value is
actually represented. Quarter-notes, for example, are represented by a (bare)

4

stem: \@stem. Lonely eighth-notes (i.e., eighth-notes not beamed together)
have both a stem and a flag, and their ‘rhythmic notation’ part would be
\@stem\@flag. Rests don’t have this element.

‘Additional stuff’ can be appended to a note’s entry. In our very simple
example there is only a few instances of this: \open@beam, that opens the
beam in the second note of the right hand, and \close@beam, that closes it
in the third. The corresponding \add@tobeam commands, that apply to all
notes under the beam, is not additional stuff, but rather the ‘rhythmic notation’
of those notes.

So, to compare, let’s tweak the example a little bit (with all due respect
to Kuhnau, who I think composed the beautiful sonatina from which the
example comes). The input for both staves (‘\shortrii’ and ‘\shortlii’)
appears at the right:

������� \shortrii{\rangefrom{G4}5C4\bEC5GG|}
\shortlii{\rangefrom{C3}5CR\trebleclefC+R|}

The following are the five notes of the right hand. New are \@flag and
\@flat:

value add. stuff note rhythm. not.

\next@note \q@n \add@note{c5} \@stem
\next@note \e@n \@flat \add@note{e5} \@stem\@flag
\next@note \e@n \add@note{c5} \@stem\@flag
\next@note \q@n \add@note{g4} \@stem
\next@note \q@n \add@note{g4} \@stem

And the 4 notes of the left hand (new is the result of \trebleclef, \@clef):

value add. stuff note rhythm. not.

\next@note \q@n \add@note{c3} \@stem
\next@note \q@n \@rest{0}
\next@note \q@n \@clef0 \add@note{c4} \@stem
\next@note \q@n \@rest{0}

(The clefs at the beginning, as well as the bracket, are drawn by METAFONT
as part of the automatic beginning of the line. Neither is represented by the
auxiliary files.)

5

All the commands in the auxiliary files are private, and the user knows
nothing about them (although, of course, the list can be seen and read by
him, maybe a good thing for debugging his files). They are the commands
that the third stage understands.

The METAFONT files

Everything is ready now to write the METAFONT file that will draws the
characters. (This is done by command \mf@files, defined in lines 437–5.)

The first line in the matrix, that corresponds to the first note, is 0: 1,1.
The note is at position 0. Now, how long is it? (The answer will mean, typo-
graphically, how much space the note will receive when the line is stretched.)
Since the next line in the matrix is at 64, the first note is 64− 0 = 64q long.
So, the character for the first note can be opened: to the METAFONT file is
added the line

new_char(64);

Now, what does this note contain? Because of the first 1 in the character’s
matrix line, it is known that the first staff (the bottom one, in this case
shortlii) has a note in this character. So, a line is added that announces
it:

shortlii;

Next, the drawing of the shortlii’s note itself. The auxiliary file (re-
member there is one for each staff) tells the program that the first note
is \q@n\add@note{c3}\@stem. This string of commands, when executed by
TEXmuse, result in the following lines in the METAFONT file:

add_noteheads(c3);

regular_stem;

The first staff is ready. Since there is also a ‘1’ for the second staff (shortrii),
it will be announced and its note, namely \q@n\add@note{c4}\@stem, drawn:

shortrii;

add_noteheads(c5);

regular_stem;

With that the first character is finished. A final end_of_char closes it.
One note from each auxiliary file has been ‘consumed’. It has in fact

disappeared from the list: TEXmuse deleted it. Now the register that holds

6

the list of notes (i.e, the one containing ‘\next@note\q@n\add@note{c3}. . . ’)
starts from (what was) the second item. The next time TEXmuse finds a ‘1’
in the matrix that corresponds to that staff, but not before, this (second, now
first) note will be executed, and, it too—well, ‘executed’. (By this procedure,
TEXmuse does not have to ‘count’ the items in the list or in the matrix.)

The second character, with a matrix line of 64: 1,1, lasts only 32q, be-
cause the next matrix line begins with 96. But it too has notes for both
staves (‘1,1’), which are the simpler \q@n\@rest{0} and the more complex
\e@n\@flag\add@note{e5}\@stem\@flag. So the second character in the
METAFONT file is written as follows:

new_char(32);

shortlii;

add_rest(0,0);

shortrii;

add_noteheads(e5);

add_flat(e5);

regular_stem;

add_flag(1);

end_of_char;

The third character has a matrix line of 96: 0,1. It will only have a note for
the second instrument. The list of notes of the first instrument, then, will
not be read. Its next item will then not be deleted: whatever it is, it remains
there until another matrix line actually invokes it. The third character is,
then:

new_char(32);

shortrii;

add_noteheads(c5);

regular_stem;

add_flag(1);

end_of_char;

A quotation of the whole METAFONT file for this example is at the end of
this document. The initial declarations and initializations to be found in it
are written by \mf@files, in a subroutine called \mf@@headers (not part,
actually, of ‘the main loop’).

7

The printing of the music

The loop is completed when TEX (trusting the METAFONT part of TEXmuse
to have correctly drawn the characters) types the characters. This happens
at \@compose (lines 514–31), and has a very simple form: it’s a loop that
selects the new font (\@musicfont) and types the characters one by one
(\char\the\char@no) up to the last one. I can repeat that right here, adding
commas between characters:

� , � , � , � , � , �� .

Detail: the input

The main loop can be fairly easily explained. Its actual code in texmuse.tex,
however, is far more obscure. That’s due to a number of complications that
occur at every stage. One of them is the fact that the user’s input can contain
more items than simply notes and rests.

In fact, each note can be subject to a series of modifiers. I’m not talking
here about accidentals (flats, sharps, naturals), which are another subject.
Apart from those, notes can be modified, for example, as it comes to ‘reg-
ister’. As we saw, \ragefrom defines a ‘default’ register for all notes—say,
\rangefrom{C4} defines all C’s in the input to refer to the middle c. But
there might be a need for a note in a different register—say, c5 instead of
c4. This can be achieved, instead of issuing another \rangefrom, by typing
a + after the note, which to TEXmuse means ‘set this note an octave higher
than the current range’. A - means an octave lower, and it is also possible
to apply many of these modifiers to a single note.

What happens to thus-modified notes in the first stage—the ‘quantiza-
ton’? For this stage, all notes are the same: they simply produce an entry
in the rhythmic ‘matrix’ of the piece. You remember from above that in the
first stage all notes are interpreted as \quant@note. But in order to provide
for modifiers, \quant@note is still not an ‘executive’ function (one that, for
example, adds the entry to the matrix), but merely a directive. This is its
real definition:

\def\quant@note#1{\let\@let@token=#1\@quant@note}

8

This reads the next token, and invokes \@quant@note. This latter examines
the next token:

\def\@quant@note{\let\next\@let@token
\ifx\@let@token-\let\next\quant@note
\else\ifx\@let@token+\let\next\quant@note
\else\ifx\@let@token.\let\next\quant@dot
\else\ifx=\@let@token\let\next\@@quant@note
\else\def\next{\@@quant@note\@let@token}%
\fi\fi\fi\fi\next}

In the case of a ‘bare’ note (no modifiers), none of the tests carried out by
\@quant@note will succeed. The token next to the note (that was read by
\quant@note) has to be returned to the input string—which is done by the
‘default’ \let\next\@let@token.

If the next token was actually one of our modifiers, - or +, they should
be gobbled (for, in this stage, they are ignored). Now, since there might
be two (or more) of those modifiers, the whole test has to begin again:
\let\next\quant@note. This is also the case with another modifier that
doesn’t affect quantization, namely = (that puts a ‘tie’ to the note as in

���).
Thus the note is stripped of all modifiers (ignore the dot for the moment).

And then an executive function—one that does something—is called, namely
\@@quant@note. (This happens also when the note had no modifiers in the
first place.) What this executive function does is to add ‘\@note’ to the
token register in which the quantization tokens are stored:

\def\@@quant@note{%
\global\quant@toks\expandafter{\the\quant@toks\@note}}

Later, when these quantization tokens are read, it is \@note that adds the
relevant entry to the matrix.

A modifier that does have an impact on the first stage, because unlike +
and - it has a rhythmic consequence, is the dot. The dot makes a note ‘dot-
ted’: a quarter-note that has a dot after it becomes a ‘dotted-quarter-note’.
In music, a dot means that the note lasts half as long again. The ultimate
expansion of a dot at this stage is ‘\quant@@dot\@note\quant@@undot’. But
not before a test to see if the note is, in addition, tied (or, possibly but still
not completely implemented, double-dotted):

9

\def\@quant@dot{\let\next\@let@token
\ifx\@let@token.\let\next\@quant@dot % Not sure it works
\else\ifx=\@let@token\let\next\@@quant@dot
\else\def\next{\@@quant@dot\@let@token}%
\fi\fi\next}

\def\@@quant@dot{\global\quant@toks\expandafter{%
\the\quant@toks\quant@@dot\@note\quant@@undot}}

Something similar takes place at the second stage: conversion of the input
into commands for the auxiliary files. The ultimate expansion of any note
at this stage is an \@add@note command (which is the one that adds a note
to the auxiliary files, as described above). But, again, this doesn’t happen
immediately.

What a note (letters A, B, . . . , G) in the input does is to set \@pitch (to
the corresponding letter, a, b, etc.) and \@octave (according to the range
defined by \rangefrom). After that, it launches \@@octave. This is the
function where tests for modifiers happen:

\def\@@octave#1{\let\next\@@octave
\ifx#1-\advance\@octave-1\else\ifx#1+\advance\@octave1\relax
\else

\if@tempswa\else
\@add@note{\@pitch}{\the\@octave}\@tempswatrue\fi
\ifx=#1

\add@tie{\expandafter\@pitch\the\@octave}%
\let\next\relax

\else
\ifx#1.\add@dot{\@pitch}{\the\@octave}%
\else\let\next#1%
\fi

\fi
\fi

\fi
\next}

So, if a note is bare, \next will be set to whatever the next token is. If the
note, on the other hand, has - or +, \@octave is changed and \@@octave

tried again, to see if there’s more modifiers. (It is because of this double try
that \@tempswa is used.) For all other modifiers, ‘.’ and ‘=’, the note itself

10

(its pitch and its octave) is set, and only additional commands (\add@tie or
\add@dot) are executed.

So, every note, be it simple as ‘C’ or compound as ‘D++.=’ (a d two octaves
higher than set by \rangefrom, dotted, and tied), gets translated into a series
of commands, that always includes \@add@note and can in addition include
\add@tie or \add@dot. This commands are executive: they write in the
auxiliary file of an instrument.

Rests, input by ‘R’, are very similar, but they cannot be tied (no test for
‘=’) and their modifiers + and - do not mean change in octave, but vertical
shifting. They use, then, functions \@@rest and \@@@rest, to be finally
converted into \@note in quantization and \@rest in auxiliary files.

But beaming acts differently. [and] have no meaning in quantization
(and in the first stage they are \relax), but the auxiliary files have to reflect
them. They, however, cannot have modifiers, so their function is immediately
executive. ‘[’ opens a beam by writing (in the auxiliary file) \open@beam, and
making all following notes part of that beam—which amounts to changing
their rhythmic notation. ‘]’ closes the beam by adding \close@beam and
setting the rhythmic notation back to the note’s natural way.

What is, though, this ‘natural’ way? It depends on the (rhythmic) kind
of note. It is set by the numbers in the input. A ‘4’, for example, means
‘eighth-note’, and will set both duration (for quantization purposes) to be 32q
and rhythmic notation to be ‘a stem, and a flag, please’ (\@stem\@flag). A
‘5’ means quarter note, and makes the duration 64q and the rhythmic notation
only a \@flag. These are ‘global declarations’, affecting anything that comes
after them until another, overriding one is encountered.

And numbers set also, of course, the value of a note.

There is something else about the input. Any spaces in the input will not
be typed into the actual music: the music is typed mechanically by TEX at
\@compose, and it does not include spaces. But the input—spaces and all—is
read, and twice, at \@quantization and \mf@files. The spaces there will
create spaces that disturb the final layout (unless the music is the first thing
that appears in the line, and then the spaces are ignored because TEX is in
vertical mode).

So, the spaces have to be stripped off from the input. This is carried out
just before starting the \@quantization:

\def\strip@spaces#1{%

11

\@temptoks#1%
\@temptoks\expandafter{\the\@temptoks{\relax} }%
\quant@toks{}%
\@tempswatrue
\loop\if@tempswa

\expandafter\strip@@spaces\the\@temptoks{\relax} \@nil
\repeat
#1\quant@toks}

\def\strip@@spaces#1 #2#3\@nil{\quant@toks\expandafter{%
\the\quant@toks#1}%

\ifx#2\relax\@tempswafalse\fi
\@temptoks{#2#3}}

Command \strip@spaces is invoked by \@quantization, and its argument
is the token register where the input is stored. Two temporary token registers
are used, \@temptoks and \quant@toks, to get portions of the input stream
separated by spaces. At the end, because of the way \stripped@@spaces is
executed, it will find #2 to be \relax, and call the whole operation off. Then,
whatever was left in \quant@toks will be put back into the original register.
(\quant@toks, on the other hand, is a register defined for other purposes—
quantization—but it can be used here because what it had before, if anything,
is of no interest anymore. Thus a token register is saved.)

Measures, blocks, and automation

A piece of music is usually wider than a sheet of paper: it will have to
be broken into lines (which, incidentally, are called ‘systems’). This cannot
happen anywhere, but at special points: usually at the end of measures
(or ‘bars’). Sometimes, however, for music with very long measures, a line-
break can be made within a measure. And sometimes, in modern music, the
piece simply has nothing like ‘measures’ (because it’s music without regular
meter). So the default correspondence measure⇔line-breaks cannot be wired
in TEXmuse. Rather, TEXmuse thinks in terms of ‘blocks’.

Usually, however, there is a meter, and measures do coincide with blocks.
This must definitely be the default. But, in addition, since the meter is
regular (that’s its essence) and automatic, the typist should not be forced to
explicitly say where a measure ends. TEXmuse has to be able to figure that
out by itself.

12

Other reason for this automation is that we must avoid the matrix to
increase its quantum numbers indefinitely. If it goes by measure, it can
healthily reset to 0 every once in a while. And likewise, the auxiliary files
should not be overloaded with indefinitely long lines. For all that, some kind
of ‘modularity’ is good, and measures provide the best basis for it.

This has a number of consequences on TEXmuse’s main loop. Going
backwards, the last stage (composition) must typeset blocks separated with
a discretionary break, so that when the end of the line is reached TEX goes
to the next line. Within blocks, however, the characters must be typed one
after the other, as single words that won’t be broken.

For the penultimate stage (writing of METAFONT files) there is also a
consequence of measures. In all probability, a piece will have more than
256 characters, so that more than one font will be needed. But METAFONT
draws the characters line by line (because it needs to know the stretching of
each character before actually shipping them out). So TEX has to write the
METAFONT files block by block, so that the end of each file always coincides
with a possible line-break. (In fact, as the system stands today, the end of a
METAFONT file is a line-break. User’s control on this is one of the things to
improve.)

The writing of the auxiliary files also goes block by block, because the
auxiliary files have to contain special characters for the end of the measures—
barlines—that will not be present in the user’s input.

And the compilation of the rhythmic matrix, of course, needs blocks to
go back to 0q.

This ‘going by blocks’ is actually responsible for most of the intricacy of
texmuse.tex. To start develling it, let’s discuss the workings of \@add@note.
This is the function into which notes in the input are translated by the second
stage, and whose main action is to add notes to the auxiliary files of the
instruments.

But now we know that this will be done block by block. There is a control
sequence, \current@block, that holds the tokens that will be written to the
auxiliary file when the block is done. Each note, translated as \@add@note,
appends notes to \current@block, until the time comes to write it down to
the auxiliary file.

\def\@add@note#1#2{%
\open@block

13

\ifnot@written
\edef\current@block{\current@block\space\string\next@note}%

\fi
\edef\current@block{\current@block

\@value
\the\this@note
\the\@atnote
\the\@@atnote
\string\add@note{#1#2}
\rhythm@not}%

\@atnote{}%
\@@atnote{}%
\this@note\@plainnote
\not@writtentrue
\advance\current@quantum\quantum@skip\relax
\block@donefalse}%

Toward the middle of this function we see the addition of the note’s ele-
ments: value, additional stuff, note, and rhythmic notation. The additional stuff
is actually made of several items: \this@note, \@atnote, and \@@adnote.
This is because some things apply to everything (to notes, to rests, and to
barlines), some only to notes and rests, and some only to notes. This will be
more clear when we discuss the functions for barlines and rests.

Only at the end we see \@add@note dealing with blocks and quantization.
After it has appended the note and prepared things for the next one, it adds
the value of \quantum@skip to \current@quantum. (The latter has been set
by the kind of note this is: if it is a half note, for example, \quantum@skip
is 128, double a quarter-note that we already know is 64).

So, imagine that we have a
3
4 piece (three quarter-notes per measure).

Imagine it has the following rhythm:�����. That is, whole-

note, two sixteenths, and one eighth: 128q, 16q, 16q, 32q.
\current@quantum is initialized to 0. After the first note, it will be 128;

after the second, 144; after the third, 160; and after the fourth, 192. That,
TEXmuse knows, is the end of the measure, because \block@period is 192
(this is calculated by TEXmuse from the user’s command \meter34). Let’s
see what happens at this point, when TEXmuse is going to append yet another
note.

The first thing it does is \open@block, which is defined as follows:

14

\def\open@block{%
\ifnum\block@period>\current@quantum
\else\current@quantum0\relax
\fi
\ifnum\current@quantum=0\relax

\end@block
\fi}

For the first time, it is not true that \block@period>\current@quantum.
So, the actual contents of \open@beam will be executed (for the first time).
It first resets \current@quantum to 0. And next, it will find—curiously
enough—that \current@quantum=0, and therefore will execute \end@block.
(This is not the same test because the user can force the end of a measure—
make \current@quantum 0—at any point, and this will have the effect of
making true the second test even when the first one is not.)

So, \end@block:

\def\end@block{%
\ifblock@done\else

\immediate\write\instrument@file{%
\current@block\string\end@of@block}%

\immediate\write\instrument@file\expandafter{%
\the\this@note\string\@bar@line{\@barline}}%

\def\current@block{\@gobble}%
\this@note\@plainnote
\let\@barline\barline@default

\fi
\block@donetrue}

\block@done has been set to false by the last \@add@note, so the contents
of this function is actually executed. It is here that the whole line, with the
elements of all the notes in the block, is written to the auxiliary file. Then,
another line is written to the same file, with a barline, and any additional
stuff that might apply to it: \this@note. (Remember that \this@note

would have also been added to a note. This is how a clef—but not other
things that cannot apply to barlines, like a tie—is correctly added either to
the next note or to the barline if it comes first.)

So, when the first note of a new block is reached, the previous one is
closed by \end@block. But not only a note can open a new block: a rest
can too, and, less obviously, anything that attaches to a coming note (i.e.,

15

that implies the existence of a note coming soon). A clef, for example, is not
such a thing, because it can be put behind a barline, not necessarily behind a
note. But an accidental must necessarily refer to a note, as must the opening
of a beam. So, \open@block (that calls for \end@block if necessary) is part
of the definition of rests, beam-openings, and accidentals (as well as notes).
\@@@rest, in fact, behaves very similar to \@add@note. As for accidentals,
all they do is to execute \open@block and then add the respective items to
aditional stuff:

\def\#{\open@block
\this@note\expandafter{\the\this@note\string\@sharp}}%

\def\b{\open@block
\this@note\expandafter{\the\this@note\string\@flat}}%

\def\n{\open@block
\this@note\expandafter{\the\this@note\string\@natural}}%

On the other hand, \@open@beam can actually be the function that adds
the \next@note (instead of \@add@note).1 The test \written@false helps
avoiding the duplication of \next@note’s that would be implied in the suc-
cession of \@open@beam and \@add@note. Apart from that, \@open@beam is
straightforward:

\def\@open@beam{%
\open@block
\edef\current@block{\current@block\space

\string\next@note\string\open@beam}%
\def\rhythm@not{\string\add@tobeam}%
\not@writtenfalse}%

Going block by block has a consequence on the quantization too. The matrix
needs to have entries for the ends of the blocks, so that the program later can
know how long the last note of the block was. If the matrix were directly to
0, the last note would have a negative quantum value. (And it is not enough
to assume \block@period as the end of the block, because the user can force
an end-of-block at any point.) So, the quantization has to be able to insert
this entry automatically.

1Maybe this is a remnant from another time. I can’t see now why this function is not
implemented as the accidentals, by simply adding \@open@beamto additional stuff. I
don’t dare modifying it now, though. Tests will be run later.

16

That is done with a function called \no@note—an equivalent of \@note
(which is what adds the 1’s to the matrix) but able to add 0’s. \no@note is
defined right next to \@note, in lines 137–59. (Neither \@note nor \no@note
are quoted here because most of them is a simple but bulky code for the
actual manufacture of the matrix.)

Using the matrix that was built in the quantization, TEXmuse counts the
characters and blocks that make up the music. From that it then calculates
how many fonts will be needed and how many characters (and blocks) go
in each font. There is a variable \FontSplit that sets the maximum num-
ber of characters that can be put in the same METAFONT font. This is
not quite 256, because the METAFONT part of TEXmuse is very demanding
and may exceed METAFONT’s capacity.2 So, based on this number (180
by default), TEXmuse decides on where to ‘split’ the music into fonts. This
part of the code, fairly clear, is represented by commands \count@chars,
\check@splits, and \check@@splits, scattered about the different stages.
They are easy to understand.

A final sample

Below is the first part of Kuhnau’s sonatina. And after that, the input that
creates it.��������	
�������������������
� !"#$%&'()*+,-./0123456789:;<=

2I recently had to start thinking of a modification of the METAFONT program that will
relief this problem considerably. But it is a major change, and will take some time. In
part, that is why I am not documenting the METAFONT program: it will soon change in
unpredictable ways.

17

>?@ABCDEFGHIJKLMNOPQRSTUVWX
YZ[\]^_`abcdefghijklmnopqrs
tuvwxyz{ (typeset by TEXmuse)

\newinstrument\righthand
\newinstrument[\bassclef]\lefthand
\begin{texmuse}
\meter44

\righthand{\rangefrom{G4}
5C 4[EC] 5 GG
5C 4[EC] 5 GG+
4[FEDC] [BCBC]
[DCBA] 5 G R
5C 4[EC] 5 GG
5E 4[G+E] 5C 4[EC]
[DBCA] [BGA\#F-]
[GABC] [DE\#FG+]
5AA+A+A+
4[BCDE] [\#FG+A+B+]
5CC+C+C+
4[D\rangefrom{D5}GBD+] [CBAG]
[\#FEGF] [AGFE]
[EDC-B-] [DC-B-A-]
5G-R6R|}

\lefthand{\rangefrom{C3}
5CR6R
5CR6R
5CRCR
G-R 4[GFED]
5CRRR
5C+RR\#F
GCDD-
G-R6R
4[\#FD+AD+] [\#FD+AD+]
5GRRR
4[AD+C+D+] [AD+C+D+]
5BR6R
5C+RCR
DRD-R
4[G-B-DG] 5G-R|}

18

\end{texmuse}
\noindent\music{righthand,lefthand}\quad(typeset by \TeXmuse)

Conclusion

This explains the basic working of TEXmuse. There is quite a bit more to it,
but everything should be easily understood, by just looking at the code, after
this summary explanation. I would like to claim that with this document
and the actual examples of the various functions already coded, anything
could be implemented by the industrious user. That is probably true of the
TEX part of TEXmuse. To add another possibility to the users’ input, you
have to think in terms of the four stages: figure out what the addition means
separately for quantization, auxiliary files, writing of METAFONT files, and
composition of the text. In the current texmuse.tex there is precedents of
virtually everything: things that attach to notes, things that group notes,
things that apply to this note and the next, things that apply possibly to
barlines, etc.

But, of course, any new thing will have to be implemented in METAFONT
too—and for that I have provided no guide. As I have mentioned, there is
a major change to the METAFONT system coming soon, so a thorough ex-
planation did not seem worthwhile. In any case, the log files of TEXmuse’s
development, if anyone feels like reading such disorganized streams of con-
sciousness, reveal what goes on in TEXmuse’s METAFONT program. In fact,
my experience tells me, it is more important, and challenging, to know well
enough METAFONT itself. If you master that, TEXmuse’s use of METAFONT
should be a piece of cake.

19

