
X EIndex
v.0.2

2010/01/17
Paul Isambert

zappathustra@free.fr

Abstract

X EIndex is a package based on X ESearch that automatically indexes words in a X ELATEX
document. Words or phrases (possibly underspecified) are declared in a list and each of their oc-
currences then creates an index entry, whose content might be freely specified beforehand.

Automatic indexes are bad. You know that. Hence the severe look of this documentation. So:
don’t use X EIndex. Or: use it as a tool to generate an index whose relevance you then check. Or: use
it for entries that are generally indexed on every occurrence, like proper names. Or: do bad indexes.

You load X EIndex in the usual way:

\usepackage{xeindex}

There’s only one package option, namely mark, which prefixes all index entries generated byX EIndex
with ***[⟨word⟩:⟨line number⟩], where ⟨word⟩ is the word that generated the entry and ⟨line number⟩
the line where you can find it in the .tex file. Moreover, if a word appears more than once on a page,
and thus generates several index entries although they’ll be merged in the typeset index, with this
option each entry is listed along with each occurrence of the word. So these entries end up at the
beginning of the index, sorted with symbols, apart from the entries generated by the usual \index
command. Thus they can be easily checked and prevented if irrelevant.

\makeindex

\printindex

\index{⟨entry⟩}

X EIndex loads the makeidx package, so \makeindex and \printindex, which should be executed as
usual, as well as the usual \index command, are available. (If you don’t know what I’m talking
about, then you don’t know how to produce an index. You should read the makeidx documentation
at least, or the rest of this document might seem cryptic.)

\IndexList⟨*⟩{⟨name⟩}{⟨list of entries⟩} This is X EIndex’s main command. The star is optional and ⟨list of entries⟩ is made of ⟨word⟩=⟨entry⟩
pairs separated by commas, with the part in red optional too. Let’s see the simplest possibility first:

\IndexList{mylist}{alley cat,dog,gnu}

This will index alley cat on every occurrence of alley cat in your document, dog on every occurrence of
dog, and gnu on every occurrence of gnu. But this will also index alley cat when seeing Alley cat, dog

when seeing dOg, and gnuwhen seeing GNU. In other words, X EIndex is case-insensitive by default,
and the index entries are put in lower case. Most of the time, that’s useful. But a gnu is not GNU,
so sometimes you want a different behavior. In this case, put a * before the word, e.g.:

\IndexList{mylist}{alley cat,DOG,gnu,*GNU}

NowX EIndex will index gnuwhen seeing gnu orGnu, but it will indexGNU when seeingGNU. Note
that DOG without a star will index dog in any case display, and the index entry will be dog, not DOG.
You can also make a whole list case-sensitive, by adding the star just after \IndexList, as in:

\IndexList{mylist}{alley cat,dog,gnu}

\IndexList*{mylist}{GNU}

All words in a *-marked list are case-sensitive, and you should not add another star before them. Note
that you can use the same list with different case-sensitivies each time, as in the above example.

Case-sensitity is useful mostly to index proper names.

The words in a list need not be fully specified. You can index all words beginning or ending with
some letters. To do so, use ? for the unspecified part. For instance,

\IndexList{mylist}{cat?,?mals,*?NU}

will find and index cat, cats, catheter, animals, mammals, GNU, gNU, but not gnu, because *?NU

means ‘a word that ends with “NU” in upper case.’ Each of these words will be indexed in its own
entry, so there’ll be a cat and a cats entry, but we’ll learn how to have them grouped presently. If a
word matches several underspecified forms, the more specific wins, e.g. mammals matches mam? and
not ma?, and ‘starting-with’ forms always win against ‘ending-with’ ones, no matter the degree of
specificity, e.g. cat matches c? and not ?at. Phrases, i.e. words separated by blanks (like alley cat
above) can be underspecified only at the end, i.e. you can say alley ca? but not ?ley cat (actually
you can try but it won’t work). Finally, underspecified parts are only the beginning or the end of a
word, i.e. you can’t say c?t, and there should be only one underspecification, i.e. ?a? is forbidden.

Now we come to the interesting part in ⟨word⟩=⟨entry⟩, namely the red part: ⟨entry⟩ should be a
pseudo-index entry, as it were, i.e. it can be a normal index entry, as in

\IndexList{another list}{%

dog=mammal|textit,

snail=Obviously Not Mammal,

cat=mammal!pet,

2

horse?=horse@{\bfseries horse}}

Here, every occurrence of dogwill produce an index entry atmammalwith the page number in italic,
snailwill indexObviously NotMammal, catwill create a sub-entry pet in themammal entry and horse,
horses, horseshoe, etc., will create a bold entry at horse. So, as you can see, the left part of the expres-
sion specifies which words should generate an index entry, and the right part is the index entry that
should be generated. The latter is not case-insensitive anymore: although snail is case-insensitive
and will fire on snail, Snail or SNaIl, the index entry itself will be as specified, i.e. Obviously Not
Mammal and not obviously not mammal.

Now you can index variations of a word under the same entry. As I’ve just said, horse and horses
will both be indexed under horse, as well as all their case-variants, as we already know. (Horseshoe
will go in that entry too, so beware).

The right part of those pairs is a ‘pseudo-index entry,’ and not a proper index entry, because the
word to index can be omitted, in which case the word that fires the index entry will be used instead.
More precisely, whenever X EIndex encounters one of the usual MakeIndex operators, namely ! (for
a sub-entry), | (for a control sequence) and @ (to indicate the form of the entry irrespective of alpha-
betical order), at the beginning of an index entry, it reinterprets this entry with the the firing word
or phrase on its left. I.e.

\IndexList{yet another list}{%

dog=@dog (canis lupus familiaris),

cat=!basic definition,

horse?=|textbf}

indexes every occurence of dog as dog (canis lupus familiaris), but with the alphabetical order of dog,
every occurrence of cat as a basic definition subentry in the cat entry, and every occurrence of a word
beginning with horse as an entry for this word with the page number in boldface. Remember that
the \index command is still available, so you can still index cat as cat in your document.

It’s obviously a very bad idea to say something like \IndexList{mylist}{cat=|(}, since this will
fire \index{cat|(} on every occurrence of cat. So page ranges can’t be declared by X EIndex (it would
be a very bad idea anyway). On the other hand, MakeIndex automatically creates page ranges as
soon as an entry is found on at least three successive pages, unless you run it with the -r option.

If you want a comma in the right part of the entry, enclose the entire entry, minus theMakeIndex
operator if any, between braces, e.g.:

\IndexList{writers}{Kafka={Kafka, Franz}}

3

(This did not work in version 0.1, and now it’s corrected thanks to Simon Spiegel who indicated it to
me.)

\StopIndexList{⟨lists⟩}
\StopIndex

\NoIndex{⟨text⟩}

Here are some additional macros to let you regulate the flow of the indexing frenzy. \StopIndexList
takes a comma-separated list of lists and turn them off. \StopIndex turns off all lists. \NoIndex

simply prevents ⟨text⟩ from being indexed. It’s very important, because it lets you prevent irrelevant
indexation in the body of your document.

That’s all you need to know to use X EIndex. The next paragraph describes how X EIndex sets
the parameters of X ESearch; so if you don’t know X ESearch and don’t intend to use it, there’s no
need to read what follows.

X EIndex keepsX ESearch’s default search order, namely full words before prefixes before suffixes,
with case-sensitive tests first each time. Affixes are modified, however: they’re sorted by length
(longer ones first) and not kept in the order they were declared, and only one affix fires in case of
a successful test, instead of all the affixes of a given test. You can modify these specifications since
X EIndex uses !-marked replacement texts, so they won’t embed each other, but then you might end
up with multiple entries and a lack of consistency.

You can use \StartSearching and \StopSearching instead of \StopIndex, which for the moment
renders all lists unavailable. The former two commands, however, will stop all lists defined by
X ESearch.

The default set of boundaries is left untouched, i.e. its members are: .,;:-‘’()[]{}

Implementation
Basic declarations and definitions.
1 \ProvidesPackage{!FileName}[!FileDate !FileVersion Automatic index for XeLaTeX.]

2 \RequirePackage{makeidx,X ESearch}

3 \makeatletter

4 \newif\ifxi@mark

5 \DeclareOption{mark}{\xi@marktrue}

6 \ProcessOptions

\xi@Mark either shows the word and the corresponding line, or it gobbles it. It is placed at the begin-\xi@Mark

\xi@empty

\xi@end

\xi@Lists

ning of the \index command, whose expansion is delayed accordingly.
7 \ifxi@mark

8 \def\xi@Mark#1{***[#1:\the\inputlineno] }

4

9 \else

10 \def\xi@Mark#1{}

11 \fi

12 \def\xi@empty{}

13 \def\xi@end{\xi@end}

14 \def\xi@Lists{}

Most of the job is done by X ESearch. What we need to do is properly analyze the entry to launch an\IndexList

\xi@IndexList adequate search.
15 \def\IndexList{%

16 \@ifstar{\def\xi@cs{*}\xi@IndexList}{\def\xi@cs{}\xi@IndexList}%

17 }

18 \def\xi@IndexList#1#2{%

19 \def\xi@ListName{#1}%

20 \edef\xi@Lists{\xi@Lists#1,}%

21 \unless\ifcsname#1@xeindex\endcsname

22 \csname#1@xeindex\endcsname

When a index list is created, we associate five X ESearch lists with it: one is for words and affixes that
should index themselves in lower case.
23 \SearchList{#1@xeindex@ncs@normal@list}{%

24 \def\xi@Word{##1}%

25 \lowercase{\expandafter\index\expandafter{\xi@Mark\xi@Word##1}}}{}%

Another one is for case-sensitive words and affixes.
26 \SearchList{#1@xeindex@cs@normal@list}{%

27 \expandafter\index\expandafter{\xi@Mark{##1}##1}}{}%

And the last three are for words and affixes that launch a special entry, which is stored in an associ-
ated command.
28 \SearchList{#1@xeindex@ncs@special@list}{%

29 \lowercase{\csname##1@#1@xeindex@entry\endcsname}{##1}}{}%

30 \SearchList{#1@xeindex@cs@special@list}{%

31 \csname##1@#1@xeindex@entry\endcsname{##1}}{}%

32 \SearchList{#1@xeindex@affix@special@list}{%

33 \csname\AffixFound @#1@xeindex@entry\endcsname{##1}}{}%

34 \fi

35 \xi@ParseList#2,\xi@end,%

5

36 }

This macro recursively tests each entry in \SearchList and feed it to \xi@ParseEntry with an addi-\xi@ParseList

tional = to check for the right part. It also adds \xi@cs, which was defined do * in case \SearchList
was starred.
37 \def\xi@ParseList#1,{%

38 \def\xi@temp{#1}%

39 \ifx\xi@temp\xi@end

40 \let\xi@next\relax

41 \else

42 \expandafter\xi@ParseEntry\xi@cs#1=\xi@end

43 \let\xi@next\xi@ParseList

44 \fi\xi@next

45 }

This one analyses the entry. If the third argument is empty, then there is no =⟨entry⟩ part in the\xi@ParseEntry

entry. In this case we add the word or affix to one of the two simple lists, depending on its case-
sensitivity.
46 \def\xi@ParseEntry#1#2=#3\xi@end{%

47 \def\xi@temp{#3}%

48 \ifx\xi@temp\xi@empty

49 \expandafter\if\noexpand#1*%

50 \AddToList!{\xi@ListName @xeindex@cs@normal@list}{#1#2}%

51 \else

52 \AddToList!{\xi@ListName @xeindex@ncs@normal@list}{#1#2}%

53 \fi

Otherwise we feed the right part to \xi@MakeEntrywhich sets the \ifxi@NoWord switch. We also check
whether the word is an affix or not, and whether it is case-sensitive. The word is then associated to
the right list and an associated macro is created.
54 \else

55 \xi@MakeEntry#3%

56 \expandafter\if\noexpand#1*%

57 \xi@CheckAffix#2?\xi@end

58 \ifxi@Affix

59 \AddToList!{\xi@ListName @xeindex@affix@special@list}{#1#2}%

60 \expandafter\edef\csname\xi@Affix @\xi@ListName @xeindex@entry\endcsname##1{%

6

61 \unexpanded{\expandafter\index\expandafter}{%

62 \noexpand\xi@Mark{##1}\ifxi@NoWord##1\fi\unexpanded\expandafter{\xi@temp}}%

63 }%

64 \else

65 \AddToList!{\xi@ListName @xeindex@cs@special@list}{#1#2}%

66 \expandafter\edef\csname#2@\xi@ListName @xeindex@entry\endcsname##1{%

67 \unexpanded{\expandafter\index\expandafter}{%

68 \noexpand\xi@Mark{##1}\ifxi@NoWord#2\fi\unexpanded\expandafter{\xi@temp}}%

69 }%

70 \fi

71 \else

72 \xi@CheckAffix#1#2?\xi@end

73 \ifxi@Affix

74 \AddToList!{\xi@ListName @xeindex@affix@special@list}{#1#2}%

75 \expandafter\edef\csname\xi@lcAffix @\xi@ListName @xeindex@entry\endcsname##1{%

76 \unexpanded{\def\xi@Word}{##1}%

77 \noexpand\lowercase{

78 \unexpanded{\expandafter\index\expandafter}{%

79 \unexpanded{\xi@Mark{\xi@Word}}%

80 \ifxi@NoWord##1\fi\unexpanded\expandafter{\xi@temp}}%

81 }%

82 }%

83 \else

84 \AddToList!{\xi@ListName @xeindex@ncs@special@list}{#1#2}%

85 \lowercase{%

86 \expandafter\edef\csname#1#2@\xi@ListName @xeindex@entry\endcsname##1{%

87 \unexpanded{\def\xi@Word}{##1}%

88 \unexpanded{\expandafter\index\expandafter}{%

89 \unexpanded{\xi@Mark{\xi@Word}}%

90 \ifxi@NoWord#1#2\fi\unexpanded\expandafter{\xi@temp}}%

91 }%

92 }%

93 \fi

94 \fi

7

95 \fi

96 }

This determines whether the entry starts with one of the MakeIndex operators.\xi@MakeEntry

97 \newif\ifxi@NoWord

98 \def\xi@exclam{!} \def\xi@at{@} \def\xi@bar{|}

99 \def\xi@MakeEntry#1#2={%

100 \def\xi@temp{#1#2}%

101 \xi@NoWordtrue

102 \unless\ifx\xi@temp\xi@exclam

103 \unless\ifx\xi@temp\xi@at

104 \unless\ifx\xi@temp\xi@bar

105 \xi@NoWordfalse

106 \fi

107 \fi

108 \fi

109 }

If the first argument is ?, then the word is unspecified at the beginning. Otherwise, if the third\xi@CheckAffix

argument is not empty, then it is unspecified at the end (because we added a ? when giving the word
to this macro). In case the ? is misplaced, X ESearch will detect it later.

110 \newif\ifxi@Affix

111 \def\xi@CheckAffix#1#2?#3\xi@end{%

112 \xi@Affixfalse

113 \expandafter\if\noexpand#1?%

114 \xi@Affixtrue

115 \def\xi@Affix{#2}%

116 \lowercase{\def\xi@lcAffix{#2}}%

117 \else

118 \def\xi@@temp{#3}%

119 \unless\ifx\xi@@temp\xi@empty

120 \xi@Affixtrue

121 \def\xi@Affix{#1#2}%

122 \lowercase{\def\xi@lcAffix{#1#2}}%

123 \fi

124 \fi

8

125 }

These are straightforward.\StopIndexList

\xi@StopIndexList

\StopIndex

\NoIndex

126 \def\StopIndexList#1{%

127 \xi@StopIndexList#1,\xi@end,%

128 }%

129 \def\xi@StopIndexList#1,{%

130 \def\xi@temp{#1}%

131 \ifx\xi@temp\xi@end

132 \let\xi@next\relax

133 \else

134 \StopList{%

135 #1@xeindex@ncs@normal@list,%

136 #1@xeindex@cs@normal@list,%

137 #1@xeindex@cs@normal@list,%

138 #1@xeindex@ncs@special@list,%

139 #1@xeindex@cs@special@list,%

140 #1@xeindex@affix@special@list%

141 }%

142 \let\xi@next\xi@StopIndexList

143 \fi\xi@next

144 }

145 \def\StopIndex{%

146 \expandafter\xi@StopIndexList\xi@Lists\xi@end,%

147 }

148 \def\NoIndex#1{%

149 \bgroup

150 \StopIndex

151 #1%

152 \egroup

153 }

Finally, we patch \printindex so it won’t be searched, and sets X ESearch’s parameters.\xi@PrintIndex

154 \let\xi@PrintIndex\printindex \def\printindex{\StopIndex\xi@PrintIndex}

155 \SortByLength{pPsS} \SearchOnlyOne{pPsS}

156 \makeatother

9

