import graph3; import solids; import three; import animate; settings.render=2; settings.tex="pdflatex"; settings.prc=false; settings.thick=false; settings.outformat="mpg"; currentprojection=orthographic(5,4,2); currentlight=light(specular=black,(0.1,-0.1,1),viewport=true); size(15cm,0); animation A; real Rst=20, Rl=0.7, Rtl=5; real ast=20, est=0.3, bst=ast*sqrt(1-est^2), cst=ast*est; real atl=5, etl=0.8, btl=atl*sqrt(1-etl^2), ctl=atl*etl; real xST(real t) {return ast*cos(t)+cst;} real yST(real t) {return bst*sin(t);} real zST(real t) {return 0;} real xTL(real t) {return atl*cos(27t);} real yTL(real t) {return btl*sin(27t);} real zTL(real t) {return 0;} real xLl(real t) {return Rl*cos(27t);} real yLl(real t) {return Rl*sin(27t);} real zLl(real t) {return 0;} real xTt(real t) {return Rtl*cos(100t)/5;} real yTt(real t) {return Rtl*sin(100t)/5;} real zTt(real t) {return 0;} real xl(real t) {return xST(t)+xTL(t)+xLl(t);} real yl(real t) {return yST(t)+yTL(t)+yLl(t);} real zl(real t) {return 0;} real xt(real t) {return xST(t)+xTt(t);} real yt(real t) {return yST(t)+yTt(t);} real zt(real t) {return 0;} real xL(real t) {return xST(t)+xTL(t);} real yL(real t) {return yST(t)+yTL(t);} real zL(real t) {return 0;} path3 Pl=graph(xl,yl,zl,0,2pi,1000),Pt=graph(xt,yt,zt,0,2pi,3000), Pts=graph(xST,yST,zST,0,2pi,500); picture pic; draw(pic,Pl,lightgray); draw(pic,Pt,lightblue); draw(pic,Pts,blue+dashed); draw(pic,shift(cst,0,0)*scale3(Rtl/2)*unitsphere,yellow); surface terre=scale3(Rtl/5)*unitsphere; surface lune=scale3(Rl)*unitsphere; int n=100; real step=2pi/n; for(int i=0; i < n; ++i) { real k=i*step; add(pic); draw(shift(xL(k),yL(k),0)*lune,lightgray); draw(shift(xST(k),yST(k),0)*terre,lightblue+lightgreen); A.add(); erase(); } A.movie(BBox(1mm,Fill(Black)),delay=500, options="-density 288x288 -geometry 50%x");