The Linux System Administrator's Guide

Version 0.9

Lars Wirzenius

<Email address removed by regquest>

Joanna Oja

<Curren mail r nknown>

Stephen Stafford

<stephen@clothcat.demon.co.uk.NOSPAM>

Alex Weeks

<draxeman@gmail m.NOSPAM>

An introduction to system administration of a Linux system for novices.

Copyright 1993——1998 Lars Wirzenius.

Copyright 1998—-2001 Joanna Oja.

Copyright 2001-—-2003 Stephen Stafford.

Copyright 2003—-2004 Stephen Stafford & Alex Weeks.

Copyright 2004——Present Alex Weeks.

Trademarks are owned by their owners.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no

Invariant Sections, no Front—Cover Texts, and no Back—Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

mailto:Email address removed by request
mailto:Current email address unknown
mailto:stephen@clothcat.demon.co.uk.NOSPAM
mailto:draxeman@gmail.com.NOSPAM

The Linux System Administrator's Guide

Table of Contents

About This Book 1
1. ACKNOWISAGIMENES. ... eeuteeutieteetiettete ettt et ettt et e bt e bt e bt e s bt e bt e bt e bt esbeesbee bt e bt enbee bt enbeesbeenbeenbeennes 1

1.1. Joanna's aCKNOWIEAZIMEIIES . ..veeveeteeteeteeittet ettt ettt ettt et e bt e bt e bt e bt e bt e sbeesbeesbeesbeenbeennes 1

1.2. Stephen's aCKNOWIEAZMENES ... ceveeteeieetietietieitert ettt ettt et et e st e e bt e bt e bt e bt e sbeesbeesbeesseennes 1

1.3. Alex's ACKNOWIEAZMEIEIS ... ceueeueieteeteetietiet ettt ettt et e bt e bt e bt e bt e bt e bt e bt esbeesbeesbeesbeenbeennes 2

2. REVISION HISIOTY. ...t eutteuiteiteieete ettt ettt ettt ettt et e bt e bt e b e e bt e bt e sb e e bt e bt e bt e bt e sbeesbeesbeenseanss 2

3. Source and pre—formatted versions available..........cceoiiiieiieiiiiieee e 2

4. Typographical CONVEMTIOMS ... e uveeuteeuteeuteeiiteteeteeteeteete ettt stteeutesateeateeaseeutesatesatesaeesasesmeeeneesaeesasesasanas 3
Chapter 1. Introduction 4
1.1. Linux or GNU/LinuX. that iS the qUESHIOMN. . ..eesteerteerteerieeniientieniiertiertee st e siee et e e seee bt e sbe e b e saeenaes 5

| 216 1S5 1021 TSRS 5
hapter 2. Overview of a Linux System. 7
2.1. Various parts of an Operating SYSIEIML.....ccoueerueertierueerteerteerieesteenteerteesieesteeseeesbeesbeesbeesbeesbeesbeesaeenseennes 7

2.2. Important parts Of the KeIMeL........c.eeruiiiiiiiiieiiee ettt st 7

2.3. Major services in 8 UNIX SYSIBIML....ueeveerieerteeitietieitesteesteesteesteesteesbeesteesbeesbeesbeesbeesbeesbeesbeesaeenseannes 8

2 T U 1 VL SRR 9

2.3.2. 1.0gins from terMINALS.eesveetieteete ettt ettt ettt ettt et et e bt e bt e bt e bt e b e sbeesbe e beeaes 9

23,3, Syl ittt ettt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e nbeenbeenhe e bt enbeenns 9

2.3.4. Periodic command execution: ron and Al...........ccocuveeeeeeiiieieeeeeeeiiiiieeeeeeeeeeeireeeeeeeeeenaeneeeas 10

2.3.5. Graphical USer INEEITACE.veeteeutieieete ettt ettt ettt ettt et e e ea 10

2.3.0. NEEWOTKIIIZ ... cuteeuteeiteeite ettt ettt ettt ettt et e et e et e eat e eateeaeesatesabeeabeeaeeeaeeeatesateeas 10

2.3.7. NEtWOTK TOGIMS. . .eeeutieutteiie ettt ettt ettt et ettt et e e sateeateeateeaeeeaeeenteeneeeas 11

2.3.8. NetWOTK file SYSIBINS ...veeuveeutieutietieieete et et ettt et eateeate et e e te et e eatesaeesatesatesabeemeeeaeeeneeenteeas 11

2.3.9 MIAIL .ottt e et e et e e e —e e e e ba e e e ebb e e e earaeeeearaeas 11

2.3 10, PLINEIIE ..ttt ettt ettt ettt ettt e et e eateeabe et e eateeateeaeesateeabeeabeeateenteeateenteeas 12

2.3.11. The filesYStem JAVOUL......cocuieiiiiieitete ettt et ettt ettt et e et e eaeeeaeeeas 12

Chapter 3. Overview of the Directory Tree 13
3.1 BACKGIOUNA .. ettt ettt ettt et et et ettt et e et e eat e eab e et e et e eateeateeaeeeas 13

3.2. The 100 fIIESYSBIM. ... e ueeeuteeueeeie et ettt ettt ettt ettt et et et e et e bt eaee et e eaeeeaeesabesabeeaeeeneesateeaeeeas 14

3.3, ThE /EEC QITBCIOTY. . e uveeuteeueeeute et ettt ettt ettt ettt et et e et e eateeateeabeeaeeeaeeeateeaeeeabeeabeemteeneesateenneeas 15

3.4. ThEe /AEV AITECIOTY: - e uveeuteeueeeute et et et ettt ettt et ettt et et et e eateeabeeabeeaeeeateeateeaeeeabesabeemteeaeesateeneeeas 17

3.5. The /UST FIlESYSEIM. 1. veeuteeuteeiteete ettt ettt ettt et ettt eat e et e et e et e eaee et e eateeaeeembesabeemeeeneesnteeaeeeas 19

3.6. The /VAr fIlESYSIOIMI. .. .eeuteiuteeuteeeie ettt ettt et ettt ettt et e et e et eab e eaee et e eateeaeeeabesabeemeeeaeesatesaneeas 19

3.7. The /PIOC FIl@SYSIEIM .. cuveeueeeuiieuieeteeie ettt ettt ettt et et e et e et e et e e bt eaee et e eateeaeeeabesmbeemeeeneesatesaneeas 20
Chapter 4. Hardware, Devices, and Tools. 22
4.1, HArdWare UGS ..vvvveeeeeeeeireeeeeeeeeeeieeeeeeeeeeettteeeeeeeessaueeeeesesssssseeseesessessssesesessasssssseesessssssrreesessnnns 22

4.1.1. The MAKEDEV SCIIDL ...ttteteiertieiieieie ettt ettt et ettt tesae st eneesesseeneeneesseeneeneas 22

4.1.2. The mKNod COMMEAN........ccoeuvreiiiiiiiiiiieeiee ettt e e et e e e e eeaateeeeeeesenaaaaeeeeessesaaaeeeeeeenans 22

4.1.3. The 1SPCi COMMANG. ...cevteitieieieiiieetiert ettt ettt ettt e bt e bt e bt e bt e bt e bt e sbeesbeesbeebeenbeeneean 23

4.1.4. The 1SdeV COMMANG.oceiiieeriiiieiiieeeiieeeeee ettt e e e e e e e e e e e aaeee e e e e e eesasaaeeeeessessaaeeeeessnans 23

4.1.5. The 1SUSD COMMANG ...uvvvviiiiieiriiiieee et e et e e e e et e e e e e e eaaeeeeeeessesaaaaeeeeessessaaeeeeesenans 23

4.1.6. The 1Sraid COMMANG........cceoieurriiieeeeiieiieeeee e ettt e e e et e e e e e eeaaeeeeeeeesesasaaeeeeessessaaeeeeesenans 23

4.1.7. The hdparm coOmMANd........ccoueiiiiiiiieie ettt ettt ettt et et e b e b ebeeeeas 23

4.1.8. More HardWare RESOUICES.uuuuuuieiiiiiiiiiitiieee e ettt e e e e e ettt e s e e e e e e e taaaeeeaeeeeesaaes 23

The Linux System Administrator's Guide

Table of Contents
Chapter 4. Hardware, Devices, and Tools

4.2, KeIMEl MOAUIES.uuvvviiiiiiieiiiieeee ettt ettt e e e e et e e e e e et e e e e e e sessaaeeeeessessaaaeeeesssnnnsreeeeessaans 23
N T 1) 44 T Yo PPN 24
N 1 1) 1416 Yo PPN 24
E P TR [<]0]111 1016 NPT 24
R T 4 1111110 ¢ PO OUUR OO SOPR PP OPPRRRPRRRt 24
E A TR 111016 101 10) o PSSR RURUSRUSRRURR 24

Chapter 5. Using Disks and Other Storage Media 25

S5.1. TWO KINAS OF AEVICES.ceeuvveeiieeeiieeiiieeee ettt e e e et e e e e e eeaat e e e e e e e senaaneeeeessennneneeeeessaans 25

R & (e e RN 26

5.3. Storage Area NetwWorks — DIafl.......cooieiiiiiiiiiiieee et 28

5.4. Network Attached Storage — Drafl.......ccoeoueeiiiiiiiiieieeeeee e 28
I 2 RN N VRS RRRRRNY 29
I B O | SN YRR RRRRRROY 29

IS T) (015 o) (<1 OO OO OO OO OO ORI 29

T O 5 20 1Y F TN 30

D7 TAPDBS -t euee et ettt ettt ettt et et et et e et e e bt e a bt e a bt e a b e e bt e bt e a bt e bt et e e bt e bt e bt e bt e bt e be e beenbe e bt enbeebeentean 31

5.8, FOTMALHIIE .. e cuveeuteeuteete ettt ettt ettt et ettt et et et e e bt ea bt e bt et e ente e beeabeembeenbeenbeenteenbeenbeenbeenbeensean 31

R o Va8 15 T0) 1T RN 32
5.9.1. The MBR. boot sectors and partition table............ceceereereerieiniee e 33
5.9.2. Extended and 10ical PATtIIONS. ... veeveeuveeteeieeieeite ettt ettt ettt sbeebe e beebeebeeneeas 33
5.9.3. PaTtitiON LV PES . -veeuveeteeteeteeieeteete et et eteeteeteebeeabeeabe e teenbe e be e bt e bt e bt e bt e beebe e be e beebeentean 34
5.9.4. Partitioning 8 hard disK........cceouieiieiiieieeee ettt 35
5.9.5. Device files and PATtItIONS . .. eeoveeveesteeieeteeteete et et ettt ebe e bt ebeebe e bt e bt ebeenbe e beebeebeeneean 36

D10, FIlESYSEIMIS - e uveeuteeuteeuteete et et et et et e et et ea bt e bt eabe e bt enbeembeenbeenteeabeeabeembeembeenbeenteenbeenbeenbeenbeensean 36
5.10.1. What are fileSYSIEIMIS?.eiuieiieieetteie ettt ettt ettt et e ettt et et e bt ebeebe e beebeebeeneean 36
5.10.2. FileSYStOIMS GAIOTE. .. ccuveeuteeuteeuieeteeteete et et et e bt et eateeteeateenbeebe e be e bt enbeebeebeebeenbeenbeensean 37
5.10.3. Which filesystem should Be USed?.......cccueeuieiiiiiiiiiieieieeie et 39
5.10.4. Creating @ fileSYSIOIML .. eeueeueeteeteete ettt ettt ettt ettt e e et e et et e et e e bt ebeebe e beebeenbeeneean 39
5.10.5. Filesystem DIOCK SIZ&.......eeueeiieieeiieieeie ettt ettt ettt et ettt et e be b e b ebeeneeas 40
5.10.6. FileSySteIm COMPATISOIL. . eeuveeuteeuteeteeteeteeteeteeteeteeteeteenteeteenseenbeenseeseenseenseeseenseeseeneeas 41
5.10.7. Mounting and UNMIOUNEING:eeoveeteeteeteeteeieerteete et eteeteeteebeebeebeeseesteenseenbeeseeseenseas 42
5.10.8. FileSYStOIM SECUIILY. . .-veeuveeuteeteeteeteeteete et et e bt ebe et eteebeebeebe e beenbeenseeteebeebeenbeenseenseas 45
5.10.9. Checking filesystem integrity With fSCK........ccoeririiiiiiiiiiieeeeeeeee e 45
5.10.10. Checking for disk errors with badblOCKS.cecueeruiiiiiiiiiiiiieeeeeeeecee e 46
5.10.11. Fighting fragmentation?.........ceoueerueerieeieeieeie ettt ettt et eeesbeesbeesbeebeebeeneeas 46
5.10.12. Other tools for all fIleSYSIEIMIS. .. eeveeteeiieiieiteeite ettt ettt ettt e sbe et e beebeeneeas 47
5.10.13. Other tools for the ext2/ext3 fileSYSIEM. . ..eerueerterrtieieeieeieerte ettt rteesie e e b ebeeeeas 47

S5.11. Disks WithOUt fIlESYSIEMIS. . ..veeureeuteeteeteeteete et et et et ettt et et e te e bt e bt e be e be e beebeebeebeenbeennean 48

5.12. AllOCating diSK SPACE. ... ceuveeuteeuteeteete ettt ettt ettt ettt et e bt e bt e te e bt e bt e bt e bt e teebeebe e bt ebeennean 49
5.12.1. Partitioning SCHEIMES. .. ccuueeteeieeteeiteieete et ettt ettt et et e bt e be et e bt e bt ebeebeebeebeenbeeneeas 49
5.12.2. Logical Volume Manager (LVIM)......c.ooiuiiiiiiiiiieiieieeieeie ettt 50
5.12.3. SPACE TEQUITEIMENES. .. .veeuteeueeeueeeteeteeteeteeteeteeteebeebeeateesteenbeenbeenbeenbeenseeteebeebeenbeenseensean 50
5.12.4. Examples of hard disk alloCation.........ceoueerueerieerieeiiieieeieeie e 50
5.12.5. Adding more disk Space fOr LINUK.......ccoeerueerierriieiieieeie ettt 51
5.12.6. Tips for saving diSK SPACE......ueerueeiieiiiiieie ettt ettt et b e an 51

The Linux System Administrator's Guide

Table of Contents
Chapter 6. Memory Management.

6.1. What is virtual MEMOTY 2. ..cc.eieiieiieieeieete ettt ettt ettt ettt e et eate et e eatesateeateeabeeaeeeneesateeaeeeas
6.2. Creating @ SWAD SPACE ... eeuveeueeeueeeuteeuteetteeeeteateeateeuteeaeeaueesatesateaasesaseameeeasesasesaseensesasesnseensesnsesseaas
6.3. USING 8 SWAD SDACE:..-.euveeueeeueeeueeeuteeuteaueeeueeauteaaseeaseeuteameeameesssesaseaateeaseaneeansesasesnsesnsesnseensesnsessessesa

Chapter 7. System Monitoring
Z.1. SYSEIN RESOUICES. .. veeeuveiaiieiiiienitientee ettt ettt ettt ettt e st e st e et e ettt ettt esabeesabeesabeesabeesabeeenbeeesabeesabeens

Z.1.1. The tOP COMMANM. ...ccveiriiiaiiiiiiieitee ettt ettt ettt e sbt e st e e sib e sabeesabeesabeesabeeenbeeenaaeenanes

7.1.2. The 10Stat COMMANG........ccovuvreieeeeeeetiieieee e e ettt e e e e e eeeae e e e e e eeeaabeeeeeeeesabareeeeeesensaaneesessanssnnes

7.1.3. The PS COMMEAN. .. cuveeutieuieiie ettt ettt ettt ettt ettt et et e bt e beebe e beebeenbeeneean

7.1.4. The vinstat COMMANG.uuvvvieeeeeiitiiiieeeeeeeieeeeeeeeeeetteeeeeeeeeeaaaeeeeeeeessssaeeeeeessssisaneeesessensnnes

7.1.5. The 1S0f COMMEANT.ooiiiiiieiiiiieeeeeeeeeee et e e et e e e e e e e e e e e e eensaaaeeeessennanes

7.1.6. FINAING MOTE ULIITIES .. e euveeueeeueeeteeteeieete et et este et et eteeteeteebeenbeenbeeneeeteebeebeebeenseeneean

7.2, FIleSYSIOM TUSAGE. ... eeuueeuiietietiete et et ettt ettt et et e bt e bt e bt eabe e te e be e bt eabeenbeenbeenteenbeenbeenbeenbeensean
7.2.1. The df COMMAN......ccoooiiiiiiiiiiiiiiee et e e et e e e e rereeeeeaeeeaseseeeseesenens

Chapter 8. Boots And Shutdowns

8.1. An overview of boots and SHULAOWIIS ...vvvvveeiiiieieiiiieeeeeeiiieeee e e et e e e e e eaaaee e e e e e e enaraeeeeas
8.2. The boot Process in ClOSET LOOK.utruirieriieiieite ettt sttt sttt st e bt e s e

8.2.1. A Word About BOOUOAAETS.uuvvveieeiiiieiiieieeeeeeeieeeeee e ettt e e e e et e e e e s esenaaeeeeeseeeaneaneeeas
8.3. MOre abOUL SHULAOWIISeeeeiierrireeeeeieiiiieieee e e ettt e e e e ettt e e e e e eeaaaeeeeeessenaaaeeeeesseennreeeeeessennsraeeeess

oI T L) 010 10 1 11 £ OO S UUUUPTUURUSUPPN
8.5. SINGIE USET IIOAE.....eeiuieeiiieiiieie ettt ettt ettt ettt ettt e it e e bt e s bt e sateshtesatesaeesaeesbeesbeesaeesaeesaeennis
8.6. EMergency DOOt flOPDIES. .. uueeueeruieriieiiieeiie ettt sttt sttt sttt sae e sbee bt saee s ae e e e

Chapter 9. init
LS R 0 VLA oT0) 0 0 =Tl i) o) ST
9.2. Configuring init to start getty: the /etc/inittab file.........ccccervieriiniiiiiiiiiiie e
0.3, RUN IEVEIS. .uvuvuvitiiiiiiitieeiteeeeee ettt ettt e e e e et e e ettt e et ettt ettt e eeeesesesesessa s ssssssssssssssssssssssreserassenreenenees
9.4. Special configuration in /etC/INILEAD.........ueviiiiiiieiie ittt
9.5. Booting in SINGle USET MOME.ccuuiiuiiriieiieeieeieete ettt sttt sttt e s bt e sbeesaeesaeenas

Chapter 10. Logging In And Out

The Linux System Administrator's Guide

Table of Contents
Chapter 10. Logging In And Out

10.5. ACCESS COMITOL...eiiiiiiiiiiieieee ettt ee e e eeee e e e e e e et eeeeeeeaaaaeeeeesesesaaeeeeeessasnssaeeseeesssnssaaneeeessannrrees 78

10.6. SHEIT SEATTUD. ...t euteeuteeiteete ettt ettt ettt ettt et ettt et e e st e eabesabeemteemeeeateeatesatesateeaseemseeneeeaeesnteaas 78
Chapter 11. Managing user accounts 79
11.1. WHat'S QN ACCOUNEZ...uuuvuevereiiririiiiiiieieeaesssssssssssssssssssssssssssssssssssnsnnererees 79

11.2. CrEAtIME 8 TSEI. e veeuteeuteeuteeuteeteeteeuteeuteeuteeateaateeuteeateemteeaeeeateeaseaabeembeemseemseeateeatesateeaseeaseensesaeesnteans 79

11.2.1. /etc/passwd and other informative files........ccoerueeiiiiieiiieieeee e 79

11.2.2. Picking numeric user and group IdS........ceceeueerieeriieiieeieeie ettt ettt ettt 80

11.2.3. Initial enviroNMENt: JEIC/SKEL.....uuvvviiiiiiiiiiiiieeee et e et e e e e eaaee e e e e e e eeanaeneeeas 80

11.2.4. Creating a user BY Dand.c.eoouiiiiiiieiiee et 80

11.3. Changing USET PIOPEILIES. . ..veeuveeuteeuteeteeteeteeteeteeateeteeueeeteeutesabeenseameeeasesaeesasesasesasesaseensesneesnseans 81

11.4. REMOVIIE 8 TSEI .. eutteuteeutteuteeuteeteeteeuteeuteeateeateeuteeateeateeaeeaateeatesabeeaseemeeeaseeateeatesateeaseeasesntesnsesnneans 81

11.5. Disabling a USer teMPOLATILY. .. .eeveeuteeuteeieett et ettt ettt ettt ettt et et s e s atesateeabeeaeeeneeeneesaeeeas 82
Chapter 12. Backups 83
12.1. On the importance of being backed UP.......cueeoveeieriieiieiiee et 83

12.2. Selecting the backup MEAITIMLeeoveeteiiiiie ettt ettt see e 83

12.3. Selecting the BaCKUP t0OL.....ccvietieiieiiiie ettt ettt et et ettt eaee st 84

12.4. STMPIE DACKIUPS. ...t euteeuteeiit ettt ettt ettt et ettt et et e et e et e st e et e eateeatesabeeabeeaeeeneesaeesnteeas 85

12.4.1. Making backups With ta5........eeoueerieeiiieiieieee ettt et ettt 85

12.4.2. Restoring files With TAL.......cocuiiuirieeiiee ettt et ettt s 86

12.5. MUltileVel DACKUIDS .. ccuveeutieieete ettt ettt et ettt ettt e et e et eabeeateeateeaeeeateeas 87

12.6. WHAt £0 DACK T -.eeuteeiteeiiteie ettt ettt ettt ettt ettt et e et e sateeateeaeeenteeaeesateens 88

12.7. COmMPIeSSEd DACKIUDS ... e cuvteuteeuteeiteteete ettt ettt ettt ettt et ettt et e eateeateeateeateeabeeaeeeanesaeesateens 89
Chapter 13. Task Automation ——To Be Added 90
Chapter 14. Keeping Time 91
14.1. The concept Of IOCALLIMIE. .. .veeveeteeteeieeie ettt ettt ettt ettt ettt et e et et e e abeeneesaeesaeeeas 91

14.2. The hardware and SOftWAre CIOCKS.......cvvvviiiiiiieiiieieee ettt eeeaee e e e e eaaae e e e e s e ennnanes 92

14.3. Showing and SEtNG tIIMIE ... eeoveeteeteeieeie et eteete ettt et et e ebe et e et eeateeateeatesateeabeeabeeaeeeneesaeesneeaas 92

14.4. When the ClOCK 18 WIOME.eeuuietieiieiieteete ettt ettt ettt et et ettt et e ateeateeateeabeeaeeeaeeeaeesaeeeas 93

14.5. NTP — NetWork Time ProtOCOL.......cccoveeuuuviiieiieeitieeeee e e eeeeieee e eeeiaee e e e eeeaaaeeeeeessenaaaeeeeessennnnes 93

14.6. Basic NTP CONIGUIATION. +..tteuvteutieteeieeie et ettt ettt ettt et ettt et sateeatesatesateeabeeaeeeneeeaeesaneeas 94

147, INTP TOOIKIL c.vvvvveeeeeeeeetieeeeeeeeeeieee e e e e e et e e e e e eeessaaeeeeeeeeessaaaeeeeesssasssaaeeeesssasnsseseseeesssnssaaneeeessannrrens 95

14.8. SOME KNOWN NTP SEIVEIS . .uvvvvvriiiiiiiiiiiiiiiiiieess s ssssssssssssssssessesssseneereeees 97

14,9, INTP LANKS ..ooevveiiieeeeeeieeeee e e ettt e e e e et et e e e e e eeaaaeeeeeeeesenaaaaeseessssssaaaeeeesssasssesesesesssnssenneeeessannsrens 97
Chapter 15. System L.ogs ——To Be Added 98
hapter 16. System Updates —To Be Added 99
Chapter 17. The Linux Kernel Source 100
Chapter 18. Finding Help 101
18.1. Newsgroups and Mailing LASES.cccueerueereenierientientientee st et te st ce st te st et et esaeesbtesbeesbeesaeesaeesaeeeas 101

18.1.1. Finding The Right FOTTUMccuteiiiiiiiiiiieie ettt s 101

The Linux System Administrator's Guide

Table of Contents
Chapter 18. Finding Help

18.1.2. BEOTE YOU POSL....ciiiiiiieiiiiiiie ettt e et e e e e ettt e e e s e e et e e e e e e sensaaneeeessennenes 101
18.1.3. WIIting YOUT POSE. ..coutiiiiiiiiiieitee ettt ettt sttt st st 101
18.1.4. FOrmatting YOUL POSE.....ceiueetieiieitieittetteee ettt sttt ettt st st e st e 102
18.1.5. FOHOW T . .iiiiiiieiietiee ettt h e b e b e b e b e s bt e sbe e s bt e sbtesbeesbeesbeesaeesaeenas 102
18.1.6. MOIe INFOIMALION. . ..eeeiuveireeeeeeieieeeeeee e ettt e e e e eete e e e e eeetaaeeeeeseessareeeeeessssnsanneesessesnnnees 102
IBL2. TRC ettt ettt e e e e et e e e e e et e e e e e s ee e b ataeeee e e e et aaeeee e e e aaaeeeeeeearaareeeeesennnrres 102
| T 0] (0101 5 PO 103
18.2.2. B POIIE.....ceeeeeeieiieieeeeeeeeeee ettt e ettt e e e e e e et e e e e e s seenbaaeeeeesseesateeeeeessannsaareeeessennnaees 103
18.2.3. Type Properly. in English.......cooiiiiiiiiiiieeeeee ettt 103
18.2.4. POt SCANIMIIG: ..eouveeuteeuteeteentieteenteesteesteesteesteesttesbeesbeesbeenbeesbeesbeesbeesbtesseesbtesbtesbeesbeesaeesneannes 103
18.2.5. Keep it in the Chanmel........cooeeiieiiiiiiiieie ettt sttt 103
18.2.6. StAV ON TODIC ceuveeuteeteeitietiettestee st et et et et e e st e e st e esbtesbeesbtesbeesbeesbeesbeesbtesbeesbeesaeesaeesneenns 104
L8.2. 7. CTICPS. e oottt ettt e e e e et e e e e e s et e e e e e e s sesmsaaeeeeessessateeeeeesssnnsaaseesessasnneees 104
18.2.8. Hacking. Cracking. Phreaking., WareZingcceeeerueenienienienienienienie e siee e 104
18.2.9. ROUNA TUD...eiiutieiiieiieieeteet ettt ettt ettt b e bt e bt e bt e bt e s bt e s bt e sbe e s bt e sbeesbeesbeesbeesaeeeneenas 104
18.2.10. Further REAdINGcoveerueertieiieieeseeeieet ettt ettt sttt st s e s 104
Appendix A. GNU Free Documentation License 105
YN R 3 S 2 NLY] 023 5 SRR 105
A.2. APPLICABILITY AND DEFINITIONS......ooiiiiiiieiieieeee ettt eenaaeee e s e e enaaaeeeeeeens 105
A.3. VERBATIM COPYINGooiiiiiiietiiiieeeeeeeeeeeeee e e eeeaaaeeeeeeeeeaaaeeeeeeesssasaaeeesesssssasseesesssssssnseeeeesnans 106
A4 COPYING IN QUANTITY ...utiieieitiie ettt eete e ettt eete e e eetae e e eeate e e eeteeeeeaaeaeeeabeeeeereeeeensrens 106
A.5. MODIFICATIONS. ..ottt oottt ettt e e e ettt e e e e e e et e e e e e s s eabaaeeesessssssareeeessessssaeeeeeeenans 107
A.6. COMBINING DOCUMENTSottt ettt e e eeettee e e e e e e esataeeeeesssssaareeeesssssraeeeeeessans 108
A.7. COLLECTIONS OF DOCUMENTS...... ettt ettt eeeetee e e s eeaaaeee e e s s e eenaaaeeeeeesens 109
A.8. AGGREGATION WITH INDEPENDENT WORKS ..ottt 109
PR B 2NN AN B (0)\ RN 109
A.10. TERMINATIONcoiiiiettteieeeeeeetee e e e e e eeeteeeeeeeeeseaaaeeeeeseesasaeeeeessesssaaeeesesssssssaseesessssssaeeeeeessans 109
A.11. FUTURE REVISIONS OF THIS LICENSE ...ttt e 110
A.12. ADDENDUM: How to use this License for your doCUMENtS.eevuverueerienienienienie e 110
Glossary (DRAFT, but not for long hopefully) 111
) DT o B 2 Y i SRR 115
A et e e ———— e e e e e e ————teeeeaa ————eteeeaaa————teee e e e ——ataeeeeanaaaraeas 115

) S TP 115

e e e ————— e e e e e ———————e e e e e a———————teeeeaa—————teeeaaa ————teee e e e ——areeeeeanaaarees 115

)) PP 116
Bt e e e —— e e e e e aa ————e e e e e e e ————teeeeaaa i ——reeeeeanaaanaeas 117

) SRR 117
oo e e e ———— et e e e e ———————eeeea————————eeeeeaa ————teeeeaa ————teee e e e ——ateeeeeanararees 120

) < PR 120

) PR 120

) SRR 120

) TSR 121

DY TR 121
Nttt e e et e e e e e ———e e e e e e e ——— et eeeeaa————eeeeea e ————teeee e e ——areeeeeanaaaarees 121

O e e e e ———ee e e e e ——————teeeeaa——————eeeeaaa—————teeeeaaa————teeeeeaa———tteeeeanararees 121

The Linux System Administrator's Guide

Table of Contents
Glossary (DRAFT, but not for long hopefully)

Dttt ettt et ettt ettt et et e bt a e et e e bt bt e aeennees 121
Rttt ettt ettt ettt et et et e e e et e b e be bt eaeennees 122
e ettt et ettt et e a e e bt b e ettt e bt et e et e bt e bt e st et e e bt eneeneeaeenneen 122
Lttt ettt et et et et et et et e n e bt et n e e neenne s 122
ettt et ettt et et et et e bt e s e et e b et bt e saeennees 122
I ettt ettt et et ettt ettt ettt e e ettt et e b e neene s 122

vi

About This Book

"Only two things are infinite, the universe and human stupidity, and I'm not sure about the
former." Albert Einstein

1. Acknowledgments

1.1. Joanna's acknowledgments

Many people have helped me with this book, directly or indirectly. I would like to especially thank Matt
Welsh for inspiration and LDP leadership, Andy Oram for getting me to work again with much—valued
feedback, Olaf Kirch for showing me that it can be done, and Adam Richter at Yggdrasil and others for
showing me that other people can find it interesting as well.

Stephen Tweedie, H. Peter Anvin, Remy Card, Theodore Ts'o, and Stephen Tweedie have let me borrow their
work (and thus make the book look thicker and much more impressive): a comparison between the xia and
ext2 filesystems, the device list and a description of the ext2 filesystem. These aren't part of the book any
more. I am most grateful for this, and very apologetic for the earlier versions that sometimes lacked proper
attribution.

In addition, I would like to thank Mark Komarinski for sending his material in 1993 and the many system
administration columns in Linux Journal. They are quite informative and inspirational.

Many useful comments have been sent by a large number of people. My miniature black hole of an archive
doesn't let me find all their names, but some of them are, in alphabetical order: Paul Caprioli, Ales Cepek,
Marie—France Declerfayt, Dave Dobson, Olaf Flebbe, Helmut Geyer, Larry Greenfield and his father, Stephen
Harris, Jyrki Havia, Jim Haynes, York Lam, Timothy Andrew Lister, Jim Lynch, Michael J. Micek, Jacob
Navia, Dan Poirier, Daniel Quinlan, Jouni K Seppénen, Philippe Steindl, G.B. Stotte. My apologies to anyone
I have forgotten.

1.2. Stephen’s acknowledgments
I would like to thank Lars and Joanna for their hard work on the guide.

In a guide like this one there are likely to be at least some minor inaccuracies. And there are almost certainly
going to be sections that become out of date from time to time. If you notice any of this then please let me
know by sending me an email to: <pagpuss@debian.org.NOSPAM>. [will take virtually any form of
input (diffs, just plain text, html, whatever), I am in no way above allowing others to help me maintain such a
large text as this :)

Many thanks to Helen Topping Shaw for getting the red pen out and making the text far better than it would
otherwise have been. Also thanks are due just for being wonderful.

About This Book 1

mailto:bagpuss@debian.org.NOSPAM

The Linux System Administrator's Guide

1.3. Alex's Acknowledgments

I would like to thank Lars, Joanna, and Stephen for all the great work that they have done on this document
over the years. I only hope that my contribution will be worthy of continuing the work they started.

Like the previous maintainers, I openly welcome any comments, suggestions, complains, corrections, or any
other form of feedback you may have. This document can only benefit from the suggestions of those who use
it.

There have been many people who have helped me on my journey through the "Windows—Free" world, the
person I feel I need to thank the most is my first true UN*X mentor, Mike Velasco. Back in a time before
SCO became a "dirty word", Mike helped me on the path of tar's, cpio's, and many, many man pages. Thanks
Mike! You are the 'Sofa King'.

2. Revision History

Revision History
Revision 0.7 2001-12-03 Revised by: SS

Revision 0.8 2003-11-18 Revised by: AW

1. Added a section on NTP
2. Cleaned some SGML
3. Added ext3 to the filesystem section

Revision 0.9 Revised by: AW

. Cleaned some SGML code, changed doctype to 1ds.dsl, and added id tags
. Updated section on filesystem types, and Filesystem comparison
. Updated partition type section

. Updated section on creating partitions

. Wrote section on Logical Volume Manager (LVM)

. Updated section on space allocation

. Added chapter on System Monitoring

. Added more command line utilities

. Verified Device list

10. Modified email address for Authors

11. Added references to more in—depth documents where applicable
12. Added notes on upcoming sections

13. Indexed chapters 1 — 4, & part of 5

14. Updated Misc Information throughout the book

01NNk~ WIN =

Nel

3. Source and pre-formatted versions available

The source code and other machine readable formats of this book can be found on the Internet via anonymous
FTP at the Linux Documentation Project home page http://www.tldp.org/, or at the home page of this book at
http://www.draxeman/sag.html. This book is available in at least it's SGML source, as well as, HTML and
PDF formats. Other formats may be available.

About This Book 2

http://www.tldp.org/
http://www.draxeman.com/sag.html

The Linux System Administrator's Guide
4. Typographical Conventions

Throughout this book, I have tried to use uniform typographical conventions. Hopefully they aid readability.
If you can suggest any improvements please contact me.

Filenames are expressed as: /usr/share/doc/foo.
Command names are expressed as: fsck

Email addresses are expressed as: <user@domain.com>
URLs are expressed as: http://www.tldp.org

I will add to this section as things come up whilst editing. If you notice anything that should be added then
please let me know.

About This Book

mailto:user@domain.com
http://www.tldp.org

Chapter 1. Introduction

"In the beginning, the file was without form, and void; and emptiness was upon the face of
the bits. And the Fingers of the Author moved upon the face of the keyboard. And the Author
said, Let there be words, and there were words."

The Linux System Administrator's Guide, describes the system administration aspects of using Linux. It is
intended for people who know next to nothing about system administration (those saying ~ what is it?"), but
who have already mastered at least the basics of normal usage. This manual doesn't tell you how to install
Linux; that is described in the Installation and Getting Started document. See below for more information
about Linux manuals.

System administration covers all the things that you have to do to keep a computer system in usable order. It
includes things like backing up files (and restoring them if necessary), installing new programs, creating
accounts for users (and deleting them when no longer needed), making certain that the filesystem is not
corrupted, and so on. If a computer were, say, a house, system administration would be called maintenance,
and would include cleaning, fixing broken windows, and other such things.

The structure of this manual is such that many of the chapters should be usable independently, so if you need
information about backups, for example, you can read just that chapter. However, this manual is first and
foremost a tutorial and can be read sequentially or as a whole.

This manual is not intended to be used completely independently. Plenty of the rest of the Linux
documentation is also important for system administrators. After all, a system administrator is just a user with
special privileges and duties. Very useful resources are the manual pages, which should always be consulted
when you are not familiar with a command. If you do not know which command you need, then the apropos
command can be used. Consult its manual page for more details.

While this manual is targeted at Linux, a general principle has been that it should be useful with other UNIX
based operating systems as well. Unfortunately, since there is so much variance between different versions of
UNIX in general, and in system administration in particular, there is little hope to cover all variants. Even
covering all possibilities for Linux is difficult, due to the nature of its development.

There is no one official Linux distribution, so different people have different setups and many people have a
setup they have built up themselves. This book is not targeted at any one distribution. Distributions can and do
vary considerably. When possible, differences have been noted and alternatives given. For a list of
distributions and some of their differences see

http://en.wikipedia.org/wiki/Comparison of Linux distributions.

In trying to describe how things work, rather than just listing ““five easy steps" for each task, there is much
information here that is not necessary for everyone, but those parts are marked as such and can be skipped if
you use a preconfigured system. Reading everything will, naturally, increase your understanding of the system
and should make using and administering it more productive.

Understanding is the key to success with Linux. This book could just provide recipes, but what would you do

when confronted by a problem this book had no recipe for? If the book can provide understanding, then
recipes are not required. The answers will be self evident.

Chapter 1. Introduction 4

http://en.wikipedia.org/wiki/Comparison_of_Linux_distributions

The Linux System Administrator's Guide

Like all other Linux related development, the work to write this manual was done on a volunteer basis: I did it
because I thought it might be fun and because I felt it should be done. However, like all volunteer work, there
is a limit to how much time, knowledge and experience people have. This means that the manual is not
necessarily as good as it would be if a wizard had been paid handsomely to write it and had spent millennia to
perfect it. Be warned.

One particular point where corners have been cut is that many things that are already well documented in
other freely available manuals are not always covered here. This applies especially to program specific
documentation, such as all the details of using mkfs. Only the purpose of the program and as much of its
usage as is necessary for the purposes of this manual is described. For further information, consult these other
manuals. Usually, all of the referred to documentation is part of the full Linux documentation set.

1.1. Linux or GNU/Linux, that is the question.

Many people feel that Linux should really be called GNU/Linux. This is because Linux is only the kernel, not
the applications that run on it. Most of the basic command line utilities were written by the Free Software
Foundation while developing their GNU operating system. Among those utilities are some of the most basic
commands like cp, mv Isof, and dd.

In a nutshell, what happened was, the FSF started developing GNU by writing things like compliers, C
libraries, and basic command line utilities before the kernel. Linus Torvalds, started Linux by writing the
Linux kernel first and using applications written for GNU.

I do not feel that this is the proper forum to debate what name people should use when referring to Linux. I
mention it here, because I feel it is important to understand the relationship between GNU and Linux, and to
also explain why some Linux is sometimes referred to as GNU/Linux. The document will be simply referring
to it as Linux.

GNU's side of the issue is discussed on their website:

The relationship — _http://www.gnu.org/gnu/linux—and—gnu.html

Why Linux should be GNU/Linux — http://www.gnu.org/gnu/why—gnu—linux.html

GNU/Linux FAQ's — http://www.gnu.org/gnu/gnu—linux—faq.html

Here are some Alternate views:

http://librenix.com/?inode=2312

http://www.topology.org/linux/lingl.html

http://atulchitnis.net/writings/gnulinux.ph

1.2. Trademarks

Microsoft, Windows, Windows NT, Windows 2000, and Windows XP are trademarks and/or registered
trademarks of Microsoft Corporation.

Chapter 1. Introduction 5

http://www.gnu.org/gnu/linux-and-gnu.html
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/gnu/gnu-linux-faq.html
http://librenix.com/?inode=2312
http://www.topology.org/linux/lingl.html
http://atulchitnis.net/writings/gnulinux.php

The Linux System Administrator's Guide

Red Hat is a trademark of Red Hat, Inc., in the United States and other countries.
SuSE is a trademark of Novell.
Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Ltd.

GNU is a registered trademark of the Free Software Foundation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective
companies.

Chapter 1. Introduction 6

Chapter 2. Overview of a Linux System

"God saw everything that he had made, and saw that it was very good. " — Bible King James
Version. Genesis 1:31

This chapter gives an overview of a Linux system. First, the major services provided by the operating system
are described. Then, the programs that implement these services are described with a considerable lack of
detail. The purpose of this chapter is to give an understanding of the system as a whole, so that each part is
described in detail elsewhere.

2.1. Various parts of an operating system

UNIX and 'UNIX-like' operating systems (such as Linux) consist of a kernel and some system programs.
There are also some application programs for doing work. The kernel is the heart of the operating system. In
fact, it is often mistakenly considered to be the operating system itself, but it is not. An operating system
provides provides many more services than a plain kernel.

It keeps track of files on the disk, starts programs and runs them concurrently, assigns memory and other
resources to various processes, receives packets from and sends packets to the network, and so on. The kernel
does very little by itself, but it provides tools with which all services can be built. It also prevents anyone from
accessing the hardware directly, forcing everyone to use the tools it provides. This way the kernel provides
some protection for users from each other. The tools provided by the kernel are used via system calls. See
manual page section 2 for more information on these.

The system programs use the tools provided by the kernel to implement the various services required from an
operating system. System programs, and all other programs, run ~on top of the kernel', in what is called the
user mode. The difference between system and application programs is one of intent: applications are intended
for getting useful things done (or for playing, if it happens to be a game), whereas system programs are
needed to get the system working. A word processor is an application; mount is a system program. The
difference is often somewhat blurry, however, and is important only to compulsive categorizers.

An operating system can also contain compilers and their corresponding libraries (GCC and the C library in
particular under Linux), although not all programming languages need be part of the operating system.
Documentation, and sometimes even games, can also be part of it. Traditionally, the operating system has
been defined by the contents of the installation tape or disks; with Linux it is not as clear since it is spread all
over the FTP sites of the world.

2.2. Important parts of the kernel

The Linux kernel consists of several important parts: process management, memory management, hardware
device drivers, filesystem drivers, network management, and various other bits and pieces. Figure 2—1 shows
some of them.

Figure 2-1. Some of the more important parts of the Linux kernel

Chapter 2. Overview of a Linux System 7

The Linux System Administrator's Guide

User level progrars -’-H
= MNonmal proglars
Kerhel
[Sysimtn ol dnte o= J
Vitoal filesystemn Mewmaty Ploccss Absitac helwolk
imahagene hl manager \manager selvices [sockels)

TCPAP protocol

diivels

IDE hatddisk Flappy disk
dliver diiver

Hardwale
Etherhel card
IDE hard disk Floppy disk

Probably the most important parts of the kernel (nothing else works without them) are memory management
and process management. Memory management takes care of assigning memory areas and swap space areas
to processes, parts of the kernel, and for the buffer cache. Process management creates processes, and
implements multitasking by switching the active process on the processor.

At the lowest level, the kernel contains a hardware device driver for each kind of hardware it supports. Since
the world is full of different kinds of hardware, the number of hardware device drivers is large. There are
often many otherwise similar pieces of hardware that differ in how they are controlled by software. The
similarities make it possible to have general classes of drivers that support similar operations; each member of
the class has the same interface to the rest of the kernel but differs in what it needs to do to implement them.
For example, all disk drivers look alike to the rest of the kernel, i.e., they all have operations like “initialize the
drive', “read sector N', and “write sector N'.

Some software services provided by the kernel itself have similar properties, and can therefore be abstracted
into classes. For example, the various network protocols have been abstracted into one programming
interface, the BSD socket library. Another example is the virtual filesystem (VES) layer that abstracts the
filesystem operations away from their implementation. Each filesystem type provides an implementation of
each filesystem operation. When some entity tries to use a filesystem, the request goes via the VFS, which
routes the request to the proper filesystem driver.

A more in—depth discussion of kernel internals can be found at _http://www.tldp.org/L.LDP/lki/index.html. This
document was written for the 2.4 kernel. When I find one for the 2.6 kernel, I will list it here.

2.3. Major services in a UNIX system

This section describes some of the more important UNIX services, but without much detail. They are
described more thoroughly in later chapters.

Chapter 2. Overview of a Linux System 8

http://www.tldp.org/LDP/lki/index.html

The Linux System Administrator's Guide

2.3.1. init

every UNIX system, as the last thing the kernel does when it boots. When init starts, it continues the boot
process by doing various startup chores (checking and mounting filesystems, starting daemons, etc).

The exact list of things that init does depends on which flavor it is; there are several to choose from. init
usually provides the concept of single user mode, in which no one can log in and root uses a shell at the
console; the usual mode is called multiuser mode. Some flavors generalize this as run levels; single and
multiuser modes are considered to be two run levels, and there can be additional ones as well, for example, to
run X on the console.

Linux allows for up to 10 runlevels, 0-9, but usually only some of these are defined by default. Runlevel O is
defined as ““system halt". Runlevel 1 is defined as "“single user mode". Runlevel 3 is defined as "multi user"
because it is the runlevel that the system boot into under normal day to day conditions. Runlevel 5 is typically
the same as 3 except that a GUI gets started also. Runlevel 6 is defined as ““system reboot". Other runlevels
are dependent on how your particular distribution has defined them, and they vary significantly between
distributions. Looking at the contents of /et c/inittab usually will give some hint what the predefined
runlevels are and what they have been defined as.

In normal operation, init makes sure getty is working (to allow users to log in) and to adopt orphan processes
(processes whose parent has died; in UNIX all processes must be in a single tree, so orphans must be
adopted).

When the system is shut down, it is init that is in charge of killing all other processes, unmounting all
filesystems and stopping the processor, along with anything else it has been configured to do.

2.3.2. Logins from terminals

Logins from terminals (via serial lines) and the console (when not running X) are provided by the getty
program. init starts a separate instance of getty for each terminal upon which logins are to be allowed. getty
reads the username and runs the loginprogram, which reads the password. If the username and password are
correct, login runs the shell. When the shell terminates, i.e., the user logs out, or when login terminated
because the username and password didn't match, init notices this and starts a new instance of getty. The
kernel has no notion of logins, this is all handled by the system programs.

2.3.3. Syslog

The kernel and many system programs produce error, warning, and other messages. It is often important that
these messages can be viewed later, even much later, so they should be written to a file. The program doing
this is syslog . It can be configured to sort the messages to different files according to writer or degree of
importance. For example, kernel messages are often directed to a separate file from the others, since kernel
messages are often more important and need to be read regularly to spot problems.

Chapter 15 will provide more on this.

Chapter 2. Overview of a Linux System 9

The Linux System Administrator's Guide

2.3.4. Periodic command execution: cron and at

Both users and system administrators often need to run commands periodically. For example, the system
administrator might want to run a command to clean the directories with temporary files (/tmp and
/var/tmp) from old files, to keep the disks from filling up, since not all programs clean up after themselves
correctly.

The cron service is set up to do this. Each user can have a crontab file, where she lists the commands she
wishes to execute and the times they should be executed. The cron daemon takes care of starting the

commands when specified.

The at service is similar to cron, but it is once only: the command is executed at the given time, but it is not
repeated.

We will go more into this later. See the manual pages cron(1), crontab(1), crontab(5), at(1) and atd(8) for
more in depth information.

Chapter 13 will cover this.

2.3.5. Graphical user interface

UNIX and Linux don't incorporate the user interface into the kernel; instead, they let it be implemented by
user level programs. This applies for both text mode and graphical environments.

This arrangement makes the system more flexible, but has the disadvantage that it is simple to implement a
different user interface for each program, making the system harder to learn.

The graphical environment primarily used with Linux is called the X Window System (X for short). X also
does not implement a user interface; it only implements a window system, i.e., tools with which a graphical
user interface can be implemented. Some popular window managers are: fvwm , icewm , blackbox , and
windowmaker . There are also two popular desktop managers, KDE and Gnome.

2.3.6. Networking

Networking is the act of connecting two or more computers so that they can communicate with each other.
The actual methods of connecting and communicating are slightly complicated, but the end result is very
useful.

UNIX operating systems have many networking features. Most basic services (filesystems, printing, backups,
etc) can be done over the network. This can make system administration easier, since it allows centralized
administration, while still reaping in the benefits of microcomputing and distributed computing, such as lower
costs and better fault tolerance.

However, this book merely glances at networking; see the Linux Network Administrators' Guide
http://www.tldp.org/[. DP/nag?/index.html for more information, including a basic description of how
networks operate.

Chapter 2. Overview of a Linux System 10

http://www.tldp.org/LDP/nag2/index.html

The Linux System Administrator's Guide

2.3.7. Network logins

Network logins work a little differently than normal logins. For each person logging in via the network there
is a separate virtual network connection, and there can be any number of these depending on the available

bandwidth. It is therefore not possible to run a separate getty for each possible virtual connection. There are
also several different ways to log in via a network, telnet and ssh being the major ones in TCP/IP networks.

These days many Linux system administrators consider telnet and rlogin to be insecure and prefer ssh, the
““secure shell", which encrypts traffic going over the network, thereby making it far less likely that the
malicious can " sniff" your connection and gain sensitive data like usernames and passwords. It is highly
recommended you use ssh rather than telnet or rlogin.

Network logins have, instead of a herd of gettys, a single daemon per way of logging in (telnet and ssh have
separate daemons) that listens for all incoming login attempts. When it notices one, it starts a new instance of
itself to handle that single attempt; the original instance continues to listen for other attempts. The new
instance works similarly to getty.

2.3.8. Network file systems

One of the more useful things that can be done with networking services is sharing files via a network file
system. Depending on your network this could be done over the Network File System (NFS), or over the
Common Internet File System (CIFS). NFES is typically a "UNIX' based service. In Linux, NFS is supported by
the kernel. CIFS however is not. In Linux, CIFS is supported by Samba _http://www.samba.org.

With a network file system any file operations done by a program on one machine are sent over the network to
another computer. This fools the program to think that all the files on the other computer are actually on the
computer the program is running on. This makes information sharing extremely simple, since it requires no
modifications to programs.

This will be covered in more detail in Section 5.4.

2.3.9. Mail

Electronic mail is the most popularly used method for communicating via computer. An electronic letter is
stored in a file using a special format, and special mail programs are used to send and read the letters.

Each user has an incoming mailbox (a file in the special format), where all new mail is stored. When someone
sends mail, the mail program locates the receiver's mailbox and appends the letter to the mailbox file. If the
receiver's mailbox is in another machine, the letter is sent to the other machine, which delivers it to the
mailbox as it best sees fit.

The mail system consists of many programs. The delivery of mail to local or remote mailboxes is done by one
program (the mail transfer agent (MTA) , e.g., sendmail or postfix), while the programs users use are many
and varied (mail user agent (MUA) , e.g., pine , or evolution . The mailboxes are usually stored in
/var/spool/mail until the user's MUA retrieves them.

For more information on setting up and running mail services you can read the Mail Administrator HOWTO

at http://www.tldp.org/HOWTO/Mail-Administrator—HOWTO.html, or visit the sendmail or postfix's
website. http://www.sendmail.org/, or http://www.postfix.org/ .

Chapter 2. Overview of a Linux System 11

http://www.samba.org
http://www.tldp.org/HOWTO/Mail-Administrator-HOWTO.html
http://www.sendmail.org/
http://www.postfix.org/

The Linux System Administrator's Guide

2.3.10. Printing

Only one person can use a printer at one time, but it is uneconomical not to share printers between users. The
printer is therefore managed by software that implements a print queue: all print jobs are put into a queue and
whenever the printer is done with one job, the next one is sent to it automatically. This relieves the users from
organizing the print queue and fighting over control of the printer. Instead, they form a new queue at the
printer, waiting for their printouts, since no one ever seems to be able to get the queue software to know
exactly when anyone's printout is really finished. This is a great boost to intra—office social relations.

The print queue software also spools the printouts on disk, i.e., the text is kept in a file while the job is in the
queue. This allows an application program to spit out the print jobs quickly to the print queue software; the
application does not have to wait until the job is actually printed to continue. This is really convenient, since it
allows one to print out one version, and not have to wait for it to be printed before one can make a completely
revised new version.

You can refer to the Printing—HOWTO located at
http://www.tldp.org/HOWTO/Printing—HOWTO/index.html for more help in setting up printers.

2.3.11. The filesystem layout

The filesystem is divided into many parts; usually along the lines of a root filesystem with /bin, /1ib,
/etc, /dev, and a few others; a /usr filesystem with programs and unchanging data; /var filesystem
with changing data (such as log files); and a /home for everyone's personal files. Depending on the hardware
configuration and the decisions of the system administrator, the division can be different; it can even be all in
one filesystem.

Chapter 3 describes the filesystem layout in some little detail; the Filesystem Hierarchy Standard . covers it in
somewhat more detail. This can be found on the web at: _http://www.pathname.com/fhs/

Chapter 2. Overview of a Linux System 12

http://www.tldp.org/HOWTO/Printing-HOWTO/index.html
http://www.pathname.com/fhs/

Chapter 3. Overview of the Directory Tree

" Two days later, there was Pooh, sitting on his branch, dangling his legs, and there, beside
him, were four pots of honey..." (A.A. Milne)

This chapter describes the important parts of a standard Linux directory tree, based on the Filesystem
Hierarchy Standard . It outlines the normal way of breaking the directory tree into separate filesystems with
different purposes and gives the motivation behind this particular split. Not all Linux distributions follow this
standard slavishly, but it is generic enough to give you an overview.

3.1. Background

This chapter is loosely based on the Filesystems Hierarchy Standard (FHS). version 2.1, which attempts to set
a standard for how the directory tree in a Linux system is organized. Such a standard has the advantage that it
will be easier to write or port software for Linux, and to administer Linux machines, since everything should
be in standardized places. There is no authority behind the standard that forces anyone to comply with it, but it
has gained the support of many Linux distributions. It is not a good idea to break with the FHS without very
compelling reasons. The FHS attempts to follow Unix tradition and current trends, making Linux systems
familiar to those with experience with other Unix systems, and vice versa.

This chapter is not as detailed as the FHS. A system administrator should also read the full FHS for a
complete understanding.

This chapter does not explain all files in detail. The intention is not to describe every file, but to give an
overview of the system from a filesystem point of view. Further information on each file is available
elsewhere in this manual or in the Linux manual pages.

The full directory tree is intended to be breakable into smaller parts, each capable of being on its own disk or
partition, to accommodate to disk size limits and to ease backup and other system administration tasks. The
major parts are the root (/), /usr , /var , and /home filesystems (see Figure 3—1). Each part has a
different purpose. The directory tree has been designed so that it works well in a network of Linux machines
which may share some parts of the filesystems over a read—only device (e.g., a CD—ROM), or over the
network with NFS.

Figure 3—1. Parts of a Unix directory tree. Dashed lines indicate partition limits.

I == . . f T 1
tl‘bmg;qlglg_ﬂm_cﬁ_fgsﬂ,l_bmt libh dev ete - war

1
Ely L i -= b
-
i 1 - . . .
. \ s - - -
! “ - ~
i 4 R ~ - ~
1 1 . . .
! .

1 Yox] 4

1 P N T, rr "

y ftp liw I|nus,'.. bin lib roan trap ¢ 1 lib log wn zpooltoop
" sl s . !

The roles of the different parts of the directory tree are described below.

Chapter 3. Overview of the Directory Tree 13

The Linux System Administrator's Guide

¢ The root filesystem is specific for each machine (it is generally stored on a local disk, although it
could be a ramdisk or network drive as well) and contains the files that are necessary for booting the
system up, and to bring it up to such a state that the other filesystems may be mounted. The contents
of the root filesystem will therefore be sufficient for the single user state. It will also contain tools for
fixing a broken system, and for recovering lost files from backups.

The /usr filesystem contains all commands, libraries, manual pages, and other unchanging files
needed during normal operation. No files in /usr should be specific for any given machine, nor
should they be modified during normal use. This allows the files to be shared over the network, which
can be cost—effective since it saves disk space (there can easily be hundreds of megabytes,
increasingly multiple gigabytes in /usr). It can make administration easier (only the master /usr
needs to be changed when updating an application, not each machine separately) to have /usr network
mounted. Even if the filesystem is on a local disk, it could be mounted read—only, to lessen the chance
of filesystem corruption during a crash.

The /var filesystem contains files that change, such as spool directories (for mail, news, printers,
etc), log files, formatted manual pages, and temporary files. Traditionally everything in /var has
been somewhere below /usr , but that made it impossible to mount /usr read—only.

The /home filesystem contains the users' home directories, i.e., all the real data on the system.
Separating home directories to their own directory tree or filesystem makes backups easier; the other
parts often do not have to be backed up, or at least not as often as they seldom change. A big /home
might have to be broken across several filesystems, which requires adding an extra naming level
below /home, for example /home/students and /home/staff.

Although the different parts have been called filesystems above, there is no requirement that they actually be
on separate filesystems. They could easily be kept in a single one if the system is a small single—user system
and the user wants to keep things simple. The directory tree might also be divided into filesystems differently,
depending on how large the disks are, and how space is allocated for various purposes. The important part,
though, is that all the standard names work; even if, say, /var and /usr are actually on the same partition,
the names /usr/lib/libc.aand /var/log/messages must work, for example by moving files
below /var into /usr/var, and making /var a symlink to /usr/var.

The Unix filesystem structure groups files according to purpose, i.e., all commands are in one place, all data
files in another, documentation in a third, and so on. An alternative would be to group files files according to
the program they belong to, i.e., all Emacs files would be in one directory, all TeX in another, and so on. The
problem with the latter approach is that it makes it difficult to share files (the program directory often contains
both static and sharable and changing and non—sharable files), and sometimes to even find the files (e.g.,
manual pages in a huge number of places, and making the manual page programs find all of them is a
maintenance nightmare).

3.2. The root filesystem

The root filesystem should generally be small, since it contains very critical files and a small, infrequently
modified filesystem has a better chance of not getting corrupted. A corrupted root filesystem will generally
mean that the system becomes unbootable except with special measures (e.g., from a floppy), so you don't
want to risk it.

The root directory generally doesn't contain any files, except perhaps on older systems where the standard
boot image for the system, usually called /vm1linuz was kept there. (Most distributions have moved those

files the the /boot directory. Otherwise, all files are kept in subdirectories under the root filesystem:

/bin

Chapter 3. Overview of the Directory Tree 14

The Linux System Administrator's Guide

Commands needed during bootup that might be used by normal users (probably after bootup).
/sbin
Like /bin, but the commands are not intended for normal users, although they may use them if
necessary and allowed. /sbin is not usually in the default path of normal users, but will be in root's
default path.
/etc
Configuration files specific to the machine.
/root
The home directory for user root. This is usually not accessible to other users on the system
/1ib
Shared libraries needed by the programs on the root filesystem.
/lib/modules
Loadable kernel modules, especially those that are needed to boot the system when recovering from
disasters (e.g., network and filesystem drivers).
/dev
Device files. These are special files that help the user interface with the various devices on the system.
/tmp
Temporary files. As the name suggests, programs running often store temporary files in here.
/boot
Files used by the bootstrap loader, e.g., LILO or GRUB. Kernel images are often kept here instead of
in the root directory. If there are many kernel images, the directory can easily grow rather big, and it
might be better to keep it in a separate filesystem. Another reason would be to make sure the kernel
images are within the first 1024 cylinders of an IDE disk. This 1024 cylinder limit is no longer true in
most cases. With modern BIOSes and later versions of LILO (the LInux LOader) the 1024 cylinder
limit can be passed with logical block addressing (LBA). See the lilo manual page for more details.
/mnt
Mount point for temporary mounts by the system administrator. Programs aren't supposed to mount
on /mnt automatically. /mnt might be divided into subdirectories (e.g., /mnt /dosa might be the
floppy drive using an MS—DOS filesystem, and /mnt /exta might be the same with an ext2
filesystem).
/proc, /usr, /var, /home
Mount points for the other filesystems. Although /proc does not reside on any disk in reality it is
still mentioned here. See the section about /proc later in the chapter.

3.3. The /etc directory

The /et c maintains a lot of files. Some of them are described below. For others, you should determine which
program they belong to and read the manual page for that program. Many networking configuration files are
in /etc as well, and are described in the Networking Administrators' Guide.

/etc/rcor /etc/rc.dor /etc/rc?.d
Scripts or directories of scripts to run at startup or when changing the run level. See Section 2.3.1 for
further information.

/etc/passwd
The user database, with fields giving the username, real name, home directory, and other information
about each user. The format is documented in the passwd manual page.

/etc/shadow
/etc/shadow is an encrypted file the holds user passwords.

/etc/fdprm

Chapter 3. Overview of the Directory Tree 15

The Linux System Administrator's Guide

Floppy disk parameter table. Describes what different floppy disk formats look like. Used by
setfdprm . See the setfdprm manual page for more information.
/etc/fstab
Lists the filesystems mounted automatically at startup by the mount —a command (in /etc/rc or
equivalent startup file). Under Linux, also contains information about swap areas used automatically
by swapon —a . See Section 5.10.7 and the mount manual page for more information. Also fstab
usually has its own manual page in section 5.
/etc/group
Similar to /et c/passwd, but describes groups instead of users. See the group manual page in
section 5 for more information.
/etc/inittab
Configuration file for init.
/etc/issue
Output by getty before the login prompt. Usually contains a short description or welcoming message
to the system. The contents are up to the system administrator.
/etc/magic
The configuration file for file. Contains the descriptions of various file formats based on which file
guesses the type of the file. See the magic and file manual pages for more information.
/etc/motd
The message of the day, automatically output after a successful login. Contents are up to the system
administrator. Often used for getting information to every user, such as warnings about planned
downtimes.
/etc/mtab
List of currently mounted filesystems. Initially set up by the bootup scripts, and updated automatically
by the mount command. Used when a list of mounted filesystems is needed, e.g., by the df command.
/etc/login.defs
Configuration file for the login command. The 1ogin.defs file usually has a manual page in
section 5.
/etc/printcap
Like /etc/termcap /etc/printcap, but intended for printers. However it uses different
syntax. The printcap has a manual page in section 5.
/etc/profile, /etc/bash.rec, /etc/csh.cshre
Files executed at login or startup time by the Bourne, BASH , or C shells. These allow the system
administrator to set global defaults for all users. Users can also create individual copies of these in
their home directory to personalize their environment. See the manual pages for the respective shells.
/etc/securetty
Identifies secure terminals, i.e., the terminals from which root is allowed to log in. Typically only the
virtual consoles are listed, so that it becomes impossible (or at least harder) to gain superuser
privileges by breaking into a system over a modem or a network. Do not allow root logins over a
network. Prefer to log in as an unprivileged user and use su or sudo to gain root privileges.
/etc/shells
Lists trusted shells. The chsh command allows users to change their login shell only to shells listed in
this file. ftpd, is the server process that provides FTP services for a machine, will check that the user's
shell is listed in /etc/shells and will not let people log in unless the shell is listed there.
/etc/termcap
The terminal capability database. Describes by what ““escape sequences" various terminals can be
controlled. Programs are written so that instead of directly outputting an escape sequence that only
works on a particular brand of terminal, they look up the correct sequence to do whatever it is they
want to do in /etc/termcap. As a result most programs work with most kinds of terminals. See
the termcap, curs_termcap, and terminfo manual pages for more information.

Chapter 3. Overview of the Directory Tree 16

The Linux System Administrator's Guide
3.4. The /dev directory

The /dev directory contains the special device files for all the devices. The device files are created during
installation, and later with the /dev/MAKEDEYV script. The /dev/MAKEDEV.local is a script written by the
system administrator that creates local-only device files or links (i.e. those that are not part of the standard
MAKEDEYV, such as device files for some non—standard device driver).

This list which follows is by no means exhaustive or as detailed as it could be. Many of these device files will
need support compiled into your kernel for the hardware. Read the kernel documentation to find details of any
particular device.

If you think there are other devices which should be included here but aren't then let me know. I will try to
include them in the next revision.

/dev/dsp
Digital Signal Processor. Basically this forms the interface between software which produces sound
and your soundcard. It is a character device on major node 14 and minor 3.

/dev/£d0
The first floppy drive. If you are lucky enough to have several drives then they will be numbered
sequentially. It is a character device on major node 2 and minor O.

/dev/£fb0
The first framebuffer device. A framebuffer is an abstraction layer between software and graphics
hardware. This means that applications do not need to know about what kind of hardware you have
but merely how to communicate with the framebuffer driver's API (Application Programming
Interface) which is well defined and standardized. The framebuffer is a character device and is on
major node 29 and minor 0.

/dev/hda
/dev/hda is the master IDE drive on the primary IDE controller. /dev/hdb the slave drive on the
primary controller. /dev/hdc , and /dev/hdd are the master and slave devices on the secondary
controller respectively. Each disk is divided into partitions. Partitions 1-4 are primary partitions and
partitions 5 and above are logical partitions inside extended partitions. Therefore the device file which
references each partition is made up of several parts. For example /dev/hdc9 references partition 9
(a logical partition inside an extended partition type) on the master IDE drive on the secondary IDE
controller. The major and minor node numbers are somewhat complex. For the first IDE controller all
partitions are block devices on major node 3. The master drive hda is at minor O and the slave drive
hdb is at minor 64. For each partition inside the drive add the partition number to the minor minor
node number for the drive. For example /dev/hdb5 is major 3, minor 69 (64 + 5 = 69). Drives on
the secondary interface are handled the same way, but with major node 22.

/dev/ht0
The first IDE tape drive. Subsequent drives are numbered ht 1 etc. They are character devices on
major node 37 and start at minor node O for ht 0 1 for ht1 etc.

/dev/js0
The first analogue joystick. Subsequent joysticks are numbered js1, js2 etc. Digital joysticks are
called djs0, djs1 and so on. They are character devices on major node 15. The analogue joysticks
start at minor node 0 and go up to 127 (more than enough for even the most fanatic gamer). Digital
joysticks start at minor node 128.

/dev/1p0
The first parallel printer device. Subsequent printers are numbered 1p1, 1p2 etc. They are character
devices on major mode 6 and minor nodes starting at 0 and numbered sequentially.

/dev/loop0

Chapter 3. Overview of the Directory Tree 17

The Linux System Administrator's Guide

The first loopback device. Loopback devices are used for mounting filesystems which are not located
on other block devices such as disks. For example if you wish to mount an is09660 CD ROM image
without burning it to CD then you need to use a loopback device to do so. This is usually transparent
to the user and is handled by the mount command. Refer to the manual pages for mount and losetup.
The loopback devices are block devices on major node 7 and with minor nodes starting at 0 and
numbered sequentially.

/dev/md0
First metadisk group. Metadisks are related to RAID (Redundant Array of Independent Disks)
devices. Please refer to the most current RAID HOWTO at the LDP for more details. This can be
found at http://www.tldp.org/HOWTO/Software—_RAID-HOWTO.html. Metadisk devices are block
devices on major node 9 with minor nodes starting at O and numbered sequentially.

/dev/mixer
This is part of the OSS (Open Sound System) driver. Refer to the OSS documentation at
http://www.opensound.com for more details. It is a character device on major node 14, minor node 0.

/dev/null
The bit bucket. A black hole where you can send data for it never to be seen again. Anything sent to
/dev/null will disappear. This can be useful if, for example, you wish to run a command but not
have any feedback appear on the terminal. It is a character device on major node 1 and minor node 3.

/dev/psaux
The PS/2 mouse port. This is a character device on major node 10, minor node 1.

/dev/pda
Parallel port IDE disks. These are named similarly to disks on the internal IDE controllers
(/dev/hd~*). They are block devices on major node 45. Minor nodes need slightly more explanation
here. The first device is /dev/pda and it is on minor node 0. Partitions on this device are found by
adding the partition number to the minor number for the device. Each device is limited to 15 partitions
each rather than 63 (the limit for internal IDE disks). /dev/pdb minor nodes start at 16, /dev/pdc
at 32 and /dev/pdd at 48. So for example the minor node number for /dev/pdc6 would be 38
(32 + 6 = 38). This scheme limits you to 4 parallel disks of 15 partitions each.

/dev/pcd0
Parallel port CD ROM drives. These are numbered from 0 onwards. All are block devices on major
node 46. /dev/pcd0 is on minor node 0 with subsequent drives being on minor nodes 1, 2, 3 etc.

/dev/pt0
Parallel port tape devices. Tapes do not have partitions so these are just numbered sequentially. They
are character devices on major node 96. The minor node numbers start from O for /dev/pt0, 1 for
/dev/ptl, and so on.

/dev/parport0
The raw parallel ports. Most devices which are attached to parallel ports have their own drivers. This
is a device to access the port directly. It is a character device on major node 99 with minor node 0.
Subsequent devices after the first are numbered sequentially incrementing the minor node.

/dev/randomor /dev/urandom
These are kernel random number generators. /dev/random is a non—deterministic generator which
means that the value of the next number cannot be guessed from the preceding ones. It uses the
entropy of the system hardware to generate numbers. When it has no more entropy to use then it must
wait until it has collected more before it will allow any more numbers to be read from it.
/dev/urandom works similarly. Initially it also uses the entropy of the system hardware, but when
there is no more entropy to use it will continue to return numbers using a pseudo random number
generating formula. This is considered to be less secure for vital purposes such as cryptographic key
pair generation. If security is your overriding concern then use /dev/random, if speed is more
important then /dev/urandom works fine. They are character devices on major node 1 with minor
nodes 8 for /dev/randomand 9 for /dev/urandomn.

/dev/sda

Chapter 3. Overview of the Directory Tree 18

http://www.tldp.org/HOWTO/Software-RAID-HOWTO.html
http://www.opensound.com

The Linux System Administrator's Guide

The first SCSI drive on the first SCSI bus. The following drives are named similar to IDE drives.

/dev/sdb is the second SCSI drive, /dev/sdc is the third SCSI drive, and so forth.
/dev/ttys0

The first serial port. Many times this it the port used to connect an external modem to your system.
/dev/zero

This is a simple way of getting many Os. Every time you read from this device it will return 0. This

can be useful sometimes, for example when you want a file of fixed length but don't really care what

it contains. It is a character device on major node 1 and minor node 5.

3.5. The /usr filesystem.

The /usr filesystem is often large, since all programs are installed there. All files in /usr usually come
from a Linux distribution; locally installed programs and other stuff goes below /usr/local. This makes it
possible to update the system from a new version of the distribution, or even a completely new distribution,
without having to install all programs again. Some of the subdirectories of /usr are listed below (some of the
less important directories have been dropped; see the FSSTND for more information).

/usr/X11R6.
The X Window System, all files. To simplify the development and installation of X, the X files have
not been integrated into the rest of the system. There is a directory tree below /usr/X11R6 similar
to that below /usr itself.

/usr/bin.
Almost all user commands. Some commands are in /bin orin /usr/local/bin.

/usr/sbin
System administration commands that are not needed on the root filesystem, e.g., most server
programs.

/usr/share/man, /usr/share/info, /usr/share/doc
Manual pages, GNU Info documents, and miscellaneous other documentation files, respectively.

/usr/include
Header files for the C programming language. This should actually be below /usr/1ib for
consistency, but the tradition is overwhelmingly in support for this name.

/usr/lib
Unchanging data files for programs and subsystems, including some site—wide configuration files.
The name 1ib comes from library; originally libraries of programming subroutines were stored in
/usr/lib.

/usr/local
The place for locally installed software and other files. Distributions may not install anything in here.
It is reserved solely for the use of the local administrator. This way he can be absolutely certain that
no updates or upgrades to his distribution will overwrite any extra software he has installed locally.

3.6. The /var filesystem

The /var contains data that is changed when the system is running normally. It is specific for each system,
i.e., not shared over the network with other computers.

/var/cache/man
A cache for man pages that are formatted on demand. The source for manual pages is usually stored
in /usr/share/man/man?/ (where ? is the manual section. See the manual page for man in
section 7); some manual pages might come with a pre—formatted version, which might be stored in

Chapter 3. Overview of the Directory Tree 19

The Linux System Administrator's Guide

/usr/share/man/cat* . Other manual pages need to be formatted when they are first viewed;
the formatted version is then stored in /var/cache/man so that the next person to view the same
page won't have to wait for it to be formatted.

/var/games
Any variable data belonging to games in /usr should be placed here. This is in case /usr is mounted
read only.

/var/lib
Files that change while the system is running normally.

/var/local
Variable data for programs that are installed in /usr/local (i.e., programs that have been installed
by the system administrator). Note that even locally installed programs should use the other /var
directories if they are appropriate, e.g., /var/lock.

/var/lock
Lock files. Many programs follow a convention to create a lock file in /var/lock to indicate that
they are using a particular device or file. Other programs will notice the lock file and won't attempt to
use the device or file.

/var/log
Log files from various programs, especially login(/var/log/wtmp, which logs all logins and
logouts into the system) and syslog(/var/log/messages, where all kernel and system program
message are usually stored). Files in /var/log can often grow indefinitely, and may require
cleaning at regular intervals.

/var/mail
This is the FHS approved location for user mailbox files. Depending on how far your distribution has
gone towards FHS compliance, these files may still be held in /var/spool/mail.

/var/run
Files that contain information about the system that is valid until the system is next booted. For
example, /var/run/utmp contains information about people currently logged in.

/var/spool
Directories for news, printer queues, and other queued work. Each different spool has its own
subdirectory below /var/spool, e.g., the news spool is in /var/spool/news . Note that some
installations which are not fully compliant with the latest version of the FHS may have user mailboxes
under /var/spool/mail.

/var/tmp
Temporary files that are large or that need to exist for a longer time than what is allowed for /tmp .
(Although the system administrator might not allow very old files in /var/tmp either.)

3.7. The /proc filesystem

The /proc filesystem contains a illusionary filesystem. It does not exist on a disk. Instead, the kernel creates
it in memory. It is used to provide information about the system (originally about processes, hence the name).
Some of the more important files and directories are explained below. The /proc filesystem is described in
more detail in the proc manual page.

/proc/1
A directory with information about process number 1. Each process has a directory below /proc
with the name being its process identification number.
/proc/cpuinfo
Information about the processor, such as its type, make, model, and performance.
/proc/devices
List of device drivers configured into the currently running kernel.

Chapter 3. Overview of the Directory Tree 20

The Linux System Administrator's Guide

/proc/dma
Shows which DMA channels are being used at the moment.
/proc/filesystems
Filesystems configured into the kernel.
/proc/interrupts
Shows which interrupts are in use, and how many of each there have been.
/proc/ioports
Which I/O ports are in use at the moment.
/proc/kcore
An image of the physical memory of the system. This is exactly the same size as your physical
memory, but does not really take up that much memorys; it is generated on the fly as programs access
it. (Remember: unless you copy it elsewhere, nothing under /proc takes up any disk space at all.)
/proc/kmsg
Messages output by the kernel. These are also routed to syslog.
/proc/ksyms
Symbol table for the kernel.
/proc/loadavg
The “load average' of the system; three meaningless indicators of how much work the system has to
do at the moment.
/proc/meminfo
Information about memory usage, both physical and swap.
/proc/modules
Which kernel modules are loaded at the moment.
/proc/net
Status information about network protocols.
/proc/self
A symbolic link to the process directory of the program that is looking at /proc. When two
processes look at /proc, they get different links. This is mainly a convenience to make it easier for
programs to get at their process directory.
/proc/stat
Various statistics about the system, such as the number of page faults since the system was booted.
/proc/uptime
The time the system has been up.
/proc/version
The kernel version.

Note that while the above files tend to be easily readable text files, they can sometimes be formatted in a way
that is not easily digestible. There are many commands that do little more than read the above files and format
them for easier understanding. For example, the freeprogram reads /proc/meminfo converts the amounts
given in bytes to kilobytes (and adds a little more information, as well).

Chapter 3. Overview of the Directory Tree 21

Chapter 4. Hardware, Devices, and Tools

"Knowledge speaks, but wisdom listens." Jimi Hendrix

This chapter gives an overview of what a device file is, and how to create one. The canonical list of device
filesis /usr/src/linux/Documentation/devices.txt if you have the Linux kernel source code
installed on your system. The devices listed here are correct as of kernel version 2.6.8.

4.1. Hardware Utilities

4.1.1. The MAKEDEYV Script

Most device files will already be created and will be there ready to use after you install your Linux system. If
by some chance you need to create one which is not provided then you should first try to use the MAKEDEV
script. This script is usually located in /dev/MAKEDEV but might also have a copy (or a symbolic link) in

/sbin/MAKEDEV. If it turns out not to be in your path then you will need to specify the path to it explicitly.

In general the command is used as:

/dev/MAKEDEV -v ttySO
create ttysSO c 4 64 root:dialout 0660

This will create the device file /dev/ttyS0 with major node 4 and minor node 64 as a character device
with access permissions 0660 with owner root and group dialout.

ttySO0 is a serial port. The major and minor node numbers are numbers understood by the kernel. The kernel
refers to hardware devices as numbers, this would be very difficult for us to remember, so we use filenames.
Access permissions of 0660 means read and write permission for the owner (root in this case) and read and
write permission for members of the group (dialout in this case) with no access for anyone else.

4.1.2. The mknod command

MAKEDKEV is the preferred way of creating device files which are not present. However sometimes the
MAKEDEY script will not know about the device file you wish to create. This is where the mknod command
comes in. In order to use mknod you need to know the major and minor node numbers for the device you
wish to create. The devices. txt file in the kernel source documentation is the canonical source of this
information.

To take an example, let us suppose that our version of the MAKEDEYV script does not know how to create the
/dev/ttyS0 device file. We need to use mknod to create it. We know from looking at the devices.txt
that it should be a character device with major number 4 and minor number 64. So we now know all we need
to create the file.

mknod /dev/ttySO0 c 4 64

chown root.dialout /dev/ttySO

chmod 0644 /dev/ttySO

1s -1 /dev/ttySO

Crw—Irw———— 1 root dialout 4, 64 Oct 23 18:23 /dev/ttySO

H= w A

Chapter 4. Hardware, Devices, and Tools 22

The Linux System Administrator's Guide

As you can see, many more steps are required to create the file. In this example you can see the process
required however. It is unlikely in the extreme that the ttySO file would not be provided by the MAKEDEV
script, but it suffices to illustrate the point.

4.1.3. The Ispci command
Ispci

TO BE ADDED

4.1.4. The Isdev command
Isdev

TO BE ADDED

4.1.5. The Isusb command
Isusb

TO BE ADDED

4.1.6. The Israid command
Israid

TO BE ADDED

4.1.7. The hdparm command
hdparm

TO BE ADDED

4.1.8. More Hardware Resources

More information on what hardware resources the kernel is using can be found in the /proc directory. Refer
to Section 3.7 in chapter 3.

4.2. Kernel Modules

This section will discuss kernel modules.

TO BE ADDED

Chapter 4. Hardware, Devices, and Tools 23

4.2.1. Ismod

Ismod

TO BE ADDED

The Linux System Administrator's Guide

4.2.2. insmod

insmod

TO BE ADDED

4.2.3. depmod

depmod

TO BE ADDED

4.2.4. rmmod

rmmod

TO BE ADDED

4.2.5. modprobe
modprobe

TO BE ADDED

Chapter 4. Hardware, Devices, and Tools

24

Chapter 5. Using Disks and Other Storage Media

"On a clear disk you can seek forever. "

When you install or upgrade your system, you need to do a fair amount of work on your disks. You have to
make filesystems on your disks so that files can be stored on them and reserve space for the different parts of
your system.

This chapter explains all these initial activities. Usually, once you get your system set up, you won't have to
go through the work again, except for using floppies. You'll need to come back to this chapter if you add a
new disk or want to fine—tune your disk usage.

The basic tasks in administering disks are:

¢ Format your disk. This does various things to prepare it for use, such as checking for bad sectors.
(Formatting is nowadays not necessary for most hard disks.)

e Partition a hard disk, if you want to use it for several activities that aren't supposed to interfere with
one another. One reason for partitioning is to store different operating systems on the same disk.
Another reason is to keep user files separate from system files, which simplifies back—ups and helps
protect the system files from corruption.

® Make a filesystem (of a suitable type) on each disk or partition. The disk means nothing to Linux until
you make a filesystem; then files can be created and accessed on it.

® Mount different filesystems to form a single tree structure, either automatically, or manually as
needed. (Manually mounted filesystems usually need to be unmounted manually as well.)

Chapter 6 contains information about virtual memory and disk caching, of which you also need to be aware
when using disks.

5.1. Two kinds of devices

UNIX, and therefore Linux, recognizes two different kinds of device: random—access block devices (such as
disks), and character devices (such as tapes and serial lines) , some of which may be serial, and some
random—access. Each supported device is represented in the filesystem as a device file. When you read or
write a device file, the data comes from or goes to the device it represents. This way no special programs (and
no special application programming methodology, such as catching interrupts or polling a serial port) are
necessary to access devices; for example, to send a file to the printer, one could just say

$S cat filename > /dev/1lpl
S

and the contents of the file are printed (the file must, of course, be in a form that the printer understands).
However, since it is not a good idea to have several people cat their files to the printer at the same time, one
usually uses a special program to send the files to be printed (usually Ipr). This program makes sure that only
one file is being printed at a time, and will automatically send files to the printer as soon as it finishes with the
previous file. Something similar is needed for most devices. In fact, one seldom needs to worry about device
files at all.

Since devices show up as files in the filesystem (in the /dev directory), it is easy to see just what device files
exist, using Is or another suitable command. In the output of Is —1, the first column contains the type of the file

Chapter 5. Using Disks and Other Storage Media 25

The Linux System Administrator's Guide

and its permissions. For example, inspecting a serial device might give

$ 1s -1 /dev/ttySO
Crw—rw—r—— 1 root dialout 4, 64 Aug 19 18:56 /dev/ttySO

The first character in the first column, i.e., "c'in crw—rw—rw— above, tells an informed user the type of the
file, in this case a character device. For ordinary files, the first character is *-', for directories it is “d', and for
block devices "b'; see the Is man page for further information.

Note that usually all device files exist even though the device itself might be not be installed. So just because
you have a file /dev/sda, it doesn't mean that you really do have an SCSI hard disk. Having all the device
files makes the installation programs simpler, and makes it easier to add new hardware (there is no need to
find out the correct parameters for and create the device files for the new device).

5.2. Hard disks

This subsection introduces terminology related to hard disks. If you already know the terms and concepts, you
can skip this subsection.

See Figure 5—1 for a schematic picture of the important parts in a hard disk. A hard disk consists of one or
more circular aluminum platters\ , of which either or both surfaces are coated with a magnetic substance used
for recording the data. For each surface, there is a read—write head that examines or alters the recorded data.
The platters rotate on a common axis; typical rotation speed is 5400 or 7200 rotations per minute, although
high—performance hard disks have higher speeds and older disks may have lower speeds. The heads move
along the radius of the platters; this movement combined with the rotation of the platters allows the head to
access all parts of the surfaces.

The processor (CPU) and the actual disk communicate through a disk controller . This relieves the rest of the
computer from knowing how to use the drive, since the controllers for different types of disks can be made to
use the same interface towards the rest of the computer. Therefore, the computer can say just ~“hey disk, give
me what [want", instead of a long and complex series of electric signals to move the head to the proper
location and waiting for the correct position to come under the head and doing all the other unpleasant stuff
necessary. (In reality, the interface to the controller is still complex, but much less so than it would otherwise
be.) The controller may also do other things, such as caching, or automatic bad sector replacement.

The above is usually all one needs to understand about the hardware. There are also other things, such as the
motor that rotates the platters and moves the heads, and the electronics that control the operation of the
mechanical parts, but they are mostly not relevant for understanding the working principles of a hard disk.

The surfaces are usually divided into concentric rings, called tracks, and these in turn are divided into sectors.
This division is used to specify locations on the hard disk and to allocate disk space to files. To find a given
place on the hard disk, one might say ““surface 3, track 5, sector 7". Usually the number of sectors is the same
for all tracks, but some hard disks put more sectors in outer tracks (all sectors are of the same physical size, so
more of them fit in the longer outer tracks). Typically, a sector will hold 512 bytes of data. The disk itself
can't handle smaller amounts of data than one sector.

Figure 5-1. A schematic picture of a hard disk.

Chapter 5. Using Disks and Other Storage Media 26

The Linux System Administrator's Guide

Rotarion
From above R

Readfwrite head

|] Co——
Platter . | I |
Surfaces/x—T\ i i |
'r L | C—

Cylinder

Each surface is divided into tracks (and sectors) in the same way. This means that when the head for one
surface is on a track, the heads for the other surfaces are also on the corresponding tracks. All the
corresponding tracks taken together are called a cylinder. It takes time to move the heads from one track
(cylinder) to another, so by placing the data that is often accessed together (say, a file) so that it is within one
cylinder, it is not necessary to move the heads to read all of it. This improves performance. It is not always
possible to place files like this; files that are stored in several places on the disk are called fragmented.

The number of surfaces (or heads, which is the same thing), cylinders, and sectors vary a lot; the specification
of the number of each is called the geometry of a hard disk. The geometry is usually stored in a special,
battery—powered memory location called the CMOS RAM , from where the operating system can fetch it
during bootup or driver initialization.

Unfortunately, the BIOS has a design limitation, which makes it impossible to specify a track number that is

larger than 1024 in the CMOS RAM, which is too little for a large hard disk. To overcome this, the hard disk

controller lies about the geometry, and translates the addresses given by the computer into something that fits
reality. For example, a hard disk might have 8 heads, 2048 tracks, and 35 sectors per track. Its controller could
lie to the computer and claim that it has 16 heads, 1024 tracks, and 35 sectors per track, thus not exceeding the
limit on tracks, and translates the address that the computer gives it by halving the head number, and doubling
the track number. The mathematics can be more complicated in reality, because the numbers are not as nice as

Chapter 5. Using Disks and Other Storage Media 27

The Linux System Administrator's Guide

here (but again, the details are not relevant for understanding the principle). This translation distorts the
operating system's view of how the disk is organized, thus making it impractical to use the
all-data—on—one—cylinder trick to boost performance.

The translation is only a problem for IDE disks. SCSI disks use a sequential sector number (i.e., the controller
translates a sequential sector number to a head, cylinder, and sector triplet), and a completely different method
for the CPU to talk with the controller, so they are insulated from the problem. Note, however, that the
computer might not know the real geometry of an SCSI disk either.

Since Linux often will not know the real geometry of a disk, its filesystems don't even try to keep files within
a single cylinder. Instead, it tries to assign sequentially numbered sectors to files, which almost always gives
similar performance. The issue is further complicated by on—controller caches, and automatic prefetches done
by the controller.

Each hard disk is represented by a separate device file. There can (usually) be only two or four IDE hard
disks. These are known as /dev/hda, /dev/hdb, /dev/hdc, and /dev/hdd, respectively. SCSI hard
disks are known as /dev/sda, /dev/sdb, and so on. Similar naming conventions exist for other hard disk
types; see Chapter 4 for more information. Note that the device files for the hard disks give access to the
entire disk, with no regard to partitions (which will be discussed below), and it's easy to mess up the partitions
or the data in them if you aren't careful. The disks' device files are usually used only to get access to the
master boot record (which will also be discussed below).

5.3. Storage Area Networks - Draft

A SAN is a dedicated storage network that provides block level access to LUNs. A LUN, or logical unit
number, is a virtual disk provided by the SAN. The system administrator the same access and rights to the
LUN as if it were a disk directly attached to it. The administrator can partition, and format the disk in any
means he or she chooses.

Two networking protocols commonly used in a SAN are fibre channel and iSCSI . A fibre channel network is
very fast and is not burdened by the other network traffic in a company's LAN. However, it's very expensive.
Fibre channel cards cost around $1000.00 USD each. They also require special fibre channel switches.

1SCSI is a newer technology that sends SCSI commands over a TCP/IP network. While this method may not
be as fast as a Fibre Channel network, it does save money by using less expensive network hardware.

More To Be Added

5.4. Network Attached Storage - Draft

A NAS uses your companies existing Ethernet network to allow access to shared disks. This is filesystem
level access. The system administrator does not have the ability to partition or format the disks since they are
potentially shared by multiple computers. This technology is commonly used to provide multiple workstations
access to the same data.

Similar to a SAN, a NAS need to make use of a protocol to allow access to it's disks. With a NAS this is either
CIFS/Samba , or NFS.

Chapter 5. Using Disks and Other Storage Media 28

The Linux System Administrator's Guide

Traditionally CIFS was used with Microsoft Windows networks, and NFS was used with UNIX & Linux
networks. However, with Samba, Linux machines can also make use of CIFS shares.

Does this mean that your Windows 2003 server or your Linux box are NAS servers because they provide
access to shared drives over your network? Yes, they are. You could also purchase a NAS device from a

number of manufacturers. These devices are specifically designed to provide high speed access to data.

More To Be Added

5.4.1. NFS

TO BE ADDED

5.4.2. CIFS

TO BE ADDED

5.5. Floppies

A floppy disk consists of a flexible membrane covered on one or both sides with similar magnetic substance
as a hard disk. The floppy disk itself doesn't have a read—write head, that is included in the drive. A floppy
corresponds to one platter in a hard disk, but is removable and one drive can be used to access different
floppies, and the same floppy can be read by many drives, whereas the hard disk is one indivisible unit.

Like a hard disk, a floppy is divided into tracks and sectors (and the two corresponding tracks on either side of
a floppy form a cylinder), but there are many fewer of them than on a hard disk.

A floppy drive can usually use several different types of disks; for example, a 3.5 inch drive can use both 720
KB and 1.44 MB disks. Since the drive has to operate a bit differently and the operating system must know
how big the disk is, there are many device files for floppy drives, one per combination of drive and disk type.
Therefore, /dev/£d0H1440 is the first floppy drive (fd0), which must be a 3.5 inch drive, using a 3.5 inch,
high density disk (H) of size 1440 KB (1440), i.e., a normal 3.5 inch HD floppy.

The names for floppy drives are complex, however, and Linux therefore has a special floppy device type that
automatically detects the type of the disk in the drive. It works by trying to read the first sector of a newly
inserted floppy using different floppy types until it finds the correct one. This naturally requires that the
floppy is formatted first. The automatic devices are called /dev/£d0, /dev/£d1, and so on.

The parameters the automatic device uses to access a disk can also be set using the program setfdprm . This
can be useful if you need to use disks that do not follow any usual floppy sizes, e.g., if they have an unusual
number of sectors, or if the autodetecting for some reason fails and the proper device file is missing.

Linux can handle many nonstandard floppy disk formats in addition to all the standard ones. Some of these
require using special formatting programs. We'll skip these disk types for now, but in the mean time you can
examine the /etc/fdprm file. It specifies the settings that setfdprm recognizes.

The operating system must know when a disk has been changed in a floppy drive, for example, in order to

avoid using cached data from the previous disk. Unfortunately, the signal line that is used for this is
sometimes broken, and worse, this won't always be noticeable when using the drive from within MS—-DOS. If

Chapter 5. Using Disks and Other Storage Media 29

The Linux System Administrator's Guide

you are experiencing weird problems using floppies, this might be the reason. The only way to correct it is to
repair the floppy drive.

5.6. CD-ROMs

A CD-ROM drive uses an optically read, plastic coated disk. The information is recorded on the surface of
the disk in small “holes' aligned along a spiral from the center to the edge. The drive directs a laser beam
along the spiral to read the disk. When the laser hits a hole, the laser is reflected in one way; when it hits
smooth surface, it is reflected in another way. This makes it easy to code bits, and therefore information. The
rest is easy, mere mechanics.

CD-ROM drives are slow compared to hard disks. Whereas a typical hard disk will have an average seek time
less than 15 milliseconds, a fast CD—ROM drive can use tenths of a second for seeks. The actual data transfer
rate is fairly high at hundreds of kilobytes per second. The slowness means that CD—ROM drives are not as
pleasant to use as hard disks (some Linux distributions provide “live' filesystems on CD—-ROMs, making it
unnecessary to copy the files to the hard disk, making installation easier and saving a lot of hard disk space),
although it is still possible. For installing new software, CD—ROMs are very good, since maximum speed is
not essential during installation.

There are several ways to arrange data on a CD—ROM. The most popular one is specified by the international
standard ISO 9660 . This standard specifies a very minimal filesystem, which is even more crude than the one
MS-DOS uses. On the other hand, it is so minimal that every operating system should be able to map it to its
native system.

For normal UNIX use, the ISO 9660 filesystem is not usable, so an extension to the standard has been
developed, called the Rock Ridge extension. Rock Ridge allows longer filenames, symbolic links, and a lot of
other goodies, making a CD—ROM look more or less like any contemporary UNIX filesystem. Even better, a
Rock Ridge filesystem is still a valid ISO 9660 filesystem, making it usable by non—UNIX systems as well.
Linux supports both ISO 9660 and the Rock Ridge extensions; the extensions are recognized and used
automatically.

The filesystem is only half the battle, however. Most CD—ROMs contain data that requires a special program
to access, and most of these programs do not run under Linux (except, possibly, under dosemu, the Linux
MS-DOS emulator, or wine, the Windows emulator.

Ironically perhaps, wine actually stands for *~Wine Is Not an Emulator”. Wine, more strictly, is an API
(Application Program Interface) replacement. Please see the wine documentation at http://www.winehg.com
for more information.

There is also VMWare, a commercial product, which emulates an entire x86 machine in software. See the
VMWare website, http://www.vmware.com for more information.

A CD-ROM drive is accessed via the corresponding device file. There are several ways to connect a
CD-ROM drive to the computer: via SCSI, via a sound card, or via EIDE. The hardware hacking needed to
do this is outside the scope of this book, but the type of connection decides the device file.

Chapter 5. Using Disks and Other Storage Media 30

http://www.winehq.com
http://www.vmware.com

The Linux System Administrator's Guide
5.7. Tapes

A tape drive uses a tape, similar to cassettes used for music. A tape is serial in nature, which means that in
order to get to any given part of it, you first have to go through all the parts in between. A disk can be
accessed randomly, i.e., you can jump directly to any place on the disk. The serial access of tapes makes them
slow.

On the other hand, tapes are relatively cheap to make, since they do not need to be fast. They can also easily
be made quite long, and can therefore contain a large amount of data. This makes tapes very suitable for
things like archiving and backups, which do not require large speeds, but benefit from low costs and large
storage capacities.

5.8. Formatting

Formatting is the process of writing marks on the magnetic media that are used to mark tracks and sectors.
Before a disk is formatted, its magnetic surface is a complete mess of magnetic signals. When it is formatted,
some order is brought into the chaos by essentially drawing lines where the tracks go, and where they are
divided into sectors. The actual details are not quite exactly like this, but that is irrelevant. What is important
is that a disk cannot be used unless it has been formatted.

The terminology is a bit confusing here: in MS—DOS and MS Windows, the word formatting is used to cover
also the process of creating a filesystem (which will be discussed below). There, the two processes are often
combined, especially for floppies. When the distinction needs to be made, the real formatting is called
low—level formatting, while making the filesystem is called high—Ilevel formatting . In UNIX circles, the two
are called formatting and making a filesystem, so that's what is used in this book as well.

For IDE and some SCSI disks the formatting is actually done at the factory and doesn't need to be repeated;
hence most people rarely need to worry about it. In fact, formatting a hard disk can cause it to work less well,
for example because a disk might need to be formatted in some very special way to allow automatic bad
sector replacement to work.

Disks that need to be or can be formatted often require a special program anyway, because the interface to the
formatting logic inside the drive is different from drive to drive. The formatting program is often either on the
controller BIOS, or is supplied as an MS—DOS program; neither of these can easily be used from within
Linux.

During formatting one might encounter bad spots on the disk, called bad blocks or bad sectors. These are
sometimes handled by the drive itself, but even then, if more of them develop, something needs to be done to
avoid using those parts of the disk. The logic to do this is built into the filesystem; how to add the information
into the filesystem is described below. Alternatively, one might create a small partition that covers just the bad
part of the disk; this approach might be a good idea if the bad spot is very large, since filesystems can
sometimes have trouble with very large bad areas.

Floppies are formatted with fdformat . The floppy device file to use is given as the parameter. For example,
the following command would format a high density, 3.5 inch floppy in the first floppy drive:

S fdformat /dev/£fd0H1440

Double-sided, 80 tracks, 18 sec/track. Total capacity
1440 kB.

Formatting ... done

Chapter 5. Using Disks and Other Storage Media 31

The Linux System Administrator's Guide

Verifying ... done

$

Note that if you want to use an autodetecting device (e.g., /dev/£d0), you must set the parameters of the
device with setfdprm first. To achieve the same effect as above, one would have to do the following:

S setfdprm /dev/£fd0 1440/1440
$ fdformat /dev/£dO0
Double-sided, 80 tracks, 18 sec/track. Total capacity

1440 KB.
Formatting ... done
Verifying ... done

$

It is usually more convenient to choose the correct device file that matches the type of the floppy. Note that it
is unwise to format floppies to contain more information than what they are designed for.

fdformatalso validate the floppy, i.e., check it for bad blocks. It will try a bad block several times (you can
usually hear this, the drive noise changes dramatically). If the floppy is only marginally bad (due to dirt on the
read/write head, some errors are false signals), fdformat won't complain, but a real error will abort the
validation process. The kernel will print log messages for each I/O error it finds; these will go to the console
or, if syslog is being used, to the file /var/log/messages. fdformat itself won't tell where the error is
(one usually doesn't care, floppies are cheap enough that a bad one is automatically thrown away).

S fdformat /dev/£fd0H1440
Double-sided, 80 tracks, 18 sec/track. Total capacity

1440 KB.
Formatting ... done
Verifying ... read: Unknown error

$

The badblocks command can be used to search any disk or partition for bad blocks (including a floppy). It
does not format the disk, so it can be used to check even existing filesystems. The example below checks a 3.5
inch floppy with two bad blocks.

S badblocks /dev/£fd0H1440 1440
718
719
$

badblocks outputs the block numbers of the bad blocks it finds. Most filesystems can avoid such bad blocks.
They maintain a list of known bad blocks, which is initialized when the filesystem is made, and can be
modified later. The initial search for bad blocks can be done by the mkfs command (which initializes the
filesystem), but later checks should be done with badblocks and the new blocks should be added with fsck.
We'll describe mkfs and fsck later.

Many modern disks automatically notice bad blocks, and attempt to fix them by using a special, reserved good
block instead. This is invisible to the operating system. This feature should be documented in the disk's
manual, if you're curious if it is happening. Even such disks can fail, if the number of bad blocks grows too
large, although chances are that by then the disk will be so rotten as to be unusable.

5.9. Partitions

A hard disk can be divided into several partitions. Each partition functions as if it were a separate hard disk.
The idea is that if you have one hard disk, and want to have, say, two operating systems on it, you can divide

Chapter 5. Using Disks and Other Storage Media 32

The Linux System Administrator's Guide

the disk into two partitions. Each operating system uses its partition as it wishes and doesn't touch the other
ones. This way the two operating systems can co—exist peacefully on the same hard disk. Without partitions
one would have to buy a hard disk for each operating system.

Floppies are not usually partitioned. There is no technical reason against this, but since they're so small,
partitions would be useful only very rarely. CD—ROM:s are usually also not partitioned, since it's easier to use
them as one big disk, and there is seldom a need to have several operating systems on one.

5.9.1. The MBR, boot sectors and partition table

The information about how a hard disk has been partitioned is stored in