pgAdmin 4 Documentation
Release 8.1

The pgAdmin Development Team

Jan 07, 2024

Contents

1 Getting Started 3
1.1 Deployment o i e e e e e e e e e e e e 4
1.2 LoginPage e e e e 39
1.3 Enabling two-factor authentication (2FA) L 40
1.4 User Management Dialog e 42
1.5 Change OwnershipDialog e e e e 46
1.6 Change User Password Dialog 0 0 i i i e e e e 47
1.7 Lock/Restore ACCOUNt i v v i it et e e e e e e e e e e e e e e 48
1.8 Enabling LDAP Authentication 49
1.9 Enabling Kerberos Authentication L 51
1.10 Enabling OAUTH2 Authentication it 53
1.11 Enabling Webserver Authentication i e 55
1.12 UserInterface e e e e e 57
1.13 MenuBar L e e e e e e e 58
1.14 Toolbar o o e e e e e e e e e 63
1.15 Tabbed Browser o o i e e e e 64
116 Tree Control e e e e 68
1.17 Preferences Dialog e e e e 71
1.18 Keyboard Shortcuts: e e e 94
1.19 Search objects e 98
2 External database for pgAdmin user settings 101
2.1 UseSQLite Database e e e e 101
2.2 UseExternal Database e e e e e 101
2.3 UsePostgreSQL Database e e e e 102
3 Connecting To A Server 103
3.1 Server Group Dialog L e e e 103
32 ServerDialog e 104
3.3 PostgreSQL Cloud Deployment i i i e e e e e e e e 109
34 Master Password e e 132
3.5 Connectto SEIVEr i ittt e e e e e e e e e e 134
3.6 Connection Error L e e e 135
3.7 Import/EXport SErvers i e e e e e e e e e e e e 137
4 Managing Cluster Objects 143
4.1 Database Dialog L e e e e e 143

4.2 Resource Group Dialog e e e
43 Login/Group Role Dialog e e e e
4.4 Tablespace Dialog e e e e e
4.5 Role Reassign/Drop Own Dialog
Managing Database Objects

5.1 CastDialog o o e e e e e e
5.2 Collation Dialog e e e e
5.3 DomainDialog e e e
54 Domain Constraints Dialog e
5.5 EventTrigger Dialog L e e e e e e
5.6 Extension Dialog L e e e e
5.7 Foreign Data Wrapper Dialog
5.8 Foreign Server Dialog L.
59 Foreign Table Dialog e
5.10 FTS Configuration Dialog o e e e e e e e
5.11 FTS Dictionary Dialog o o o e e e e e e e
5.12 FTS Parser Dialog e
5.13 FTS Template Dialog L o o e e e e e
5.14 Function Dialog L e e e
5.15 Language Dialog e e e e e e e e
5.16 Materialized View Dialog e e e e
5.17 Package Dialog L e e e e e
5.18 Procedure Dialog L e e e e
5.19 Publication Dialog L e e e e
520 SchemaDialog e e
5.21 Sequence Dialog e e e e e e e
5.22 Subscription Dialog L e e e e e
5.23 Synonym Dialog e
5.24 Trigger Function Dialog o e
525 TypeDialog e
5.26 User Mapping Dialog e e e e e e e
5.27 View Dialog oL e e e e e
Creating or Modifying a Table

6.1 CheckDialog e e
6.2 ColumnDialog e
6.3 Compound Trigger Dialog e
6.4 Exclusion Constraint Dialog L e
6.5 Foreignkey Dialog L e
6.6 Index Dialog e
6.7 Primary key Dialog
6.8 RLSPolicyDialog e
6.9 RuleDialog L e e e
6.10 Table Dialog e
6.11 Trigger Dialog o
6.12 Unique Constraint Dialog e
Management Basics

7.1 Add Named Restore Point Dialog e e e
7.2 Change Password Dialog oL e e e e e e e
7.3 Grant Wizard oL e e e e
7.4 Import/Export Data Dialog e
7.5 Maintenance Dialog L. oL e e e e e

167
167
170
174
178
182
186
188
194
199
206
209
214
217
220
227
231
235
240
248
252
257
262
269
272
281
290
293

299
299
302
311
316
319
326
330
333
337
343
364
370

10

11

12

13

7.6 Storage Manager v v i e 385

Backup and Restore 391
8.1 BackupDialog 391
8.2 Backup Globals Dialog e e e e e e e e e 398
8.3 Backup Server Dialog L e e e 400
84 Restore Dialog oL e e e e 405
Developer Tools 411
0.1 Debugger o e e e e e e e e 411
9.2 Query Tool e e e e e 417
9.3 View/EditData e e 441
9.4 SchemaDiff e 447
9.5 ERDTOOL. e 452
9.6 PSQLTO0L e e e e e 461
Processes 463
10.1 Process Watcher e e 464
10.2 Watchthedemo e e e e 465
pgAgent 467
T1.1 UsSing pEAZENL o v o e 467
11.2 Installing pEAZENt o i e e e e e e e e e e e e e e e 468
11.3 Creating apgAgentJob e e e e 470
pgAdmin Project Contributions 481
12.1 Submitting Pull Requests e 481
122 Code OVEIVIEW o o e e e e e e e e e e e e e 482
123 Coding Standards L. 486
124 Code Snippets o v v i e e e e e e e 488
125 Code Review NOteS o i i s e e e e e e 500
12.6 Translations o e e e e e e e e e e 501
Release Notes 503
13.1 Version 8.2 e e e 503
13.2 Version 8.1 e e 504
13.3 Version 8.0 L e e e e 506
13.4 Version 7.8 e e e e e 507
13.5 Version 7.7 e e e e e e e e e e e e e 509
13.6 Version 7.6 e e e e e e 510
13.7 Version 7.5 e e e 511
13.8 Version 7.4 e e e e e e e e e e e e e e 512
13.9 Version 7.3 L e e e e e 513
13.10 Version 7.2 o o e e 514
13.11 Version 7.1 L e e 515
13.12 Version 7.0 L e e e 517
13.13 Version 6.21 e e e e e 519
13.14 Version 6.20 L e e e e e e e e e e e 520
13.15 Version 6.19 L e e e e e e e 521
13.16 Version 6.18 e e e e e e e e 522
13.17 Version 6.17 e e e e e e 522
13.18 Version 6.16 e e e e 523
13.19 Version 6.15 e e e e e e 525
13.20 Version 6.14 L e e e e e e e 526
13.21 Version 6.13 L e 527

13.22 Version 6.12 L e e e e e e e e e 529

13.23 Version 6.11 e e e 530
13.24 Version 6.10 e e e e 530
13.25 Version 6.9 L e e e e 531
13.26 Version 6.8 L e e 533
13.27 Version 6.7 e e e e 534
1328 Version 6.6 e e e e e 534
13.20 Version 6.5 e e e e 535
13.30 Version 6.4 L . e e e e e e e e e e e e e e e e 536
1331 Version 6.3 L L e e e e e e e e 537
1332 Version 6.2 e e e 538
1333 Version 6.1 e e e 539
1334 Version 6.0 e e e 540
13.35 Version 5.7 o o e e e e e e e e 540
13.36 Version 5.6 L e e e e e e e 542
13.37 Version 5.5 L e e e e 542
13.38 Version 5.4 L e e e e e e e e 543
13.30 Version 5.3 L e e e 544
13.40 Version 5.2 e e e e 545
13.41 Version 5.1 o e e e e e e e 546
1342 Version 5.0 L e e e e e e 548
1343 Version 4.30 L e e e e e e e e e e 549
13.44 Version 4.29 L e e 551
13.45 Version 4.28 e e e e e e 551
13.46 Version 4.27 o o e e e e e e e e e e e 552
13.47 Version 4.26 e e e e e e e e e 553
13.48 Version 4.25 L e e e e 555
13.49 Version 4.24 e e e e 556
13.50 Version 4.23 e e e e e e 557
13.51 Version 4.22 e e e e e e e e e e e 558
13.52 Version 4.21 o e e e e e e e e e e e 559
13.53 Version 4.20 L e e 561
13.54 Version 4.19 L L e e e e e e 562
13.55 Version 4.18 e e e 563
13.56 Version 4.17 e e e e e 564
13.57 Version 4.16 L e e e e e e 565
13.58 Version 4.15 L e e 567
13.59 Version 4.14 e e e 568
13.60 Version 4.13 L e 569
13.61 Version 4.12 e e e e e 570
13.62 Version 4.11 e e e e e e e e 571
13.63 Version 4.10 L e e e e e e 573
13.64 Version 4.9 e e e 573
13.65 Version 4.8 e e e e 574
13.66 Version 4.7 e e e e e e e e e 575
13.67 Version 4.6 e e e e e e e 576
13.68 Version 4.5 L e e e e e 577
13.69 Version 4.4 e e 577
13.70 Version 4.3 . . . L . L e e e e e e e e e 579
13.71 Version 4.2 o e e e e e 580
13.72 Version 4.1 e e e e e e 581
13.73 Version 4.0 L e e e e e e 582
13.74 Version 3.6 e e e e e e e e 583

13.75 Version 3.5 o e e e e 583

13.76 Version 3.4 e e e e 584

13.77 Version 3.3 e e e e e 584
13.78 Version 3.2 e e e e e e e e 585
13.79 Version 3.1 e e e e e 586
13.80 Version 3.0 L e e 587
13.81 Version 2.1 e e e e e e e e e e 590
13.82 Version 2.0 e e 592
13.83 Version 1.6 e 594
13.84 Version 1.5 L . L e e e e e e e e e e e e 596
13.85 Version 1.4 o e e e e e e e 597
13.86 Version 1.3 e e e e e e e e 598
13.87 Version 1.2 e e e e 599
13.88 Version 1.1 e e e 601
13.80 Version 1.0 e e e 602
14 Licence 603
Index 605

vi

pgAdmin 4 Documentation, Release 8.1

Welcome to pgAdmin 4. pgAdmin is the leading Open Source management tool for Postgres, the world’s most advanced
Open Source database. pgAdmin 4 is designed to meet the needs of both novice and experienced Postgres users alike,
providing a powerful graphical interface that simplifies the creation, maintenance and use of database objects.

Contents 1

pgAdmin 4 Documentation, Release 8.1

2 Contents

CHAPTER 1

Getting Started

Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments;
we recommend using an installer whenever possible.

In a Server Deployment, the pgAdmin application is deployed behind a webserver or with the WSGI interface. If you
install pgAdmin in server mode, you will be prompted to provide a role name and pgAdmin password when you initially
connect to pgAdmin. The first role registered with pgAdmin will be an administrative user; the administrative role can
use the pgAdmin User Management dialog to create and manage additional pgAdmin user accounts. When a user
authenticates with pgAdmin, the pgAdmin tree control displays the server definitions associated with that login role.

In a Desktop Deployment, the pgAdmin application is configured to use the desktop runtime environment to host the
program on a supported platform. Typically, users will install a pre-built package to run pgAdmin in desktop mode, but
a manual desktop deployment can be installed and though it is more difficult to setup, it may be useful for developers
interested in understanding how pgAdmin works.

It is also possible to use a Container Deployment of pgAdmin, in which Server Mode is pre-configured for security.

pgAdmin 4 Documentation, Release 8.1

1.1 Deployment

Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments;
we recommend using an installer whenever possible. If you are interested in learning more about the project, or if a
pgAdmin installer is not available for your environment, the pages listed below will provide detailed information about
creating a custom deployment.

1.1.1 The config.py File

There are multiple configuration files that are read at startup by pgAdmin. These files are used for configuration options
that:

* may be required to be set prior to startup of pgAdmin as they control how the application will operate.
* system administrators may wish to control across an organisation to enforce security policies.

e are so rarely or unlikely to be changed that it doesn’t make sense to allow them to be changed through the user
interface.

The configuration files are as follows:

* config.py: This is the main configuration file, and should not be modified. It can be used as a reference for
configuration settings, that may be overridden in one of the following files.

» config_distro.py: This file is read after config.py and is intended for packagers to change any settings that
are required for their pgAdmin distribution. This may typically include certain paths and file locations. This file
is optional, and may be created by packagers in the same directory as config. py if needed.

e config_local.py: This file is read after config_distro.py and is intended for the owner of the installation
to change any default or packaging specific settings that they may wish to adjust to meet local preferences or
standards.This file is optional, and may be created by users in the same directory as config.py if needed.

e config_system.py: This file is read after config_local.py and is intended for system administrators to
include settings that are configured system-wide from a secure location that users cannot normally modify and
that is outside of the pgAdmin installation. The location for this file varies based on the platform, and only needs
to be created if desired.

Platform File Location

Linux /etc/pgadmin/config_system.py
macOS [Library/Preferences/pgadmin/config_system.py
Windows %CommonProgramFiles%\pgadmin\config_system.py

Note: If the SERVER_MODE or DATA_DIR settings are changed in config_distro.py, config_local.
py, or config_system.py LOG_FILE, SQLITE PATH, SESSION_DB_PATH, STORAGE_DIR, KER-
BEROS_CCACHE_DIR, and AZURE_CREDENTIAL_CACHE_DIR values will be set based on DATA_DIR
unless values are explicitly overridden for any of the variable in any of the above file.

The default config.py file is shown below for reference:

-*- coding: utf-8 -*-

HAFARBHARAHARRR T ARA R RARBRRERARBHBRRRBARARARAABRRR TR R BRARBARARARARBRRRSHS
#

(continues on next page)

4 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

pgAdmin 4 - PostgreSQL Tools

#

Copyright (C) 2013 - 2024, The pgAdmin Development Team

This software is released under the PostgreSQL Licence

Z config.py - Core application configuration settings
Z###

import builtins
import logging
import os
import sys

We need to include the root directory in sys.path to ensure that we can
find everything we need when running in the standalone runtime.
root = os.path.dirname(os.path.realpath(__file_))
if sys.path[0] != root:
sys.path.insert(0, root)

The config database connection pool size.

Setting this to 0® will remove any limit.
CONFIG_DATABASE_CONNECTION_POOL_SIZE = 5

The number of connections allowed to overflow beyond
the connection pool size.
CONFIG_DATABASE_CONNECTION_MAX_OVERFLOW = 100

from pgadmin.utils import env, IS_WIN, fs_short_path

HARH AR HRHARH AR RAARH AR RHARA AR RH AR AR RAARA AR RA AR AR RA AR A AR A RA AR AR AR
Application settings
B L B e 2 e

Name of the application to display in the UI
APP_NAME 'pgAdmin 4'
APP_ICON 'pg-icon’

RABBARA ARG ARGARARRARR AR ARARRRRARB ARG ARARB ARG ARARR ARSI RRARG ARG ARARD SRS ARAFS A
Application settings
HARH AR HRHARH AR RHARA AR RHARH AR AR AR AR RA AR AR RA AR A AR RA AR AR A RA AR AR A RS

NOTE!!!

If you change any of APP_RELEASE, APP_REVISION or APP_SUFFIX, then you
must also change APP_VERSION_INT to match.

#

Application version number components
APP_RELEASE = 8
APP_REVISION = 1

Application version suffix, e.g. 'betal’, 'dev'. Usually an empty string
for GA releases.
(continues on next page)

1.1. Deployment 5

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

APP_SUFFIX = "'

Numeric application version for upgrade checks. Should be in the format:

[X]XYYZZ, where X is the release version, Y is the revision, with a leading
zero if needed, and Z represents the suffix, with a leading zero if needed
APP_VERSION_INT = 80100

DO NOT CHANGE!
The application version string, constructed from the components
if not APP_SUFFIX:
APP_VERSION = '%s.%s' % (APP_RELEASE, APP_REVISION)
else:
APP_VERSION = '%s.%s-%s' % (APP_RELEASE, APP_REVISION, APP_SUFFIX)

Copyright string for display in the app
APP_COPYRIGHT = 'Copyright (C) 2013 - 2024, The pgAdmin Development Team'

i B e e e
Misc stuff
Fgididaddda it it i ssdasdia g i dissi

Path to the online help.
HELP_PATH = '../../../docs/en_US/_build/html/’

Languages we support in the UI
LANGUAGES = {

'en': "English',

'zh': 'Chinese (Simplified)',

'cs': 'Czech',
"fr': 'French',
'de': 'German',
'id': 'Indonesian',
'it': 'Italian',
'ja': 'Japanese',
'ko': 'Korean',
'pl': 'Polish',
'"pt_BR': 'Portuguese (Brazilian)',
'ru': 'Russian',
'es': 'Spanish',

DO NOT CHANGE UNLESS YOU KNOW WHAT YOU ARE DOING!
List of modules to skip when dynamically loading
MODULE_BLACKLIST = ['test']

DO NOT CHANGE UNLESS YOU KNOW WHAT YOU ARE DOING!
List of treeview browser nodes to skip when dynamically loading
NODE_BLACKLIST = []

HARH AR HAHARH AR RHARH AR AR AR AR RA AR AR AR AR AR RA AR AR A RA AR AR AR AR AR AR
Server settings
HARH AR HRHARH AR RAARA AR RHARA AR RH AR A AR RAARA AR RA AR A AR A RA AR AR A RA AR AA SRS

(continues on next page)

6 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

The server mode determines whether or not we're running on a web server
requiring user authentication, or desktop mode which uses an automatic
default login.

DO NOT DISABLE SERVER MODE IF RUNNING ON A WEBSERVER!!

e only set SERVER_MODE if it's not already set. That's to allow the
runtime to force it to False.

NOTE: If you change the value of SERVER _MODE or DATA_DIR in an included
config file, you may also need to redefine any values below that are
derived from it, notably various paths such as LOG_FILE, SQLITE_PATH,
SESSION_DB_PATH, STORAGE_DIR, KERBEROS_CCACHE_DIR, and
AZURE_CREDENTIAL_CACHE_DIR

FHOoF T W O OH R R W W W W R W

if (not hasattr(builtins, 'SERVER_MODE')) or builtins.SERVER_MODE is None:
SERVER_MODE = True

else:
SERVER_MODE = builtins.SERVER_MODE

HTTP headers to search for CSRF token when it is not provided in the form.
Default is ['X-CSRFToken', 'X-CSRF-Token']
WTF_CSRF_HEADERS = ['X-pgA-CSRFToken']

User ID (email address) to use for the default user in desktop mode.
The default should be fine here, as it's not exposed in the app.
DESKTOP_USER = 'pgadmin4@pgadmin.org'

This option allows the user to host the application on a LAN

Default hosting is on localhost (DEFAULT_SERVER='localhost').

To host pgAdmin4 over LAN set DEFAULT_SERVER='0.0.0.0' (or a specific
adaptor address.
#
#
#
#

NOTE: This is NOT recommended for production use, only for debugging
or testing. Production installations should be run as a WSGI application
behind Apache HTTPD.

DEFAULT_SERVER = '127.0.0.1'

The default port on which the app server will listen if not set in the
environment by the runtime
DEFAULT_SERVER_PORT = 5050

This param is used to override the default web server information about

the web technology and the frameworks being used in the application

An attacker could use this information to fingerprint underlying operating
system and research known exploits for the specific version of

software in use

WEB_SERVER = 'Python'

Enable X-Frame-Option protection.
Set to one of "SAMEORIGIN", "ALLOW-FROM origin" or "" to disable.

(continues on next page)

1.1. Deployment 7

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

Note that "DENY" is NOT supported (and will be silently ignored).
See https://tools.ietf.org/html/rfc7034 for more info.
X_FRAME_OPTIONS = "SAMEORIGIN"

The Content-Security-Policy header allows you to restrict how resources

such as JavaScript, CSS, or pretty much anything that the browser loads.

see https://content-security-policy.com/#source_list for more info

e.g. "default-src https: data: 'unsafe-inline' 'unsafe-eval';"

CONTENT_SECURITY_POLICY = "default-src ws: http: data: blob: 'unsafe-inline'" \
" 'unsafe-eval';"

STRICT_TRANSPORT_SECURITY_ENABLED when set to True will set the

Strict-Transport-Security header

STRICT_TRANSPORT_SECURITY_ENABLED = False

The Strict-Transport-Security header tells the browser to convert all HTTP
requests to HTTPS, preventing man-in-the-middle (MITM) attacks.

e.g. max-age=31536000; includeSubDomains'

STRICT_TRANSPORT_SECURITY = "max-age=31536000; includeSubDomains"

The X-Content-Type-Options header forces the browser to honor the response
content type instead of trying to detect it, which can be abused to

generate a cross-site scripting (XSS) attack.

e.g. nosniff

X_CONTENT_TYPE_OPTIONS = "nosniff"

The browser will try to prevent reflected XSS attacks by not loading the
page if the request contains something that looks like JavaScript and the
response contains the same data. e.g. 'l; mode=block’

X_XSS_PROTECTION = "1; mode=block"

This param is used to validate ALLOWED_HOSTS for the application

This will be used to avoid Host Header Injection attack

ALLOWED_HOSTS = ['225.0.0.0/8', '226.0.0.0/7', '228.0.0.0/6']

ALLOWED_HOSTS = ['127.0.0.1', '192.168.0.1']

1if ALLOWED_HOSTS= [] then it will accept all ips (and application will be
vulnerable to Host Header Injection attack)

ALLOWED_HOSTS = []

Hashing algorithm used for password storage
SECURITY_PASSWORD_HASH = 'pbkdf2_sha512'

Minimum password length
PASSWORD_LENGTH_MIN = 6

Reverse Proxy parameters

You must tell the middleware how many proxies set each header
so it knows what values to trust.

See https://tinyurl.com/yyg7r9av

for more information.

Number of values to trust for X-Forwarded-For
(continues on next page)

8 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

PROXY_X_FOR_COUNT = 1

Number of values to trust for X-Forwarded-Proto.
PROXY_X_PROTO_COUNT = 1

Number of values to trust for X-Forwarded-Host.
PROXY_X_HOST_COUNT = 0

Number of values to trust for X-Forwarded-Port.
PROXY_X_PORT_COUNT = 1

Number of values to trust for X-Forwarded-Prefix.
PROXY_X_PREFIX_COUNT = 0

NOTE: CSRF_SESSION_KEY, SECRET_KEY and SECURITY_PASSWORD_SALT are no
longer part of the main configuration, but are stored in the
configuration databases 'keys' table and are auto-generated.

COMPRESSION
COMPRESS_MIMETYPES = [
"text/html', 'text/css', 'text/xml', 'text/javascript',
'application/json', 'application/javascript'
1
COMPRESS_LEVEL = 9
COMPRESS_MIN_SIZE = 500

Set the cache control max age for static files in flask to 1 year
SEND_FILE_MAX_AGE_DEFAULT = 31556952

This will be added to static urls as url parameter with value as

APP_VERSION_INT for cache busting on version upgrade. If the value is set as
None or empty string then it will not be added.

eg - http:localhost:5050/pgadmin.css?intver=3.13

APP_VERSION_PARAM = 'ver'

Add the internal version param to below extensions only
APP_VERSION_EXIN = ('.css', '.js', '.html', '.svg', '.png', '.gif', '.ico'")

Data directory for storage of config settings etc. This shouldn't normally
need to be changed - it's here as various other settings depend on it.
On Windows, we always store data in %APPDATA%\pgAdmin. On other platforms,
if we're in server mode we use /var/lib/pgadmin, otherwise ~/.pgadmin
if IS_WIN:
Use the short path on windows
DATA_DIR = os.path.realpath(
os.path. join(fs_short_path(env('APPDATA')), "pgAdmin'")
)
else:
if SERVER_MODE:
DATA_DIR
else:
DATA_DIR = os.path.realpath(os.path.expanduser('~/.pgadmin/"))

'/var/lib/pgadmin'

(continues on next page)

1.1. Deployment 9

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

An optional login banner to show security warnings/disclaimers etc. at

login and password recovery etc. HTML may be included for basic formatting,
For example:

LOGIN_BANNER = "<h4>Authorised Users Only!</h4>" \

"Unauthorised use is strictly forbidden."

LOGIN_BANNER = ""

HARH AR HRHARH AR RAARA AR RHARH AR RHARA AR AR RA AR RA AR A AR RA AR AR A RA AR AR RS
Log settings
RABBARA AR ARG ARAARAR D AR AR BRS AR RB ARG ARARB ARG ARARR BRI RRARB ARG AR ARG ARAARAFSA

Debug mode?
DEBUG = False

Application log level - one of:

CRITICAL 50
ERROR 40
WARNING 30
SQL 25
INFO 20
DEBUG 10
NOTSET 0

CONSOLE_LOG_LEVEL = logging.WARNING
FILE_LOG_LEVEL = logging.WARNING

Log format.
CONSOLE_LOG_FORMAT = '%(asctime)s: %(levelname)s\t%(name)s:\t%(message)s'
FILE_LOG_FORMAT = '%(asctime)s: %(levelname)s\t%(name)s:\t%(message)s'

Log file name. This goes in the data directory, except on non-Windows
platforms in server mode.
if SERVER_MODE and not IS_WIN:
LOG_FILE = '/var/log/pgadmin/pgadmin4d.log'
else:
LOG_FILE = os.path.join(DATA_DIR, 'pgadmin4.log')

Log rotation setting

Log file will be rotated considering values for LOG_ROTATION_SIZE

& LOG_ROTATION_AGE. Rotated file will be named in format

- LOG_FILE.Y-m-d_H-M-S

LOG_ROTATION_SIZE = 10 # In MBs

LOG_ROTATION_AGE = 1440 # In minutes

LOG_ROTATION_MAX_LOG_FILES = 90 # Maximum number of backups to retain
HARH AR HRHARH AR RAARH AR RHARH AR RH AR AR RA AR AR RA AR AR RA AR AR A RA AR AR AR
Server Connection Driver Settings

HRHARH AR RAARH AR RHARH AR RAARARRARA AR RAARH AR RHARA AR AR A RA AR RAARA AR RH A

The default driver used for making connection with PostgreSQL
PG_DEFAULT_DRIVER = 'psycopg3'

Maximum allowed idle time in minutes before which releasing the connection
(continues on next page)

10 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

for the particular session. (in minutes)
MAX_SESSION_IDLE_TIME = 60

HAHHRHH R RAARH AR RHARH AR RAARA AR RA AR RAARA AR RHARA AR AR A RA AR RAARA AR AR AH
External Database Settings

#

All configuration settings are stored by default in the SQLite database.
In order to use external databases like PostgreSQL sets the value of

CONFIG_DATABASE_URI like below:

dialect+driver://username:password@host :port/database

#

PostgreSQL:

postgresql://username:password@host :port/database

Specify Schema Name

postgresql://username:password@host:port/database?options=-csearch_path=pgadmin
Using PGPASS file

postgresql://username@host:port?options=-csearch_path=pgadmin

HARH AR AR A RH AR RAARH AR RH AR AR RH AR AR AR AR AR A RA AR AR AR AR AR AR AR AR AR
CONFIG_DATABASE_URI = "'

B T a2 B
User account and settings storage
s R s

The default path to the SQLite database used to store user accounts and
settings. This default places the file in the same directory as this

config file, but generates an absolute path for use througout the app.
SQLITE_PATH = env('SQLITE_PATH') or os.path.join(DATA_DIR, 'pgadmin4.db')

SQLITE_TIMEOUT will define how long to wait before throwing the error -

OperationError due to database lock. On slower system, you may need to change
this to some higher value.

(Default: 500 milliseconds)

SQLITE_TIMEOUT = 500

Allow database connection passwords to be saved if the user chooses.
Set to False to disable password saving.
ALLOW_SAVE_PASSWORD = True

Maximum number of history queries stored per user/server/database
MAX_QUERY_HIST_STORED = 20

e
Server-side session storage path
#
SESSION_DB_PATH (Default: $HOME/.pgadmin4/sessions)
HRHARH AR RAARH AR RAARH AR A RAARARRARA AR SRR RA AR RHARA AR AR A RA AR RAARA AR AR A
#
We use SQLite for server-side session storage. There will be one
SQLite database object per session created.
#
Specify the path used to store your session objects.
(continues on next page)

1.1. Deployment 11

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

If the specified directory does not exist, the setup script will create
it with permission mode 700 to keep the session database secure.

On certain systems, you can use shared memory (tmpfs) for maximum
scalability, for example, on Ubuntu:

SESSION_DB_PATH = '/run/shm/pgAdmin4_session'

FHOoR O R W W W W™ R

Faidddg gt a g sl il g i fibdes s diddsid
SESSION_DB_PATH = os.path.join(DATA_DIR, 'sessions')

SESSION_COOKIE_NAME = 'pga4_session'

HRHARHH R RAARH AR RH A AR AR RARRA AR RAARA AR RA R R A RHARA AR AR RA AR RAARA AR RAAA
Mail server settings
HARHARHRH ARG AR RRARHBHARRARH AR RA ARG ARARRARS AR RRRRSRUA RS ARG RAAREARAABAHASA

These settings are used when running in web server mode for confirming
and resetting passwords etc.

See: http://pythonhosted.org/Flask-Mail/ for more info

MATL_SERVER = 'localhost'

MAIL_PORT = 25
MAIL_USE_SSL = False
MAIL_USE_TLS = False
MAIL_USERNAME = ''
MAIL_PASSWORD = ''
MAIL_DEBUG = False

Flask-Security overrides Flask-Mail's MAIL_DEFAULT_SENDER setting, so
that should be set as such:
SECURITY_EMAIL_SENDER = 'no-reply@localhost’

i e
Mail content settings
i i i i i i

These settings define the content of password reset emails
SECURITY_EMAIL_SUBJECT_PASSWORD_RESET = "Password reset instructions for %s" \
% APP_NAME
SECURITY_EMAIL_SUBJECT_PASSWORD_NOTICE = "Your %s password has been reset" \
% APP_NAME
SECURITY_EMAIL_SUBJECT_PASSWORD_CHANGE_NOTICE = \
"Your password for %s has been changed" % APP_NAME

o i i e i i i i e g
Email address validation
HAH BB R AR AU AR AR ARG RH R AR AR AR AR RH AR R R AR AR AR AR R G R AR AR AR AR AR AR AR AR AR RA AR AR
CHECK_EMAIL_DELIVERABILITY = False
SECURITY_EMAIL_VALIDATOR_ARGS = \

{"check_deliverability": CHECK_EMAIL_DELIVERABILITY}

(continues on next page)

12 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

RARA AR AR AR RARAA A RARAA AR HARAARAHAR AR
Upgrade checks
HHHHRHHHRAH AR RHH AR A A AR R ARR A A RAAARRR A A AR ARAAARAAAHRAAARA A AR AR ARA A RRAHH

Check for new versions of the application?
UPGRADE_CHECK_ENABLED = True

Where should we get the data from?
UPGRADE_CHECK_URL = 'https://www.pgadmin.org/versions.json'

What key should we look at in the upgrade data file?
UPGRADE_CHECK_KEY = 'pgadmin4'

Which CA file should we use?

Default to cacert.pem in the same directory as config.py et al.

CA_FILE = os.path.join(os.path.dirname(os.path.realpath(__file__)),
"cacert.pem")

Check if the detected browser is supported
CHECK_SUPPORTED_BROWSER = True

BB R R R R R R R e I A R R et
Storage Manager storage url config settings

If user sets STORAGE_DIR to empty it will show all volumes if platform
1is Windows, '/’ if it is Linux, Mac or any other unix type system.

For example:

1. STORAGE_DIR = get_drive("C") or get_drive() # return C:/ by default

where C can be any drive character such as "D", "E", "G" etc

2. Set path manually like

STORAGE_DIR = "/path/to/directory/"

RERHRHRH R R AR AR AR AR AR AR AR AR AR AR ARG AR F R AR AR AR AA R RAR AR AR AR AR AR AR AR AR AR AAH
STORAGE_DIR = os.path.join(DATA_DIR, 'storage')

HARH AR HRHHRH AR RHARA AR RHARHRRARH AR AR RAARA AR RA AR A AR A RA AR AR A RA AR AR AR
Default locations for binary utilities (pg_dump, pg_restore etc)

These are intentionally left empty in the main config file, but are

#
#
#
expected to be overridden by packagers in config_distro.py.

#

A default location can be specified for each database driver ID, in

a dictionary. Either an absolute or relative path can be specified.

#

Version-specific defaults can also be specified, which will take priority
over un-versioned paths.

#

In cases where it may be difficult to know what the working directory

is, "$DIR" can be specified. This will be replaced with the path to the

top-level pgAdmin4.py file. For example, on macOS we might use:

#

$DIR/../../SharedSupport

#

(continues on next page)

1.1. Deployment 13

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

RRR R RRRRRRR AR RRRRRRR AR RRRRRRRRRRAARARRRRRRRARAARRRRRRRT
DEFAULT_BINARY_PATHS = {

"pg": ",
"pg-12": "",
"pg-13": "",
"pg-14": "",
"pg-15": "",
"pg-16": "",
"ppas": "",
"ppas-12": "",
"ppas-13": "",
"ppas-14": "",

"ppas-15": ,
llppas_16ll: mnn

HAHRBRARRHARRARARA AR AR AR A AR AR AR AR AR ARARA ARG AR AR AR ARARARA AR AR ARARHRARARBRAS
Test settings - used primarily by the regression suite, not for users
i i i e i e g

The default path for SQLite database for testing
TEST_SQLITE_PATH = os.path.join(DATA_DIR, 'test_pgadmin4.db"')

HARH AR HRHARH AR RAARH AR RH AR A AR RH AR AR AR AR AR RA AR AR A RA AR AR A RA AR AA AR
Allows flask application to response to the each request asynchronously
HRHFRHHRARAARH AR RHARH AR RAARARAARAARA AR RAARHRHARA AR AR RA AR RAARA AR RAAA
THREADED_MODE = True

HARH AR RHARH AR RAARH AR AR A RH AR RH AR AR AR AR AR RA AR AR RA AR AR A RA AR AR AR
Do not allow SQLALCHEMY to track modification as it is going to be

deprecated in future

B B e B 2 e
SQLALCHEMY_TRACK_MODIFICATIONS = False

HARH AR HRHARH AR RHARH AR RHARH AR RH AR AR RAARA AR RA AR AR A RA AR A AR A RA AR AR RS
Number of records to fetch in one batch in query tool when query result
set is large.
RABBARARBARGARARRARR AU ARARRRRARB ARG ARARB AR B ARARR ARSI RRARG ARG ARARB SRS ARAFSA
ON_DEMAND_RECORD_COUNT = 1000

HARH AR RHARH AR RAARA AR RHARH AR RH AR AR RAARA AR RA AR A AR RA AR AR A RA AR AR AR
Allow users to display Gravatar image for their username in Server mode
B B d drard
SHOW_GRAVATAR_IMAGE = True

HARH AR HRHARH AR RHARA AR RHARA AR RH AR AR RHARA AR RA AR AR RA AR AR A RA AR AR AR
Set cookie path and options

B L B e 2 e
COOKIE_DEFAULT_PATH = '/'

COOKIE_DEFAULT_DOMAIN = None

SESSION_COOKIE_DOMAIN = None

SESSION_COOKIE_SAMESITE = 'Lax'

(continues on next page)

14 Chapter 1.

Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

SESSION_COOKIE_SECURE = False
SESSION_COOKIE_HTTPONLY = True

HRHHRH AR RAARH AR A RH AR AR A RA AR RHARA AR RAARA AR RA AR A AR RA AR AR A RA AR RAA RS
Skip storing session in files and cache for specific paths
RABBARA AR ARG ARARR ARG ARATRRRSRRARG ARG ARAR LA RSB RR AR AR ARARRARARB ARG AR ARS AR
SESSION_SKIP_PATHS = [

'/misc/ping'

]

RABBARA AU ARG ARAARARS AR AR BRR AR BB A RS ARARB ARG ARARR BRI AR BB A ARG ARARB AR A ARARSA
Session expiration support

HARH AR RHARH AR RHARA AR AR A RH AR RA AR AR AR AR AR RH AR AR A RA AR AR A RA AR AR AR
SESSION_EXPIRATION_TIME is the interval in Days. Session will be

expire after the specified number of *days¥*.

SESSION_EXPIRATION_TIME = 1

Make SESSION_EXPIRATION_TIME to 1 week in DESKTOP mode
if not SERVER_MODE:
SESSION_EXPIRATION_TIME = 7

CHECK_SESSION_FILES_INTERVAL is interval in Hours. Application will check
the session files for cleanup after specified number of *hours®.
CHECK_SESSION_FILES_INTERVAL = 24

USER_INACTIVITY_TIMEOUT is interval in Seconds. If the pgAdmin screen is left
unattended for <USER_INACTIVITY_TIMEOUT> seconds then the user will

be logged out. When set to 0, the timeout will be disabled.

If pgAdmin doesn't detect any activity in the time specified (in seconds),

the user will be forcibly logged out from pgAdmin. Set to zero to disable

the timeout.

Note: This is applicable only for SERVER_MODE=True.

USER_INACTIVITY_TIMEOUT = 0

o R W W W R

OVERRIDE_USER_INACTIVITY_TIMEOUT when set to True will override

USER_INACTIVITY_TIMEOUT when long running queries in the Query Tool

or Debugger are running. When the queries complete, the inactivity timer
will restart in this case. If set to False, user inactivity may cause

transactions or in-process debugging sessions to be aborted.
OVERRIDE_USER_INACTIVITY_TIMEOUT = True

HRHARHHAHRAARH AR RAARH AR RARRA AR RAARARAARAARHRHARA AR AR RA AR RAARH AR RHAA
SSH Tunneling supports only for Python 2.7 and 3.4+

HARH AR HRHARH AR A RAARA AR RH AR RRARH AR AR A RA AR AR AR AR AR A RH AR RR AR AR AR AR
SUPPORT_SSH_TUNNEL = True

Allow SSH Tunnel passwords to be saved if the user chooses.

Set to False to disable password saving.

ALLOW_SAVE_TUNNEL_PASSWORD = False

B e
Master password is used to encrypt/decrypt saved server passwords
Applicable for desktop mode only

(continues on next page)

1.1. Deployment 15

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

B R AR AR AR AR ARRARARRAR A AR A ARRAAARRAAAARAAAARAAAARRAAAA
MASTER_PASSWORD_REQUIRED = True

B

pgAdmin encrypts the database connection and ssh tunnel password using a
master password or pgAdmin login password (for other authentication sources)
before storing it in the pgAdmin configuration database.

Below setting is used to allow the user to specify the path to a script
or program that will return an encryption key which will be used to
encrypt the passwords. This setting is used only in server mode when
auth sources are oauth, Kerberos, and webserver.

You can pass the current username as an argument to the external script
by specifying %u in config value.

E.g. - MASTER PASSWORD_HOOK = '<PATH>/passwdgen_script.sh %u’

HARH AR AR A RH AR RAARH AR RH AR AR RH AR AR AR AR AR A RA AR AR AR AR AR AR AR AR AR
MASTER_PASSWORD_HOOK = None

HHOW W R W W W R W

B

Allows pgAdmin4 to create session cookies based on IP address, so even

if a cookie is stolen, the attacker will not be able to connect to the

server using that stolen cookie.

Note: This can cause problems when the server is deployed in dynamic IP
address hosting environments, such as Kubernetes or behind load

balancers. In such cases, this option should be set to False.
i g
ENHANCED_COOKIE_PROTECTION = True

Faidddaddaddaddada g g g g g g g g g g g g g g i
External Authentication Sources
e B

Default setting is internal

External Supported Sources: ldap, kerberos, oauth2

Multiple authentication can be achieved by setting this parameter to

['ldap', 'internal'] or ['oauth2', 'internal'] or

['webserver', 'internal'] etc.

pgAdmin will authenticate the user with ldap/oauth2 whatever first in the

list, in case of failure the second authentication option will be considered.

AUTHENTICATION_SOURCES = ['internal']

HAHARH R R RAARA AR RH AR A AR A RA AR AR RA AR AR A RH AR RH AR AR RAARA AR AR A RS AR AR AH
MAX_LOGIN_ATTEMPTS which sets the number of failed login attempts that

are allowed. If this value is exceeded the account is locked and can be
reset by an administrator. By setting the variable to the value zero

this feature is deactivated.

HARH AR HRHARH AR RHARA AR RHARA AR RH AR AR RA AR A AR RA AR A AR A RA AR AR A RA AR AR AR
MAX_LOGIN_ATTEMPTS = 3

(continues on next page)

16 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

i
Only consider password to check the failed login attempts, email is

excluded from this check

LOGIN_ATTEMPT_FIELDS = ['password']
RAHRBHRBHRHHHHHRRRRRRRRRRRRR AR RRRRRRRRRARRRR A A AARRRRAARRRRRRR AR ARARRRRAAAAA
LDAP Configuration

i i i i i e e g

After ldap authentication, user will be added into the SQLite database
automatically, if set to True.

Set it to False, if user should not be added automatically,

in this case Admin has to add the user manually in the SQLite database.
LDAP_AUTO_CREATE_USER = True

Connection timeout
LDAP_CONNECTION_TIMEOUT = 10

Server connection details (REQUIRED)
example: ldap://<ip-address>:<port> or ldap://<hostname>:<port>
LDAP_SERVER_URI = 'ldap://<ip-address>:<port>'

The LDAP attribute containing user names. In OpenLDAP, this may be 'uid'
whilst in AD, 'sAMAccountName' might be appropriate. (REQUIRED)
LDAP_USERNAME_ATTRIBUTE = '<User-id>'

o e /T v i v
3 ways to configure LDAP as follows (Choose anyone):

1. Dedicated User binding

LDAP Bind User DN Example: cn=username,dc=example,dc=com

Set this parameter to allow the connection to bind using a dedicated user.
After the connection is made, the pgadmin login user will be further

authenticated by the username and password provided

at the login screen.

LDAP_BIND_USER = None

LDAP Bind User Password
LDAP_BIND_PASSWORD = None

OR ##RHHARAHHARHHHRRHHH
2. Anonymous Binding

Set this parameter to allow the anonymous bind.
After the connection is made, the pgadmin login user will be further
authenticated by the username and password provided

LDAP_ANONYMOUS_BIND = False
OR ##HHAAHHHAAARHHHHAAAA

3. Bind as pgAdmin user

(continues on next page)

1.1. Deployment 17

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

BaseDN (REQUIRED)

AD example:

(&(objectClass=user) (memberof=CN=MYGROUP, CN=Users, dc=example,dc=com))
OpenLDAP example: CN=Users,dc=example,dc=com

LDAP_BASE_DN = '<Base-DN>'

Configure the bind format string

Default: LDAP_BIND_FORMAT="

{LDAP_USERNAME_ATTRIBUTE}={LDAP_USERNAME}, {LDAP_BASE_DN}"

The current available options are:

LDAP_USERNAME_ATTRIBUTE, LDAP_USERNAME, LDAP_BASE_DN

Example: LDAP_BIND_FORMAT="myldapuser@sales.example.com"

LDAP_BIND_FORMAT="NET\\myldapuser"

LDAP_BIND_FORMAT = '{LDAP_USERNAME_ATTRIBUTE}={LDAP_USERNAME}, {LDAP_BASE_DN}'

RRR R RR AR RRRRRARR AR RRARAARRRRRRRRRRAARARRBRRRRARAARRRRRRRR

Search ldap for further authentication (REQUIRED)
It can be optional while bind as pgAdmin user
LDAP_SEARCH_BASE_DN = '<Search-Base-DN>'

The LDAP attribute indicates whether the DN (Distinguished Names)
are case sensitive or not
LDAP_DN_CASE_SENSITIVE = False

Filter string for the user search.

For OpenLDAP, '(cn=*)' may well be enough.

For AD, you might use '(objectClass=user)' (REQUIRED)
LDAP_SEARCH_FILTER = '(objectclass=*)'

Search scope for users (one of BASE, LEVEL or SUBTREE)
LDAP_SEARCH_SCOPE = 'SUBTREE'

Use TLS? If the URI scheme is ldaps://, this is ignored.
LDAP_USE_STARTTLS = False

TLS/SSL certificates. Specify if required, otherwise leave empty
LDAP_CA_CERT_FILE = "'

LDAP_CERT_FILE = "'

LDAP_KEY_FILE = ''

Some flaky LDAP servers returns malformed schema. If True, no exception
will be raised and schema is thrown away but authentication will be done.
This parameter should remain False, as recommended.
LDAP_IGNORE_MALFORMED_SCHEMA = False

HARH AR AR ARH AR RAARA AR AR AR AR RH AR AR AR AR AR A RA AR AR A RA AR AR AR AR AR AR
Kerberos Configuration
HAHHRHH R RAARH AR RHARH AR RAARA AR RA AR RAARH AR RHARA AR AR A RA AR RAARA AR AR A

(continues on next page)

18 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

KRB_APP_HOST_NAME = DEFAULT_SERVER

If the default_keytab_name is not set in krb5.conf or
the KRB_KTNAME environment variable is not set then, explicitly set
the Keytab file

KRB_KTNAME = '<KRB5_KEYTAB_FILE>'

After kerberos authentication, user will be added into the SQLite database
automatically, if set to True.

Set it to False, if user should not be added automatically,

in this case Admin has to add the user manually in the SQLite database.

KRB_AUTO_CREATE_USER = True
KERBEROS_CCACHE_DIR = os.path.join(DATA_DIR, 'krbccache')

HARH AR RHARH AR RH AR A RAARH AR RA AR A AR RA AR AR A RA AR AR A RA AR RA AR RAARA AR AR AR A
Create local directory to store azure credential cache
v

AZURE_CREDENTIAL_CACHE_DIR = os.path.join(DATA_DIR, 'azurecredentialcache')

HARH AR HRHARH AR RAARA AR RHARH AR RHARA AR AR RA AR RA AR A AR RA AR AR A RA AR AR RS
OAuth2 Configuration
RARBARA ARG ARGARAARARG AR AR BRR AR BB ARG ARARB ARG ARARR AR RRARG ARG AR ARG ARAARAFSA

Multiple OAUTH2 providers can be added in the list like [{...},{...}]
All parameters are required

OAUTH2_CONFIG = [
{
The name of the of the oauth provider, ex: github, google
'OAUTH2_NAME': None,
The display name, ex: Google
'"OAUTH2_DISPLAY_NAME': '<Oauth2 Display Name>',
Oauth client id
'"OAUTH2_CLIENT_ID': None,
Oauth secret
'"OAUTH2_CLIENT_SECRET': None,
URL to generate a token,
Ex: https://github.com/login/oauth/access_token
'"OAUTH2_TOKEN_URL': None,
URL is used for authentication,
Ex: https://github.com/login/oauth/authorize
'OAUTH2_AUTHORIZATION_URL': None,
server metadata url might optional for your provider
'OAUTH2_SERVER_METADATA_URL': None,
Oauth base url, ex: https://api.github.com/
'OAUTH2_API_BASE_URL': None,
Name of the Endpoint, ex: user
(continues on next page)

1.1. Deployment 19

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

'OAUTH2_USERINFO_ENDPOINT': None,
Oauth scope, ex: 'openid email profile'
Note that an 'email’' claim is required in the resulting profile
'OAUTH2_SCOPE': None,
The claim which is used for the username. If the value is empty the
email is used as username, but if a value is provided,
the claim has to exist.
'OAUTH2_USERNAME_CLAIM': None,
Font-awesome icon, ex: fa-github
'OAUTH2_ICON': None,
UI button colour, ex: #0000ff
'"OAUTH2_BUTTON_COLOR' : None,
The additional claims to check on user ID Token or Userinfo response.
This is useful to provide additional authorization checks
before allowing access.
Example for GitLab: allowing all maintainers teams, and a specific
developers group to access pgadmin:
'OAUTH2_ADDITIONAL_CLAIMS': {
https://gitlab.org/claims/groups/maintainer': [
'kuberheads/applications’,
'kuberheads/dba’,
'kuberheads/support'’
15
‘https://gitlab.org/claims/groups/developer': [
'kuberheads/applications/team@1'
75
}
Example for AzureAD:
'OAUTH2_ADDITIONAL_CLAIMS': {
'groups': ["0760b6cf-170e-4a14-91b3-4b78e€0739963"],
'wids': ["cflc38e5-3621-4004-a7cb-879624dced7c"],

R R R R T R R S TR TR R Y

#}

'"OAUTH2_ADDITIONAL_CLAIMS': None,

Set this variable to False to disable SSL certificate verification
for OAuth2 provider.

This may need to set False, in case of self-signed certificates.

Ref: https://github.com/psf/requests/issues/6071
'OAUTH2_SSL_CERT_VERIFICATION': True

]

After Oauth authentication, user will be added into the SQLite database
automatically, if set to True.

Set it to False, if user should not be added automatically,

in this case Admin has to add the user manually in the SQLite database.

OAUTH2_AUTO_CREATE_USER = True
AR A RA AR AR AR AR AR AR AT AR AR AR AR AR AR AR AR AAAAAAAAAAAAA
Webserver Configuration

i

(continues on next page)

20 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

WEBSERVER_AUTO_CREATE_USER = True

REMOTE_USER variable will be used to check the environment variable

is set or not first, if not available,

request header will be checked for the same.

Possible values: REMOTE_USER, HTTP_X_FORWARDED_USER, X-Forwarded-User

WEBSERVER_REMOTE_USER = 'REMOTE_USER'

HRHARHHRHRAARH AR RHARHRRARARRH AR RAARARAARAARARHARA AR AR RA AR RAARA AR RAAA
Two-factor Authentication Configuration
AR AR AR AR AR AR IR AR AR AR AR AAR AR RRA AR AR RRA AR AR AR

Set it to True, to enable the two-factor authentication
MFA_ENABLED = True

Set it to True, to ask the users to register forcefully for the
two-authentication methods on logged-in.
MFA_FORCE_REGISTRATION = False

pgAdmin supports Two-factor authentication by either sending an one-time code
to an email, or using the TOTP based application like Google Authenticator.
MFA_SUPPORTED_METHODS = ["email", "authenticator']

NOTE: Please set the 'Mail server settings' to use 'email' as two-factor
authentication method.

Subject for the email verification code
Default: <APP_NAME> - Verification Code
e.g. pgAdmin 4 - Verification Code
MFA_EMAIL_SUBJECT = None

e s s e
PSQL tool settings

HARH AR HRHARH AR RAARH AR RA AR A AR RH AR AR RAARA AR RA AR AR A RA AR AR A RA AR SRR AR
This will enable PSQL tool in pgAdmin when running in server mode.

PSQL is always enabled in Desktop mode, however in server mode it is

disabled by default because users can run arbitrary commands on the

server through it.

ENABLE_PSQL = False

HRHARHH R RAARH AR RAARH AR RARRA AR RAARA AR RHARHRHARH AR AR RA AR AR RH AR RAAA
ENABLE_BINARY_PATH _BROWSING setting is used to enable the browse button
while selecting binary path for the database server in server mode.

In Desktop mode it is always enabled and setting is of no use.

HARH AR HRHARH AR RAARA AR RHARA AR RH AR AR AR A RA AR RA AR A AR RA AR AR A RA AR RAA RS
ENABLE_BINARY_PATH_BROWSING = False

BRI R R R R A R R e R R R R e
In server mode, the SHARED_STORAGE setting is used to enable shared storage.
Specify the name, path, and restricted_access values that should be shared
between users. When restricted_access is set to True, non-admin users cannot
(continues on next page)

1.1. Deployment 21

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

upload/add, delete, or rename files/folders in shared storage, only admins

can do that. Users must provide the absolute path to the folder, and the name
can be anything they see on the user interface.

[{ mame': 'Shared 1', 'path': '/shared_folder',

'restricted_access': True/False}l]

HAH BB R AR R AR AHRHRA AR A RARRHRHRA R RA AR R AR AA R R AR AR RAH R A RA AR AR AR R RAAA AR
SHARED_STORAGE = []

HARH AR RHARH AR RH AR A RAARH AR RAARA AR RA AR AR A RA AR AR A RA AR RA AR A AR A RA AR RHARAAH
AUTO_DISCOVER_SERVERS setting is used to enable the pgAdmin to discover the
database server automatically on the local machine.

When it is set to False, pgAdmin will not discover servers installed on

the local machine.

HARH AR HRHARH AR RH AR A AR RH AR AR AR A AR RH AR AR A RA AR AR A RA AR RA AR AR AR A AR AR AR AH
AUTO_DISCOVER_SERVERS = True

HAHRG R RR R AR AR AR AR AR AR HAARA R AR AR AR ARARA AR AR AR ARARARA AR AR AR ARARA AR AR AR AR ARRRA
SERVER_HEARTBEAT_TIMEOUT is used to send the server heartbeat to server

from the client. This will resolve the orphan database issue once

browser tab is closed.

HAH BB R AR AR R A AR AR AR AU AR AR AA R RA R AR AR AR R AR R AR AR AR ARG RA AR R R AR AR ARG AR AR AR AR AR A
SERVER_HEARTBEAT_TIMEOUT = 30 # In seconds

HARH AR RHARH AR A RH AR AR A RH AR AR AR AR AR AR AR A RH AR AR A RA AR RA AR AR AR AR AR AR A A
Patch the default config with custom config and other manipulations

HARH AR HRHARH AR RHARH AR AR AR RAARA AR RAARH AR RA AR AR RA AR RAARA AR RA AR AR RA A
from pgadmin.evaluate_config import evaluate_and_patch_config

locals() .update(evaluate_and_patch_config(locals()))

1.1.2 Desktop Deployment
pgAdmin may be deployed as a desktop application by configuring the application to run in desktop mode and then
utilising the desktop runtime to host the program on a supported Windows, Mac OS X or Linux installation.

The desktop runtime is a standalone application that when launched, runs the pgAdmin server and opens a window to
render the user interface.

Note: Pre-compiled and configured installation packages are available for a number of platforms. These packages
should be used by end-users whereever possible - the following information is useful for the maintainers of those
packages and users interested in understanding how pgAdmin works.

See also:

For detailed instructions on building and configuring pgAdmin from scratch, please see the README file in the top
level directory of the source code. For convenience, you can find the latest version of the file here, but be aware that
this may differ from the version included with the source code for a specific version of pgAdmin.

22 Chapter 1. Getting Started

https://github.com/pgadmin-org/pgadmin4/blob/master/README.md

pgAdmin 4 Documentation, Release 8.1

Configuration

From pgAdmin 4 v2 onwards, the default configuration mode is server, however, this is overridden by the desktop
runtime at startup. In most environments, no Python configuration is required unless you wish to override other default
settings.

See The config.py File for more information on configuration settings.

Desktop Runtime Standalone Application

The Desktop Runtime is based on NWjs which integrates a browser and the Python server creating a standalone appli-
cation.

LK pgAdmin 4
EElAdmin Filev oObject~ Tools~ Help™

Browser 5 B w® Q Properties S0L Statistics Dependencies Dependents
~ & Servers (6) 1 e
» EfPosigresaL 9.5 =
» = PostgreSQL 9.6 3

DROP SCHEMA public ;
~ §F PostgresaL 10 4
w E=Databases (1) 5 CREATE SCHEMA public
v = posigres [AUTHORIZATION postgres;

> [Casts 7
» @ Catalogs 8 COMMENT ON SCHEMA public
" :]Even'. Triggers) IS 'standard public schema';
>) Extensions -
> = Foreign Data Wrappers 11 GRANT ALL ON SCHEMA public TO PUBLIC;
» &jLanguages w

13 GRANT ALL ON SCHEMA public TO postgres;

w

£ Publications
~ 4 Schemas (1)
v ¢ public
& Collations

o

& Domains

£

':5: FTS Configurations
[l FTS Dictionaries

> AaFTS Parsers

e

¥ FTS Templates
> [# Foreign Tables
¥ {7} Functions
» Materialized Views
> 1.3Sequences
> [Tables (5)
> 1z Trigger Functions
» Types
> Views

* "¥)Subscriptions

» &k Login/Group Roles

» Tablespaces
®

1.1. Deployment 23

https://nwjs.io/

pgAdmin 4 Documentation, Release 8.1

Runtime Menu

@Admiu Filev | Objectv Toolsv¥ Help v

Browser Preferences

> = Servers (6) Reset Layout

Lock Layout >
Configure..

View log...

Enter Full Screen (Cmd Ctrl F)
Actual Size (Cmd 0)
Zoom In (Cmd +)

Zoom Out (Cmd -)

Use the File Menu to access the Runtime Menu:

Option Action
Configure. .. Click to open configuration dialog to configure fixed port, port number and connection timeout.
View log. .. Click to open the view log dialog to view the pgAdmin 4 logs.

Enter Full Click to enter/exit the full screen mode. Keyboard Shortcuts: OSX (Cmd + Ctrl + F), Other OS
Screen (F10).

Actual Size Click to change the window size to it original size. Keyboard Shortcuts: OSX (Cmd + 0), Other
OS (Ctrl + 0).

Zoom In Click to increase the zoom level. Keyboard Shortcuts: OSX (Cmd + +), Other OS (Ctrl + +).

Zoom Out Click to decrease the zoom level. Keyboard Shortcuts: OSX (Cmd + -), Other OS (Ctrl + -).

24 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

Configuration Dialog

Use the Runtime Menu to access the Configuration dialog:

@ pgAdmin 4 Configuration

Fixed Port

By default, the pgAdmin 4 uses a random port number to ensure it can always run
successfully. If you need to use a predictable port number, you can set one here. Note
that if the port is already in use, the application will be unable to start.

Fixed port number? (] Port Number 5050

Connection Timeout

Connection Timeout will define how long to wait for pgAdmin to start before throwing
the error. By default, pgAdmin wait for 90 seconds.

Timeout 90 seconds

Open Documentation

By checking this option, all documentation links will open in the default browser
instead of in a new window.

Open Documentation in Default Browser?

Following are the details of the Fixed port number?, Port Number, Connection Timeout, and ‘Open Documentation in
Default Browser?’ configuration parameters:

Key Type Purpose

FixedPort Boolean Use a fixed network port number rather than a random one.
PortNumber Integer The port number to use, if using a fixed port.
ConnectionTimeout Integer The number of seconds to wait for application server startup.

continues on next page

1.1. Deployment 25

pgAdmin 4 Documentation, Release 8.1

Table 1 - continued from previous page

Key Type Purpose
Open Documentation in De- Boolean By checking this option, all documentation links will open in the
fault Browser default browser instead of in a new window.

Log dialog

Use the Runtime Menu to access the Log dialog:

@ pgAdmin 4 Log

Server Log: (/Users/akshayjoshi/LibraryfApplication Support/pgadmin/pgadmin4.1613478652390.log)

Python Path: "/Applications/pgAdmin
4.app/Contents/Frameworks/Python.framework/Versions/Current/bin/python3"
Runtime Config File: "/Users/akshayjoshi/Library/Preferences/pgadmin/runtime_canfig.json” |
pgAdmin Config File: "fApplications/pgAdmin 4.app/Contents/Resources/web/config.py"

Webapp Path: "/Applications/pgAdmin 4.app/Contents/Resources/web/pgAdmind.py"

pgAdmin Command: “/Applications/pgAdmin

4. app/Contents/Frameworks/Python.framewaork/Versions/Current/bin/python3 /Applications/pgAdmin
4. app/Contents/Resources/web/pgAdmind.py"

Application Server URL: http://127.0.0.1:49251/?key=b304af6e-27c1-4694-9a32-cb0f77cf0f38

Click on the Reload button at the bottom to view the latest logs of pgAdmin 4 Server.

When executed, the runtime will automatically try to execute the pgAdmin Python application. If execution fails, it will
prompt you with error message displaying a Configure button at the bottom. You can configure a fixed port number to
avoid clashes of the default random port number with other applications and a connection timeout if desired.

26 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

[] Fatal Error

The pgAdmin 4 server could not be contacted:

Python Path: "/Applications/pgAdmin
4.app/Contents/Framewarks/Python.framework/Versions/Current/bin/python3"

Runtime Config File: "fUsers/fakshayjoshi/Library/Preferences/pgadmin/runtime_config.json”

pgAdmin Config File: "/Applications/pgAdmin 4.app/Contents/Resources/web/config.py"

Webapp Path: "/Applications/pgAdmin 4.app/Contents/Resources/web/pgAdmind.py"

pgAdmin Command: *fApplications/pgAdmin
4.app/Contents/Frameworks/Python.framework/Versions/Current/bin/python3 /Applications/pgAdmin
4.app/Contents/Resources/web/pgAdmind.py"

2021-02-16 17:39:20,092: ERROR pgadmin: Error starting the app server: (<class 'OSError'>, OSError("No
socket could be created -- (("127.0.0.1, 5432): [Errno 48] Address already in use)"), <traceback object at
0x10e02bac0=)

Using production server...

==

If the error is related to Python Path or pgAdmin Python file then you need to create a file named ‘dev_config.json’ and
specify the following entries:

{
"pythonPath": "/path/to/python.exe",
"pgadminFile": "/path/to/pgAdmin4.py"

Note that the dev_config.py file should only be required by developers who are working outside of a standard installation.

The configuration settings are stored in runtime_config.json file, which will be available on Unix systems (~/.lo-
cal/share/pgadmin/), on Mac OS X (~/Library/Preferences/pgadmin), and on Windows (% APPDATA %/pgadmin).

1.1.3 Server Deployment

pgAdmin may be deployed as a web application by configuring the app to run in server mode and then deploying it
either behind a webserver running as a reverse proxy, or using the WSGI interface.

When deployed in server mode, there are two notable differences for users:

» Users must login before they can use pgAdmin. An initial superuser account is created when server mode is
initialised, and this user can add additional superusers and non-superusers as required.

« File storage is restricted to a virtual root directory for each individual user under the directory configured using
the STORAGE_DIR configuration parameter. Users do not have access to the complete filesystem of the server.

The following instructions demonstrate how pgAdmin may be run as a WSGI application under Apache HTTPD, using
mod_wsgi, standalone using uWSGI or Gunicorn, or under NGINX using using uWSGI or Gunicorn.

See also:

For detailed instructions on building and configuring pgAdmin from scratch, please see the README file in the top
level directory of the source code. For convenience, you can find the latest version of the file here, but be aware that
this may differ from the version included with the source code for a specific version of pgAdmin.

1.1. Deployment 27

https://github.com/pgadmin-org/pgadmin4/blob/master/README.md

pgAdmin 4 Documentation, Release 8.1

Requirements

Important: Some components of pgAdmin require the ability to maintain affinity between client sessions and a specific
database connection (for example, the Query Tool in which the user might run a BEGIN command followed by a number
of DML SQL statements, and then a COMMIT). pgAdmin has been designed with built-in connection management to
handle this, however it requires that only a single Python process is used because it is not easily possible to maintain
affinity between a client session and one of multiple WSGI worker processes.

On Windows systems, the Apache HTTP server uses a single process, multi-threaded architecture. WSGI applications
run in embedded mode, which means that only a single process will be present on this platform in all cases.

On Unix systems, the Apache HTTP server typically uses a multi-process, single threaded architecture (this is dependent
on the MPM that is chosen at compile time). If embedded mode is chosen for the WSGI application, then there will be
one Python environment for each Apache process, each with it’s own connection manager which will lead to loss of
connection affinity. Therefore one should use mod_wsgi’s daemon mode, configured to use a single process. This will
launch a single instance of the WSGI application which is utilised by all the Apache worker processes.

Whilst it is true that this is a potential performance bottleneck, in reality pgAdmin is not a web application that’s ever
likely to see heavy traffic unlike a busy website, so in practice should not be an issue.

Future versions of pgAdmin may introduce a shared connection manager process to overcome this limitation, however
that is a significant amount of work for little practical gain.

Configuration
In order to configure pgAdmin to run in server mode, it may be necessary to configure the Python code to run in
multi-user mode, and then to configure the web server to find and execute the code.

See The config.py File for more information on configuration settings.

Python

From pgAdmin 4 v2 onwards, server mode is the default configuration. If running under the desktop runtime, this is
overridden automatically. There should typically be no need to modify the configuration simply to enable server mode
to work, however it may be desirable to adjust some of the paths used.

In order to configure the Python code, follow these steps:
1. Create a config_local.py file alongside the existing config.py file.

2. Edit config_local.py and add the following settings. In most cases, the default file locations should be ap-
propriate:

NOTE: You must ensure the directories specified are writeable by the user that the web server processes will be
running as, e.g. apache or www-data. You may specify DATA_DIR in order to create all required directories

and files under DATA_DIR folder.

LOG_FILE = '/var/log/pgadmin4/pgadmin4.log'

SQLITE_PATH = '/var/lib/pgadmin4/pgadmin4.db'’

SESSION_DB_PATH = '/var/lib/pgadmin4/sessions'

STORAGE_DIR = '/var/lib/pgadmin4/storage’

AZURE_CREDENTIAL_CACHE_DIR = '/var/lib/pgadmin4/azurecredentialcache'’
KERBEROS_CCACHE_DIR = '/var/lib/pgadmin4/kerberoscache’

4. Run the following command to create the configuration database:

28 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

[# python setup.py }

5. Change the ownership of the configuration database to the user that the web server processes will run as, for
example, assuming that the web server runs as user www-data in group www-data, and that the SQLite path is
/var/lib/pgadmin4/pgadmin4.db:

[# chown www-data:www-data /var/lib/pgadmin4/pgadmin4.db]

Hosting

There are many possible ways to host pgAdmin in server mode. Some examples are given below:

Apache HTTPD Configuration (Windows)

Once Apache HTTP has been configured to support mod_wsgi, the pgAdmin application may be configured similarly
to the example below:

<VirtualHost *>
ServerName pgadmin.example.com
WSGIScriptAlias / "C:\Program Files\pgAdmin4\web\pgAdmin4.wsgi"
<Directory "C:\Program Files\pgAdmin4\web">
Order deny,allow
Allow from all
</Directory>
</VirtualHost>

Now open the file C:\Program Files\pgAdmin4\web\pgAdmin4.wsgi with your favorite editor and add the code
below which will activate Python virtual environment when Apache server runs.

activate_this = 'C:\Program Files\pgAdmin4\venv\Scripts\activate_this.py'
exec(open(activate_this).read())

Note: The changes made in pgAdmin4.wsgi file will revert when pgAdmin4 is either upgraded or downgraded.

Apache HTTPD Configuration (Linux/Unix)

Once Apache HTTP has been configured to support mod_wsgi, the pgAdmin application may be configured similarly
to the example below:

<VirtualHost *>
ServerName pgadmin.example.com

WSGIDaemonProcess pgadmin processes=1 threads=25 python-home=/path/to/python/
—virtualenv
WSGIScriptAlias / /opt/pgAdmind/web/pgAdmind.wsgi

<Directory /opt/pgAdmin4/web>
WSGIProcessGroup pgadmin
WSGIApplicationGroup %{GLOBAL}
Order deny,allow

(continues on next page)

1.1. Deployment 29

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)
Allow from all
</Directory>
</VirtualHost>

Note: If you’re using Apache HTTPD 2.4 or later, replace the lines:

Order deny,allow
Allow from all

with:

[Require all granted

Adjust as needed to suit your access control requirements.

Standalone Gunicorn Configuration

pgAdmin may be hosted by Gunicorn directly simply by running a command such as the one shown below. Note that
this example assumes pgAdmin was installed using the Python Wheel (you may need to adjust the path to suit your
installation):

gunicorn --bind 0.0.0.0:80 \
--workers=1 \
--threads=25 \
--chdir /usr/lib/python3.7/dist-packages/pgadming \
pgAdmind: app

Standalone uWSGI Configuration

pgAdmin may be hosted by uWSGI directly simply by running a command such as the one shown below. Note that
this example assumes pgAdmin was installed using the Python Wheel (you may need to adjust the path to suit your
installation):

uwsgi --http-socket 0.0.0.0:80 \
--processes 1 \
--threads 25 \
--chdir /usr/lib/python3.7/dist-packages/pgadmin4/ \
--mount /=pgAdmin4:app

NGINX Configuration with Gunicorn

pgAdmin can be hosted by Gunicorn, with NGINX in front of it. Note that these examples assume pgAdmin was
installed using the Python Wheel (you may need to adjust the path to suit your installation).

To run with pgAdmin in the root directory of the server, start Gunicorn using a command similar to:

gunicorn --bind unix:/tmp/pgadmind.sock \
--workers=1 \
--threads=25 \

(continues on next page)

30 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

(continued from previous page)

--chdir /usr/lib/python3.7/dist-packages/pgadmingd \
pgAdmind: app

And configure NGINX:

location / {
include proxy_params;
proxy_pass http://unix:/tmp/pgadmin4.sock;

Alternatively, pgAdmin can be hosted in a sub-directory (/pgadmin4 in this case) on the server. Start Gunicorn as when
using the root directory, but configure NGINX as follows:

location /pgadmin4/ {
include proxy_params;
proxy_pass http://unix:/tmp/pgadmin4.sock;
proxy_set_header X-Script-Name /pgadmin4;

NGINX Configuration with uWSGI

pgAdmin can be hosted by uWSGI, with NGINX in front of it. Note that these examples assume pgAdmin was installed
using the Python Wheel (you may need to adjust the path to suit your installation).

To run with pgAdmin in the root directory of the server, start uWSGI using a command similar to:

uwsgi --socket /tmp/pgadmind.sock \
--processes 1 \
--threads 25 \
--chdir /usr/lib/python3.7/dist-packages/pgadmin4/ \
--manage-script-name \
--mount /=pgAdmin4:app

And configure NGINX:

location / { try_files $uri @pgadmin4; }
location @pgadmin4d {

include uwsgi_params;

uwsgi_pass unix:/tmp/pgadmin4.sock;

Alternatively, pgAdmin can be hosted in a sub-directory (/pgadmin4 in this case) on the server. Start uWSGI, noting
that the directory name is specified in the mount parameter:

uwsgi --socket /tmp/pgadmin4.sock \
--processes 1 \
--threads 25 \
--chdir /usr/lib/python3.7/dist-packages/pgadmind/ \
--manage-script-name \
--mount /pgadmind=pgAdmin4:app

Then, configure NGINX:

1.1. Deployment 31

pgAdmin 4 Documentation, Release 8.1

location = /pgadmin4 { rewrite * /pgadmin4/; }
location /pgadmin4 { try_files $uri @pgadmin4; }
location @pgadmin4 {

include uwsgi_params;

uwsgi_pass unix:/tmp/pgadming.sock;

¥

Additional Information

Note: pgAdmin will spawn additional Python processes from time to time, and relies on the sys.executable variable in
Python to do this. In some cases, you may need to override that value to ensure the correct interpreter is used, instead
of the WSGI host process. For example, uWSGI offers the —py-sys-executable command line option to achieve this.

1.1.4 Container Deployment

pgAdmin can be deployed in a container using the image at:
https://hub.docker.com/r/dpage/pgadmin4/

There are various tags that you can select from to get the version of pgAdmin that you want, using a command such as
this if you’re using Docker:

[docker pull dpage/pgadmind:<tag name>

where <tag name> is one of the following:

Tag name Description

latest The most recent release.

7.4 A specific version (7.4 in this case).

7 the latest release of a specific major version (major version 7 in this case).
snapshot The latest nightly test build.

PostgreSQL Utilities

The PostgreSQL utilities pg_dump, pg_dumpall, pg_restore and psql are included in the container to allow backups to
be created and restored and other maintenance functions to be executed. Multiple versions are included in the following
directories to allow use with different versions of the database server:

» PostgreSQL 11: /usr/local/pgsql-11
 PostgreSQL 12: /usr/local/pgsql-12
* PostgreSQL 13: /usr/local/pgsql-13
* PostgreSQL 14: /usr/local/pgsql-14
* PostgreSQL 15: /usr/local/pgsql-15

The default binary paths set in the container are as follows:

32 Chapter 1. Getting Started

https://hub.docker.com/r/dpage/pgadmin4/

pgAdmin 4 Documentation, Release 8.1

DEFAULT_BINARY_PATHS = {
'pg-16"': '/usr/local/pgsql-16"',
'pg-15"': '/usr/local/pgsql-15",
'pg-14': '/usr/local/pgsql-14",
'pg-13': '/usr/local/pgsql-13"',
'pg-12"': '/usr/local/pgsql-12'
}

this may be changed in the Preferences Dialog.

Environment Variables

The container will accept the following variables at startup:
PGADMIN_DEFAULT_EMAIL

This is the email address used when setting up the initial administrator account to login to pgAdmin. This variable is
required and must be set at launch time.

PGADMIN_DEFAULT_PASSWORD

This is the password used when setting up the initial administrator account to login to pgAdmin. This variable is
required and must be set at launch time.

PGADMIN_DEFAULT_PASSWORD_FILE

This is the password used when setting up the initial administrator account to login to pgAdmin. This value
should be set to docker secret in order to set the password. This variable is supported in docker swarm en-
vironment or while creating container with docker compose. PGADMIN_DEFAULT_PASSWORD or PGAD-
MIN_DEFAULT_PASSWORD_FILE variable is required and must be set at launch time.

PGADMIN_DISABLE_POSTFIX
Default: <null>
If left unset, a Postfix server will be started to deliver password reset emails.

If set to any value, the Postfix server will not be started, and pgAdmin will need to be configured to use an external
mail server using the PGADMIN_CONFIG_ options below.

This option is useful if you’re running in an environment that prevents the use of sudo to start Postfix, or if you wish to
use an external mail server.

PGADMIN_ENABLE_TLS
Default: <null>

If left un-set, the container will listen on port 80 for connections in plain text. If set to any value, the container will
listen on port 443 for TLS connections.

When TLS is enabled, a certificate and key must be provided. Typically these should be stored on the host file system
and mounted from the container. The expected paths are /certs/server.cert and /certs/server.key

PGADMIN_LISTEN_ADDRESS
Default: [::]

Specify the local address that the servers listens on. The default should work for most users - in IPv4-only environments,
this may need to be set to 0.0.0.0.

PGADMIN_LISTEN_PORT
Default: 80 or 443 (if TLS is enabled)

1.1. Deployment 33

pgAdmin 4 Documentation, Release 8.1

Allows the port that the server listens on to be set to a specific value rather than using the default.
PGADMIN_SERVER_JSON_FILE
Default: /pgadmind/servers.json

Override the default file path for the server definition list. See the /pgadmin4/servers.json mapped file below for more
information. See the format of the JSON file.

GUNICORN_ACCESS_LOGFILE

Default: - (stdout)

Specify an output file in which to store the Gunicorn access logs, instead of sending them to stdout.
GUNICORN_LIMIT_REQUEST_LINE

Default: 8190

Set the maximum size of HTTP request line in bytes. By default the pgAdmin container uses the maximum limited
size offered by Gunicorn as some requests can be quite large. In exceptional cases this value can be set to 0 (zero) to
specify “unlimited”, however this poses a potential denial of service hazard.

GUNICORN_THREADS
Default: 25

Adjust the number of threads the Gunicorn server uses to handle incoming requests. This should typically be left as-is,
except in highly loaded systems where it may be increased.

PGADMIN_CONFIG_*

This is a variable prefix that can be used to override any of the configuration options in pgAdmin’s config.py file. Add
the PGADMIN_CONFIG_ prefix to any variable name from config.py and give the value in the format ‘string value’
for strings, True/False for booleans or 123 for numbers. See below for an example.

Settings are written to /pgadmin4/config_distro.py within the container, which is read after /pgadmin4/config.py and be-
fore /pgadmind/config_local.py. Any settings given will therefore override anything in config.py, but can be overridden
by settings in config_local.py.

Settings are only written to /pgadmin4/config_distro.py once, typically on first launch of the container. If /pgad-
min4/config_distro.py contains one or more lines, then no changes are made; for example, if the container instance
is restarted, or /pgadmind/config_distro.py is mapped to a file on persistent storage (not recommended - use /pgad-
min4/config_local.py instead)!

See The config.py File for more information on the available configuration settings.
Mapped Files and Directories

The following files or directories can be mapped from the container onto the host machine to allow configuration to be
customised and shared between instances.

Warning: Warning: pgAdmin runs as the pgadmin user (UID: 5050) in the pgadmin group (GID: 5050) in the
container. You must ensure that all files are readable, and where necessary (e.g. the working/session directory)
writeable for this user on the host machine. For example:

[sudo chown -R 5050:5050 <host_directory>]

On some filesystems that do not support extended attributes, it may not be possible to run pgAdmin without spec-
ifying a value for PGADMIN_LISTEN_PORT that is greater than 1024. In such cases, specify an alternate port
when launching the container by adding the environment variable, for example:

34 Chapter 1. Getting Started

https://www.pgadmin.org/docs/pgadmin4/latest/import_export_servers.html#json-format

pgAdmin 4 Documentation, Release 8.1

[—e '"PGADMIN_LISTEN_PORT=5050"' }

Don’t forget to adjust any host-container port mapping accordingly.

/var/lib/pgadmin

This is the working directory in which pgAdmin stores session data, user files, configuration files, and it’s configuration
database. Mapping this directory onto the host machine gives you an easy way to maintain configuration between
invocations of the container.

/pgadmind/config_local.py

This file can be used to override configuration settings in pgAdmin. Settings found in config.py can be overridden with
deployment specific values if required. Settings in config_local.py will also override anything specified in the container
environment through PGADMIN_CONFIG_ prefixed variables.

/pgadmind/servers.json

If this file is mapped, server definitions found in it will be loaded at launch time. This allows connection information
to be pre-loaded into the instance of pgAdmin in the container. Note that server definitions are only loaded on first
launch, i.e. when the configuration database is created, and not on subsequent launches using the same configuration
database.

/certs/server.cert
If TLS is enabled, this file will be used as the servers TLS certificate.
[certs/server.key

If TLS is enabled, this file will be used as the key file for the servers TLS certificate.

Examples

Run a simple container over port 80:

docker pull dpage/pgadmin4

docker run -p 80:80 \
-e 'PGADMIN_DEFAULT_EMAIL=user@domain.com' \
-e 'PGADMIN_DEFAULT_PASSWORD=SuperSecret' \
-d dpage/pgadmind

Run a simple container over port 80, setting some configuration options:

docker pull dpage/pgadmin4
docker run -p 80:80 \
-e 'PGADMIN_DEFAULT_EMAIL=user@domain.com' \
-e 'PGADMIN_DEFAULT_PASSWORD=SuperSecret' \
-e 'PGADMIN_CONFIG_ENHANCED_COOKIE_PROTECTION=True' \
-e 'PGADMIN_CONFIG_LOGIN_BANNER="Authorised users only!"' \
-e 'PGADMIN_CONFIG_CONSOLE_LOG_LEVEL=10"' \
-d dpage/pgadmind

Run a TLS secured container using a shared config/storage directory in /private/var/lib/pgadmin on the host, and servers
pre-loaded from /tmp/servers.json on the host:

1.1. Deployment 35

pgAdmin 4 Documentation, Release 8.1

docker pull dpage/pgadmin4
docker run -p 443:443 \
-v /private/var/lib/pgadmin:/var/lib/pgadmin \
-v /path/to/certificate.cert:/certs/server.cert \
-v /path/to/certificate.key:/certs/server.key \
-v /tmp/servers. json:/pgadmin4/servers.json \
-e 'PGADMIN_DEFAULT_EMAIL=user@domain.com' \
-e 'PGADMIN_DEFAULT_PASSWORD=SuperSecret' \
-e 'PGADMIN_ENABLE_TLS=True' \
-d dpage/pgadmin4d

Reverse Proxying

Sometimes it’s desirable to have users connect to pgAdmin through a reverse proxy rather than directly to the container
it’s running in. The following examples show how this can be achieved. With traditional reverse proxy servers such
as Nginx, pgAdmin is running in a container on the same host, with port 5050 on the host mapped to port 80 on the
container, for example:

docker pull dpage/pgadmin4

docker run -p 5050:80 \
-e "PGADMIN_DEFAULT_EMAIL=user@domain.com" \
-e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" \
-d dpage/pgadmin4

pgAdmin X-Forwarded-* Configuration

pgAdmin needs to understand how many proxies set each header so it knows what values to trust. The configuration
parameters for the X-Forwarded-* options which are used for this purpose are shown below, along with their default
values.

pgAdmin is configured by default to be able to run behind a reverse proxy even on a non-standard port and these config
options don’t normally need to be changed. If you’re running an unusual configuration (such as multiple reverse proxies)
you can adjust the configuration to suit.

Number of values to trust for X-Forwarded-For
PROXY_X_FOR_COUNT = 1

Number of values to trust for X-Forwarded-Proto.
PROXY_X_PROTO_COUNT = 0

Number of values to trust for X-Forwarded-Host.
PROXY_X_HOST_COUNT = O

Number of values to trust for X-Forwarded-Port.
PROXY_X_PORT_COUNT = 1

Number of values to trust for X-Forwarded-Prefix.
PROXY_X_PREFIX_COUNT = O

36 Chapter 1. Getting Started

https://www.nginx.com/

pgAdmin 4 Documentation, Release 8.1

HTTP via Nginx

A configuration similar to the following can be used to create a simple HTTP reverse proxy listening for all hostnames
with Nginx:

server {
listen 80;
server_name _;

location / {
proxy_set_header Host $host;
proxy_pass http://localhost:5050/;
proxy_redirect ;

If you wish to host pgAdmin under a subdirectory rather than on the root of the server, you must specify the location
and set the X-Script-Name header which tells the pgAdmin container how to rewrite paths:

server {
listen 80;
server_name _;

location /pgadmin4/ {
proxy_set_header X-Script-Name /pgadming;
proxy_set_header Host $host;
proxy_pass http://localhost:5050/;
proxy_redirect ;

If Nginx is also running in a container, there is no need to map the pgAdmin port to the host, provided the two containers
are running in the same Docker network. In such a configuration, the proxy_pass option would be changed to point to
the pgAdmin container within the Docker network.

HTTPS via Nginx

The following configuration can be used to serve pgAdmin over HTTPS to the user whilst the backend container is
serving plain HTTP to the proxy server. In this configuration we not only set X-Script-Name, but also X-Scheme to tell
the pgAdmin server to generate any URLSs using the correct scheme. A redirect from HTTP to HTTPS is also included.
The certificate and key paths may need to be adjusted as appropriate to the specific deployment:

server {
listen 80;
return 301 https://$host$request_uri;

}

server {
listen 443;
server_name _;

ssl_certificate /etc/nginx/server.cert;

(continues on next page)

1.1. Deployment 37

https://www.nginx.com/

pgAdmin 4 Documentation, Release 8.1

ssl_certificate_key /etc/nginx/server.key;

ssl ;
ssl_session_cache builtin: 1000 shared:SSL:10m;
ssl_protocols TLSvl TLSv1.1 TLSv1.2;

(continued from previous page)

ssl_ciphers HIGH:!aNULL:!eNULL: !EXPORT:!CAMELLIA: !DES: !MD5: !PSK: |RC4;

ssl_prefer_server_ciphers :

location /pgadmin4/ {
proxy_set_header X-Script-Name /pgadmin4;
proxy_set_header X-Scheme $scheme;
proxy_set_header Host $host;
proxy_pass http://localhost:5050/;
proxy_redirect :

Traefik

Configuring Traefik is straightforward for either HTTP or HTTPS when running pgAdmin in a container as it will
automatically configure itself to serve content from containers that are running on the local machine, virtual hosting

them at <container_name>.<domain_name>, where the domain name is that specified in the Traefik configuration.

The container is typically launched per the example below:

docker pull dpage/pgadmin4

docker run --name "pgadmind" \
-e "PGADMIN_DEFAULT_EMAIL=user@domain.com" \
-e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" \
-d dpage/pgadmin4

Note that the TCP/IP port has not been mapped to the host as it was in the Nginx example, and the container name has

been set to a known value as it will be used as the hostname and may need to be added to the DNS zone file.

The following configuration will listen on ports 80 and 443, redirecting 80 to 443, using the default certificate shipped
with Traefik. See the Traefik documentation for options to use certificates from LetsEncrypt or other issuers.

-

.

defaultEntryPoints = ["http", "https"]

[entryPoints]
[entryPoints.http]
address = ":80"

[entryPoints.http.redirect]
entryPoint = "https"
[entryPoints.https]
address = ":443"
[entryPoints.https.tls]

[docker]
domain = "domain_name"
watch = true

J

If you wish to host pgAdmin under a subdirectory using Traefik, the configuration changes are typically made to the

38

Chapter 1. Getting Started

https://traefik.io/

pgAdmin 4 Documentation, Release 8.1

way the container is launched and not to Traefik itself. For example, to host pgAdmin under /pgadmin4/ instead of at
the root directory, the Traefik configuration above may be used if the container is launched like this while using the
version v1 of Traefik:

docker pull dpage/pgadmin4
docker run --name “"pgadmin4" \
-e "PGADMIN_DEFAULT_EMAIL=user@domain.com" \
-e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" \
-e "SCRIPT_NAME=/pgadmin4" \
-1 "traefik. frontend.rule=PathPrefix:/pgadmind" \
-d dpage/pgadmin4

The SCRIPT_NAME environment variable has been set to tell the container it is being hosted under a subdirectory
(in the same way as the X-Script-Name header is used with Nginx), and a label has been added to tell Traefik to route
requests under the subdirectory to this container.

While using the Traefik configuration for version v2 for hosting pgAdmin under subdirectory the container is typically
launched per the example below:

docker pull dpage/pgadmind
docker run --name "pgadmin4d" \

-e "PGADMIN_DEFAULT_EMAIL=user@domain.com" \

-e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" \

-e "SCRIPT_NAME=/pgadmin4" \

-1 "traefik. frontend.pgadmin4.rule=Host(host.example.com’) && PathPrefix(/
—pgadmingd)" \

-d dpage/pgadmind

1.2 Login Page

Use the Login page to log in to pgAdmin:

Forgotten your password?

English

Use the fields in the Login page to authenticate your connection. There are two ways to authenticate your connection:

e From pgAdmin version 4.21 onwards, support for LDAP authentication has been added. If LDAP authentication
has been enabled for your pgAdmin application, you can use your LDAP credentials to log in to pgAdmin:

— Provide the LDAP username in the Email Address/Username field.
— Provide your LDAP password in the Password field.

* Alternatively, you can use the following information to log in to pgAdmin:

1.2. Login Page 39

pgAdmin 4 Documentation, Release 8.1

— Provide the email address associated with your account in the Email Address/Username field.
— Provide your password in the Password field.
Click the Login button to securely log into pgAdmin.

Please note that if the pgAdmin server is restarted, then you will be logged out. You need to re-login to continue.

1.2.1 Recovering a Lost Password

If you cannot supply your password, click the Forgotten your password? button to launch a password recovery utility.

EAdmin

Forget Password

Enter the email address for the user account you wish to recover
the password for:

Recover Password

* Provide the email address associated with your account in the Email Address field.

¢ Click the Recover Password button to initiate recovery. An email, with directions on how to reset a password,
will be sent to the address entered in the Email Address field.

If you have forgotten the email associated with your account, please contact your administrator.

Please note that your LDAP password cannot be recovered using this page. If you enter your LDAP username in the
Email Address/Username field, and then enter your email to recover your password, an error message will be displayed
asking you to contact the LDAP administrator to recover your LDAP password.

1.2.2 Avoiding a bruteforce attack
You have the possibility to lock an account by setting MAX_LOGIN_ATTEMPTS once it has reached the maximum number

of login attempts. You can disable this feature by setting the value to zero.

1.3 Enabling two-factor authentication (2FA)

1.3.1 About two-factor authentication

Two-factor authentication (2FA) is an extra layer of security used when logging into websites or apps. With 2FA, you
have to log in with your username and password and provide another form of authentication that only you know or have
access to.

40 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 8.1

1.3.2 Setup two-factor authentication

To set up 2FA for pgAdmin 4, you must configure the Two-factor Authentication settings in config_local.py or con-
fig_system.py (see the config.py documentation) on the system where pgAdmin is installed in Server mode. You can
copy these settings from config.py file and modify the values for the following parameters.

Parameter Description

MFA_ENABLED The default value for this parameter is True. To disable 2FA, set the
value to False

SUPPORTED_MFA_LIST Set the authentication methods to be supported

MFA_EMAIL_SUBJECT <APP_NAME> - Verification Code e.g. pgAdmin 4 - Verification
Code

MFA_FORCE_REGISTRATION Force the user to configure the authentication method on login (if no

authentication is already configured).

NOTE: You must set the ‘Mail server settings’ in config_local.py or config_system.py in order to use ‘email’ as two-
factor authentication method (see the config.py documentation).

1.3.3 Configure two-factor authentication

To configure 2FA for a user, you must click on “Two-factor Authentication’ in the User menu in right-top corner. It
will list down all the supported multi factor authentication methods. Click on ‘Setup’ of one of those methods and
follow the steps for each authentication method. You will see the Delete button for the authentication method, which
is already been configured. Clicking on Delete button will deregister the authentication method for the current user.

Authentication Pl

EElAdmin

Authentication Registration

Email Authentication
&

G‘n Authenticator App

0 X Close

You can also force users to configure the two-factor authentication methods on login by setting
MFA_FORCE_REGISTRATION parameter to True.

1.3. Enabling two-factor authentication (2FA) 41

pgAdmin 4 Documentation, Release 8.1

1.4 User Management Dialog

When invoking pgAdmin in desktop mode, a password is randomly generated, and then ignored. If you install pgAdmin
in server mode, you will be prompted for an administrator email and password for the pgAdmin client.

When you authenticate with pgAdmin, the server definitions associated with that login role are made available in the
tree control. An administrative user can use the User Management dialog to:

* add or delete pgAdmin roles
* assign privileges

* manage the password associated with a role

User Management e X
Authentication source Username Email Role Active New password Confirm password Locked
B internal Userl@pgadmin Userl@pgadmin Administrator .
] internal User2@pgadmin User2@pgadmin Administratar . I
m internal NonAdmin@pga MonAdmin@pga