Specification for format of XML configuration files in OPUS

Page: ii of ii
Rev. 1.0 Draft 1
Date Modified: <12/20/2001>
Project ID: OPUS

Specification for format of XML configuration files in OPUS

Rev. 1.0 Draft 1
Page: iii of 3
Project ID: OPUS
Date Modified: 10/21/2003

[image: image1.jpg]BUILT ON

o Pose

DSDP Target Definition Requirements
Modified Date: 4/10/2006
Document Revision: 1.1 Draft 1

Project ID: DSDP
WORK IN PROGRESS

Direct comments, questions to the author(s) listed below:

Aaron Spear (303) 679-8457 aaron_spear@mentor.com
TODO: EPL Eclipse copyright info?
Table of Contents

11.
Introduction

1.1
Objective
1
1.2
Definitions, Acronyms, and Abbreviations
1
1.3
References
2
2.
Cores
2
2.1
Core variant information
2
2.2
Instruction set information
2
2.3
Registers/Groups of registers
2
2.4
Core modes?
2
2.5
Address Spaces/Memory Maps
2
2.6
JTAG/scan chain info
2
3.
Registers
2
3.1
Native registers vs Memory Mapped registers
2
3.2
Common Register fields
2
· 3.2.1
Description
3
· 3.2.2
id
3
· 3.2.3
Name/aliases/alterantive id’s
3
· 3.2.4
Group
3
· 3.2.5
bit width
3
· 3.2.6
register type
3
· 3.2.7
access rules
3
· 3.2.8
Access effects
4
· 3.2.9
dependencies
4
· 3.2.10
bit fields
4
3.3
Native registers
5
· 3.3.1
Toolset specific register id to index mapping
5
3.4
Memory Mapped Registers
6
· 3.4.1
Location
6
3.5
Register Groups
6
· 3.5.1
Name
6
· 3.5.2
Id
6
· 3.5.3
Base
6
4.
Memory
7
4.1
address spaces
7
· 4.1.1
id
7
· 4.1.2
Space id required for address strings?
7
· 4.1.3
unit size
7
· 4.1.4
unit count
7
4.2
Memory maps
7
· 4.2.1
Space id reference
7
· 4.2.2
Memory Map Name
8
· 4.2.3
Region List
8
5.
Target/Board shared resources
9
5.1
Shared address spaces/memory regions
9

Change Record

	Rev
	Description of Change
	Date Released
	Authored By

	1.0 Draft
	Initial Revision
	
	Aaron Spear

1. Introduction

1.1 Objective

The purpose of this document is to outline requirements that various debugger vendors who are a part of the Eclipse DSDP community have for the description of targets for their debuggers. The goal is that this document is a precursor to a formalized standards effort.
1.2 Definitions, Acronyms, and Abbreviations

· Core TODO

· Native Register TODO

· Peripheral TODO
· Memory Mapped Register TODO

· Address Space TODO

· Target TODO

References

Table 1: Referenced Documents

	Document Title
	Version
	Date
	Author

	
	
	
	

	
	
	
	

2. Cores

TODO:

2.1 Core variant information

2.2 Instruction set information

2.3 Registers/Groups of registers

2.4 Core modes?

2.5 Address Spaces/Memory Maps

2.6 JTAG/scan chain info
3. Registers
3.1 Native registers vs. Memory Mapped registers

By native register we are referring to any register that can be used or referenced as a part of the instruction set of a given processor. This is in contrast to a register that is memory mapped, that is a register that is used exclusively via memory accesses. So, this definition includes general purpose registers, special registers that may be used for a program counter, stack pointer or frame pointer, as well as any coprocessor registers.

3.2 Common Register fields

This section includes attributes needed for registers that are common to all registers regardless of whether the register is a memory mapped register that is a part of a peripheral, or the register is a native register that is a part of a core.

3.2.1 Description

Text field that describes helpful information about the register. Purely used for the convenience of the user. The debugger may choose to display this in a tool tip for example. Optional.
3.2.2 id

This field is text that reflects a unique ID for the register regardless of current processor mode. (e.g. “R15”, “R15_irq”). The name should reflect the name of the register as it is defined in the instruction set for the core.

Required
3.2.3 Name/aliases/alternative id’s

It is necessary to have a mechanism to be able to specify other names for the register that might be used in alternative modes. For example a core may have a supervisor mode in which a register with a different id may be accessible using a different id.
Optional
3.2.4 Group

A register may be a part of a group of other registers with a name assigned to the group. This may be done by the register specifying a reference to the group to which it belongs, or more likely implied by scope: that is that the register is declared as a child of an enclosing group or peripheral.
3.2.5 bit width

Number of bits in the register, an integer value.
Required

3.2.6 register type

An enumerated type that describes the type of the register for purposes of understand its role and interpreting its contents. Possible values include general purpose, floating point, fixed point.
Required, but default value of “general purpose” is assumed if not provided?

3.2.7 access rules

All registers may have read and/or write access permissions at a given point in time. Also, it may be possible for the access to the register to be dependent on the value of another register or bit field
, so a mechanism must be provided to address this (e.g. a register which may be written to in a supervisor mode, but is read only in other modes)
3.2.8 Access effects

Some may view this as being in the same category as the “access rules” above, but there is a subtle difference. This attribute describes information about the register that may help a consumer understand the effects of access to the register as well as understanding behavior of the register.

volatile contents: the register may change values at any time, even with the core halted in debug mode (i.e. the debugger should not cache its value, but a read should go to the target to get it)
reads are destructive: Any read to the register may change its contents. Any communications peripheral register would fall into this category, for example a UART RX register, where every read will remove a value from the hardware FIFO. In effect, if this attribute is true, then a debugger should not read this value automatically, but only when the user explicitly requests it.
writes may change state: A write to this register might change

write may invalidate memory: A write to this register may invalidate the contents of memory (e.g. a reset of a DRAM controller), or it may cause a change in the interpretation of memory (changing the endianness of a processor). A debugger responds to this by refreshing all views that are tied to interpretation of memory.
Optional
3.2.9 dependencies

In many cases the existence of a register may depend on the value of another register, of a bit field within another register. We must provide a mechanism to indicate this dependency so that the debugger can check these rules to decide whether a given register may be accessed at a given point in time (or even displayed in a GUI perhaps…)

Required, but default is to say that there is no dependency.

3.2.10 bit fields
A register may have one or more bit fields that describe the interpretation of bits or groups of bits within the register
3.2.10.1 name

Text name for the bit field. This would reflect the core/peripheral manufacturers name for the bit field.

Required.

3.2.10.2 Description

Text description of the bit field for display use only.

Optional
3.2.10.3 which bits

The bit field consists of one or more bits within the register that comprise its value. A mechanism must exists to specify which bits belong to the field. Also, some cores are beginning to support non-contiguous bit fields (e.g. bits 5 and 3-0 when concatenated together form a single integer bit field.)

3.2.10.4 Post-read/Pre-write formulas (masks)

It may be desirable to shift or mask values in arbitrary ways after reading them from the core and before sending it through a value to text mapping and then displaying, as well as perform an inverse operation before writing the value to the target. This also covers the case of a bit that you must always write a 1 or a 0 to. For this case, you specify a post read formula that might zero the bit for display purposes, and a pre-write formula that might forcibly set it.
3.2.10.5 value to text mapping

It is desirable to have a table that specifies values for a bit field and some bit of human readable text that corresponds to it. This is very useful for registers that display state information (e.g. Supervisor vs. User mode)

Optional

3.2.10.6 default formatting hints (hex vs. decimal
)
Some registers may always contain addresses for example, and thus it is useful to be able to specify to always display them in hex by default. Same may go for .
3.2.10.7 access

Individual bit fields within a read/write register may have differing access permissions. A bit field might be read only for example even though the register that it is in is read-write.
3.3 Native registers

3.3.1 Toolset specific register id to index mapping

Debug file formats such as ELF/dwarf use an integer index to reference registers. This mapping is often really cryptic and impossible to find without talking to the compiler vendor and asking them. It would be nice to have a standard for how this mapping is done. Perhaps this belongs in a separate standard, but it seems like it would be easy enough to define a schema whereby a compiler vendor gives the debugger a mapping that defines a hierarchy of core variants and index/mappings for each one.
Optional

3.4 Memory Mapped Registers

Memory mapped registers function exactly the same as a normal register in the core with the exception that they have an additional attribute of a memory address where they are located.

3.4.1 Location

The location of a given memory mapped register has three possible options.
· Absolute address: the address of the register resolves to an absolute address within a given address space. Most often done for single registers that are not a part of a group or peripheral.
· Offset from base address. The memory mapped register is part of a register group or peripheral that may specify its base address. So the register itself must provide an offset from the base.
·
Offset from expression
: In this case, the base may change dynamically, and thus the base must be calculated by evaluating an expression. (e.g. IMMR) In practice this sort of dynamic change only happens at startup, but there are some systems that have a “base register” for the process that everything might be relative to.
3.5 Register Groups

3.5.1 Name

The register should provide a name to be displayed to the user during debugging.

3.5.2 Id

Optionally, the group may specify an id that if provided is assumed to be pre-pended to the individual register id. Useful for creating a unique id for memory mapped peripherals which might have multiple instances of the same peripheral.
3.5.3 Base

An expression which may be an absolute address (including address space if applicable), or may also be an expression involving a base register.
4. Memory

4.1 address spaces

A given core instance will have one or more physical “address spaces” available to it. An address space for the purposes of this document refers to a separate physical space
4.1.1 id

This is a unique text denier for the address space. E.g. “Memory”, “IO”,”DATA”, “INST”
Required

4.1.2 Space id required for address strings?

This is a boolean flag that if true specifies that the user must specify the space id when specifying an address via a string. e.g. “INST:0x100” vs. “DATA:0x100”. If this value is false, then this address space is assumed to be the “default” address space, and thus an address may be specified as simply “0x100” without punishing the user with typing the space ID in every time. (make users happy that are targeting flat memory model RISC’s)

Required, but the default value is true

4.1.3 unit size

This is the size in bits of the minimum addressable unit for this space. Note that this value is a function of the architecture of the processor and NOT a function of the type of memory that happens to be present in a given range. This value will be 8 for nearly every RISC on the planet.

4.1.4 unit count

This is the total number of units that are in the space. This value is a function of address size on the target architecture, NOT what memory happens be on a given board. For 32 bit RISC’s, this value will be 2^32 == 0x1 0000 0000 == top address + 1 (0xFFFFFFFF + 1)
4.2 Memory maps

A memory map consists of one or more memory regions for a particular address space. There may be multiple memory maps used for a given address space, but typically, only one memory map should be active at any given point in time.
4.2.1 Space id reference

A text reference to the id for the address space
Required

4.2.2 Memory Map Name

A text name for the memory map for display to the user

Optional
4.2.3 Region List

Every memory map will have one or more child entries that specify “regions”. That is a contiguous range of memory that shares common attributes. Each region has attributes that specify:

4.2.3.1 region name

Text name for the region for the users benefit only (e.g. “DRAM”, “FLASH”)
Required
4.2.3.2 offset in space

This is an integer value that specifies what is in effect the starting address in the address space to which the region belongs. Note that it is given in terms of a count of “address space units”, which is not the necessarily the same as bytes, but that depends on the address space implementation.
Required
4.2.3.3 Size

The size of the address space in units
. Note that this is NOT the end address of the range, but rather the total number of units. For byte addressable machines, this relationship can be expressed as start address + size – 1 = end address where end address is the last address inside of the range.

Required

4.2.3.4 Access flags

Allows types of access for this region. May be read or write. Additional, it is desirable to have flags that specify some bit of interpretation, for example a “volatile” flag that specifies that the memory map change at any time (even while the target is stopped), and an “execute” flag that specifies that the region may contain instructions. General purpose RAM that could contain data or instructions would have access flags of “RWX” since any of those are possibilities. Flash or other ROM on the other hand might only have “RX” indicating Read and Execute permissions.
4.2.3.5 Allowed access sizes

In the event that a given memory region must have a certain size of access due to memory device architecture or bus architecture, there should be the ability to specify allowed access size independently for read and write operations. Sizes should be specified in terms of bits.
4.2.3.6 Memory type (RAM, Flash information)

An text field which allows reference of this region to a type of memory. This might be used for memory speed indication, or perhaps to specify flash devices/geometry?

5. Target/Board shared resources

5.1 Shared address spaces/memory regions

Some mechanism should be provided that allows you to specify a relationship between memories in different cores. Typically the scenario is that there is a shared memory device hanging on a bus, and two or more cores can reference that core. Often, as in the case of RISC and a DSP, the machines may have vastly different memory maps and even ability to reference the memory (e.g. the DSP can only access it on 16 bit boundaries while the RISC can access it on 8 bit boundaries). The important thing for a debugger to know is that modifications to a given memory region in one core has implications for a memory region in another address space in another core.
�SPIRIT 1.2 only fully supports memory mapped registers, although it might be possible to describe registers that can be seen to part of an internal address space using the current schema.

�Exists in SPIRIT

�Name element in SPIRIT

�Not in SPIRIT 1.2

�Not in SPIRIT 1.2

�Size element in SPIRIT

�Does not exist in SPIRIT 1.2

�SPIRIT allows a register (or register bit-field) to be read-only, read/write, or write-only; but has no way of making this state dependent.

�Supported by SPIRIT 1.2

�Only volatile is supported in SPIRIT 1.2

�Change what?

�Supported in SPIRIT 1.2; is this distinct from access to the register being dependent on another register or bit field

�Supported in SPIRIT 1.2

�Supported in Spirit 1.2

�Only contiguous bit fields in SPIRIT 1.2

�Not in SPIRIT 1.2

�SPIRIT 1.2 allows bit fields to be restricted to a list of named values.

�Not in SPIRIT 1.2

�Supported in SPIRIT

�Not in SPIRIT 1.2

�SPIRIT sees all memory mapped registers as being within slave components. There are many options for controlling the base address of a slave component, and addressing within a component.

�Not supported by SPIRIT 1.2

�Not supported by SPIRIT 1.2

�SPIRIT associates address spaces with master bus interfaces.

�Supported by SPIRIT 1.2

�Not supported by SPIRIT 1.2

�Supported by SPIRIT 1.2

�Supported by SPIRIT 1.2

�SPIRIT places memory maps within slave components (peripherals) and links them to slave bus interfaces.

�In SPIRIT the relationship between the address spaces and memory maps is deduced from the bus structure, and the bus addressing information.

�Exists in SPIRIT 1.2

�Called address blocks in SPIRIT

�Supported in SPIRIT

�Supported in SPIRIT

�Supported in SPIRIT.

�Note that in SPIRIT a memory map may have a unit size that is distinct from the address space unit size. This is needed because a single memory map may be accessible from multiple different address spaces, possibly with different unit sizes.

�As for registers in SPIRIT; no execute access flag in SPIRIT 1.2.

�Not fully supported by SPIRIT. SPIRIT assumes that multiple of the least addressable unit (the size) up to the address block’s width is allowed. Probably needs refinement.

�Not supported by SPIRIT 1.2

�Supported by SPIRIT, since SPIRIT describes the system’s bus structure. We might, however, need some description of caching to fully support a debugger’s needs.

Mentor Graphics--Confidential and Proprietary
Controlled Copy
(The most current version of this document exists online)
PLC Version 2.1 (06/30/96)

