
How to Generate LATEX Picture Environments
Using the GaPFilL Method

Herbert Möller∗

Abstract. Drawing programs or geometry software and Perl filter
programs are used to create conveniently even complicated figures with
the LATEX picture environment. The filter programs parse PostScript
files and generate LATEX code ready for use. The new method will be
explained with two filter programs for the geometry software Cabri-
géomètreTM II. The first program only requires the package ebezier
[2]. Therefore the output is driver independent. The second filter in
addition supplies the new package pict2e [4].

1. Introduction

The package pict2e, created by Hubert Gäßlein and Rolf Niepraschk, e-

liminates the most serious restrictions of the LATEX picture environment. Hence-

forth, essentially the problem of positioning the objects remains. An important

suggestion, using the package PICTEX of Michael J. Wichura [9], was in-

troduced in 1999 by Robert W.D. Nickalls with the MS DOS filter program

‘MathsPIC’ [7]. Afterwards, it was extended by him and by Apostolos Syro-

poulos to a Perl filter program [8]. However, the convenient input achieved is

on the expence of about 90 further commands.

Hence the question arose whether LATEX figures can also be constructed without

using control commands. This seemed to be feasible because the PostScript files

generated by graphic programs and used by the LATEX command \special evi-

dently contain all necessary information. The answer is a method which consists

of four steps:

(1) Generating the desired figure with a drawing program or with geometry

software;

(2) “Printing” (or exporting) the construction as a PostScript file;

(3) Applying a filter program to the PostScript text;

(4) Copying the resulting code or parts of it into a LATEX document.

∗ c© Copyright 2006 by H. Möller (mollerh@math.uni-muenster.de). This documentation
may be distributed and/or modified under the conditions of the LaTeX Project Public License.

1

2 Herbert Möller

Because of this structure, the method is called “GaPFilL” (Graphics as PostScript

Filtered for LATEX). Since the steps (1) and (2) and the packages used in the

LATEX document may vary, it is necessary to apply different filter programs. In the

following the context will be described as an example by means of two prototypes:

CABebez.pl only requires the macro package ebezier; CABpict.pl in addition

uses the above mentioned package pict2e.

2. The Drawing Program or Geometry Software

Most programs which generate graphical objects are suited for the GaPFilL meth-

od. To create diagrams and simple illustrations, it is sufficient to use draw-

ing programs belonging to office packages. The fine drawing program Draw of

OpenOffice.org is even free of charge. For the representation of geometrical

facts, geometry software is preferable since, apart from the construction of the

objects, it offers a lot of transformations and combinations such as reflection,

bisection of angles, transfer of measurement and generation of loci.

In the educational system, Cabri-géomètreTM II (in the following: Cabri Geome-

try) is a powerful “dynamic” geometry software with wide distribution for the

operating systems Windowsr and MacrOS. Since 1987 it was developed by

Jean-Marie Laborde and Franck Bellemain at the ‘Institut d’Informa-

tique et Mathématiques Appliquées’ of the Joseph Fourier University in Grenoble.

Among other things, due to numerous courses of further education for teachers

and due to the implementation of adapted versions in the hand-held computers

TI-92, VoyageTM 200 and other calculators of Texas Instrumentsr it is widely

used.

Since many people are familiar with these programs, we will only describe the

pecularities which are important for the generation of LATEX figures. In 2004,

improved versions Cabri-géomètreTM II plus both for Windows and Macintosh

computers were published. The differences will be mentioned where appropriate.

3. The Use of Colours

With the aid of colours additional information is conveyed to the filter program.

Colouring of objects in the LATEX picture environment objects is carried out on

demand with commands of the color package when the work is to be finished

How to Generate LATEX Picture Environments Using the GaPFilL Method 3

(see Section 8). The names of the colours used in the following come from the

Macintosh version of Cabri Geometry, where only eleven colours are available.

The Mac OS version of Cabri Geometry II plus has a palette with 36 colours. In

both new versions the RGB values of colours may be set by the user. In Section 7

it will be described how to change the assignment of colours in the filter program.

• All straight lines, rays, line segments, circles and conic sections which are

coloured yellow serve as drawing aids because they are ignored by the filter

program. The red points shown by Cabri Geometry will be disregarded by

the filter program too. Straight lines, rays, parabolas and hyperbolas are cut

off at the boundary of the drawing section. Since the filter program calculates

the exact “bounding box”, these figures should only be used as drawing aid

if the resulting shape is not the desired one.

• Continuous lines and polygons have to be green .

• Arrows must be drawn in violet .

• Dotted objects (line segments, arrow lines, polygons, circles, arcs) are obtai-

ned by using the colour dark green .

• Quadratic and cubic Bézier curves are entered as blue polygons with three

respectively four corners (see Figures 1 and 2). The corresponding curves

may be viewed with Cabri Geometry by using macros. This will be explained

in Section 4.

1

2
3

Figure 1

1 2

3

4

Figure 2

• Polygons have to be closed by clicking on the starting point or by double

clicking. Using the colour navy blue , the last line of the polygon will be

suppressed so that open polygons can also be entered conveniently.

• Text or formula places are positioned by using blue polygons with two cor-

ners. For the bounding box to be calculated correctly, the marking line should

approximately be the diagonal beginning at the lower left corner of the smal-

lest rectangle enclosing the text or formula. In the LATEX output a serial

number will be written at the position of the starting point.

4 Herbert Möller

• The remaining five colours are used for the filling, hatching and dotting of

areas bordered by polygons. For that the filter program cuts up the polygon

area into triangles which have the starting point of the polygon as a common

corner. To avoid overlap, the given area must be devided by polygons such

that for each polygon the triangles which arise from connecting the starting

point with the other corners have at most one side in common with the other

triangles (see Figures 3 and 4).

XXXXXXX

A

B

C

D

E

F

Figure 3

�����
��
�������

���
�
�

�
�
�

�
�

���
��

�
�
��

�
�
�

�
�
�

�
��

�
��
�
�
�
�
����

1
2

3

4

Figure 4

Red polygons are filled without boundery. For the hatching with visible boun-

dary lines the colour orange has to be chosen for the polygon; without boun-

dary lines the colour brown will do it. If the polygon is coloured purple ,

the area will be dotted with visible boundary lines ; with the colour violet

an area can be dotted without boundary lines. The previous assignments of

colours are summarized in the following table.

Type Colour

auxiliary line yellow
unbroken object green

arrow violet
dotted object dark green

Bézier curve or text blue
open polygon navy blue

filling without border red
hatching with border orange

hatching without border brown
dotting with border purple

dotting without border dark brown

• With Cabri Geometry semicircles and quadrants of a circle, which in LATEX

are also connected with the \oval command, must be constructed as circular

arcs determined by three points on a circle. For those circular arcs which have

How to Generate LATEX Picture Environments Using the GaPFilL Method 5

at their ends radii parallel to the coordinate axes, the input is simplified by

using coloured circles. The next table contains the assigned colours. With the

Macintosh version of Cabri Geometry, the respective colours of the objects

can be preset in the “standard settings”.

Type Colour

auxiliary circle yellow
unbroken circle navy blue

dotted arc or circle dark green
left semicircle purple

right semicircle red
bottom semicircle orange

top semicircle dark brown
left bottom quadrant of a circle blue

left top quadrant of a circle green
right bottom quadrant of a circle brown

right top quadrant of a circle violet

4. Macros for Bézier Curves with Cabri Geometry

In contrast to many drawing programs, Cabri Geometry does not offer the tool

‘Bézier curve’ which yields a substantial part of the efficiency of LATEX figures.

This deficiency can be compensated by “loci” which are generated with the aid

of macros described in the following.

In the mathematical representation we use vectors instead of the spanning points

because the geometrical meaning is better known from vector geometry than from

complex numbers.

If t with 0 ≤ t ≤ 1 is the running parameter, then the quadratic Bézier curve

spanned by ~x1, ~x2, ~x3 can be written in the following form with the abbreviation

t1 : = 1− t:
~x(t) = t1 (t1~x1 + t ~x2) + t (t1~x2 + t ~x3) .

Since all three linear combinations belonging to the plus signs have the same

coefficients t1 and t, each point of the quadratic Bézier curve can be obtained by

dividing three line segments with the same division ratio t : t1. Since

t1~xi + t ~xi+1 = ~xi + t (~xi+1 − ~xi) , i = 1, 2,

at first the two “connecting line segments” from ~x1 to ~x2 and from ~x2 to ~x3 are

6 Herbert Möller

divided with ratio t : t1. If ~x ′i : = t1~xi + t ~xi+1, i = 1, 2, are the accompanying

“division vectors”, then the division of the connecting line segment from ~x ′1 to ~x ′2
with ratio t : t1 yields the vector ~x(t) belonging to the parameter t.

Correspondingly, the quadratic Bézier curve can be constructed as locus. After

the input of three different points P1, P2, P3, the line segment connecting P1 and

P3 is drawn as “track” of the locus, and a point T is placed on it (see Figure 5).

P1

P2

P3
Q1

T

Q2

S

r
r

Figure 5

The distances of P1 and T and of

P1 and P3 determined with the tool

“distance and length” must be trans-

ferred into the window of the tool

“calculator”. They have to be divi-

ded. After putting the value of the

ratio into the drawing window, it has

to be multiplied with the distances of P1 and P2 and of P2 and P3. To get

the right division points Q1 and Q2, these resulting lengths have to be marked

off on the vectors from P1 to P2 and from P2 to P3 with the tool “transfer of

measurement”. In the same way, the point S of the quadratic Bézier curve is

constructed as division point on the vector from Q1 to Q2.

Calling the tool “locus” and clicking on the points S and T (in this order) the

preset number of points of the quadratic Bézier curve will be drawn. Then, in the

tool box “macros” the three points P1, P2, P3 and the locus have to be chosen

respectively as source objects and as target object by clicking. Finally, with the

tool “macro name” the macro can be saved.

The cubic Bézier curve determined by the vectors ~y1, ~y2, ~y3, ~y4 is obtained quite

similar by six divisions of line segments with the same ratio t : t1 because the

abbreviations

~y ′j : = t1~yj + t ~yj+1, j = 1, 2, 3, and ~y ′′k : = t1~y
′
k + t ~x ′k+1, k = 1, 2,

enable the representation

~y(t) = t1~y
′′
1 + t ~y ′′2 .

Therefore, the cubic Bézier curve can be constructed as locus in a way analogous

to that one of the quadratic Bézier curve. At first, four different points have to be

entered. Then the connecting line segment of the first and the last point is drawn

as track of the locus. A point T which has to be put on the track determines the

How to Generate LATEX Picture Environments Using the GaPFilL Method 7

division ratio of all six vectors occurring later. The first three vectors connect

each of two points entered successively. The next two vectors lie between the

three division points. The corresponding division of the sixth connecting vector

yields the locus point belonging to T .

The source objects of the macro are the four starting points, the target object is

the locus. The Macintosh version of the two macros can be found in the Section

“Programs” of the author’s web site called Mathcompass [6].

5. PostScript Files

The inclusion of graphics with the LATEX command \special is extremely device

dependent. This deficiency is reduced considerably by suitable TEX macros which

support many important drivers processing PostScript code. The LATEX packages

graphicx, color and pstricks are examples which, among other possibilities,

are described in [5].

Compared with the programming of such TEX macros, the writing of filter pro-

grams for the extraction of data from EPS files (EPS = Encapsulated PostScript)

relevant for LATEX requires only little knowledge of PostScript, for example from

[1]. For the application with a fitting filter program, a standard EPS prin-

ter driver can be used without understanding PostScript. Suitable drivers can

be downloaded free of charge from the driver web site of the Adobe Company

(http://www.adobe.com/support/downloads/main.html).

The following explanations are given for people who want to change or rewrite a

filter program. PostScript files can be opened and edited with editor programs

like Alpha or BBEdit with MacOS, WinEdt with Windows or Emacs with Unix.

Frequently these files have more than 1000 lines. But even in this case, only a

very small part lying between ‘EndProlog’ and ‘EOF’ contains LATEX relevant

data.

For the application of filter programs it is advantageous that all lines containing

required numerical values are unambiguously marked at the line end. However,

for the individual PostScript generators the marking may be quite different. The

lines with the colour data end, among other things, with ‘setrgbcolor’ or with

‘:F4’. The object data follow one to three lines later. Here too, the marking

may be “concrete” or “abstract”. In case of a line segment, it is, for example,

8 Herbert Möller

‘lineto stroke’ respectively ‘@b’. In the second case, the concrete assignment can

be found in the ‘Prolog’ section.

The meaning and the order of the numerical values from different PostScript

generators are not uniform either. For example, a circle can be determined by

its centre and radius or by two diagonal corners of its bounding box. Sometimes

the x- and y-coordinates of points are exchanged. Furthermore, the numerical

values do not always belong to the same unit. Usually it is ‘pt’ which fits the

picture environment of LATEX. There may also occur integer values which have

to be multiplied with 0.25 in order to receive the point size.

All these differences can be clarified through systematic trials. At first, each of the

different objects has to be constructed with the graphic program. After noting

the measurements, the drawing must be exported as a PostScript file. Most of the

graphic programs indicate coordinates and lengths in millimetres. The conversion

factor to pt is 2.845. Through choice of suitable lattice points or through variation

of the figure, the position of the data in question can be determined. If it turns

out that the y-coordinates in the PostScript file are opposed to those in the

graphic program, either the drawing has to be reflected vertically before saving,

or in the filter program, each y-coordinate must be multiplied by -1.

6. Perl

The interpreter language Perl (as abbreviation of “Practical Extraction and

Report Language”) was developed around 1988 by Larry Wall at first for

scanning arbitrary text files in order to extract and process information. It may

be considered as a younger brother of the TEX system published around 1978 by

Donald E. Knuth because many persons are improving the systems since the

beginning and because both systems with numerous modules and aids are availa-

ble free of charge in the “Comprehensive TEX Archive Network” (CTAN) and in

the “Comprehensive Perl Archive Network” (http://www.Perl.com/CPAN) re-

spectively. Meanwhile Perl has become a universal script language with which

many kinds of recurring tasks can be automated, for example in the system man-

agement of computers and of their peripherals. Along with the great power of

Perl since Version 5, it is specially advantageous for the application together

How to Generate LATEX Picture Environments Using the GaPFilL Method 9

with LATEX that Perl systems are available on all platforms with wide distribu-

tion. Therefore it is not surprising that the CTAN already contains numerous

Perl programs.

Whoever has learned a higher programming language (like C, for example) will

hardly have difficulties writing or changing Perl filter programs with the aid of

some of the online manuals and looking at examples like the ones described in the

following section. As with LATEX, it may be expected that, now having reached

the Perl version number 5.8.7, there won’t be considerable changes with respect

to text filtering. Therefore it is reasonable to provide and to maintain Perl filter

programs at this time also for further combinations of graphic programs, Post-

Script versions and LATEX packages. That can be achieved in the interest of the

LATEX community by a few persons because the main work has been accomplished

developing the filter structure and the subroutines.

7. The filter programs CABpict.pl and CABebez.pl

The Perl program CABpict.pl, which is 32 kB large, has 964 lines including

the comment lines beginning with ‘#’ and the lines with closing braces ‘}’. The

program CABebez.pl is only 29 lines shorter. Therefore in the following only those

lines and blocks are commented which are important for better understanding or

which may play a part in modifications.

In case of matching, the lines from CABpict.pl are taken. The line numbers,

which in both cases don’t belong to the programs, may be different even for

matching lines. In this documentation, the lines of CABebez.pl are marked by a

colon behind the numbers.

1 #!perl -w
2 # CABpict.pl
3 # (c) Copyright 2006 H. Möller (mollerh@math.uni-muenster.de).
4 # Version 1.1 for Cabri-géomètre II with MacOS 9.x,
5 # This program may be distributed and/or modified under the

conditions of the LaTeX Project Public License,
...
9 use POSIX(’ceil’,’floor’);

The first line doesn’t represent a comment line because it begins with ‘#!’. This

line may be missing in some Perl versions, for example, if Perl programs are called

10 Herbert Möller

by command line input or if no options are used. The option ‘-w’ causes Perl to

print error messages. It can also be necessary to place the complete path name

before ‘perl’, for example ‘/usr/bin/perl’.

Lines 2 to 8 are destined for version references. Line 9 provides two procedures

from the Perl modul ‘POSIX’. They serve for rounding and can be replaced (with

caution) by own (sub-) routines using the command ‘int’.

11 # Definable by the user:
12 # Unitlength in pt:
13 $ul = 1.0;
14 # Fill factor (for filling with magnification up to 500 %)
15 $fillf = 5;
16 # Point factor:
17 $pointf = 0.3;
18 # Flag for dotting parabolic arcs (1: Dotting)
19 $Qbezflag = 0;

16: # Bézier factor:
17: $bezf = 2.0;

Each of these five parameters may be changed before applying the respective

program. Afterwards all parameters should get their original values unless the

program is stored under a different name.

Varying the ‘unitlength’ $ul and using a saved PostScript representation, each

drawing can be reduced or magnified in the LATEX picture environment. The

value $ul=1.0 yields the figure in its original size from Cabri Geometry.

The ‘fill factor’ $fillf settles the distance of the horizontal line segments filling

polygons. With $fillf=5 figures appear completely filled with screen magnifi-

cation up to 500 % .

With pict2e alone, dotted curves can’t be represented because pict2e ignores

the number of points of Bézier objects. Therefore in CABpict.pl the plot com-

mands \Lbezier and \Qbezier from the package ebezier are used additionally.

With that the ‘point factor’$ pointf= 0.3 yields the normal point distance (like

in Figures 1 to 3). To dot a curve, setting the flag $Qbezflag=1 one can appro-

ximate with arcs of parabolas for which possibly in the LATEX picture environ-

ment the number of points at \Qbezier is to be adjusted. In the normal case

$Qbezflag=0, the parabolic arc is drawn with the plot command \qbezier from

pict2e.

How to Generate LATEX Picture Environments Using the GaPFilL Method 11

In CABebez.pl the ‘Bézier factor’ $bezf= 2.0 yields a point distance which with

normal magnification and in print lets the corresponding line appear closed. Since

the memory need of Bézier curves with ebezier is often eight times as large as

with pict2e, $bezf may be reduced in case of tight memory.

21 # Constants:
22 # Colour names:
23 $yellow = "0.9843900.9511410.020249";
24 $orange = "1.0000000.3927370.009949";
25 $red = "0.8649270.0342110.025910";
26 $purple = "0.9486080.0325630.519234";
27 $violet = "0.2769050.0000000.645487";
28 $navy = "0.0000000.0000000.828138";
29 $blue = "0.0088040.6692610.917967";
30 $green = "0.1215990.7170980.078874";
31 $darkgreen = "0.0000000.3933010.069093";
32 $darkbrown = "0.3359430.1742730.020081";
33 $brown = "0.5657890.4428780.227359";

Cabri Geometry writes the three RGB values into the PostScript file with six

decimal places and one digit before the decimal point. Through Lines 45 to 47,

CABpict.pl looks for these lines ending with setrgbcolor and removes the

spaces as well as the last word setrgbcolor. In this way the corresponding line

yields a single “word” which is placed before the respective character strings later.

Through the assignment of easily remembered colour names to this “digit words”

it is easy to use other or further colour names. The names of 68 (DVIPS-) colours

with CMYK values can be found in the header file ‘color.pro’. Without colour

values they also appear in the files ‘colordvi.sty’ and ‘colordvi.tex’ (see [3]).

35 # Further Constants:
36 # Pi:
37 $Pi = "3.14159265358979";
38 # Constants in dotted figures:
39 $uli = sp(4 / $ul);
40 $ule = sp(0.8 / $ul);

38: # Constant in cubic Bézier curves for quarters of a circle:

39: $l90 = "0.552284749830794";

To be able to dot areas which are contained in arbitrary closed polygons, the

points get absolute coordinates (x, y) with regard to the respective picture en-

vironment, where x and y are even integers and x + y is divisible by 4. Then

12 Herbert Möller

$uli and $ule deliver the horizontal distance and the length of the 0.8 pt thick

line segments which form a point.

Like the “circular number” $Pi, $l90 also represents a number constant which

is required for the approximation of circular arcs through cubic Bézier curves. It

is deduced in [2] (Page 6).

42 @lines = <>;
43 do {
44 $_ = $lines[$i++];
45 if (/ setrgbcolor \s/o) {
46 s/ //go;
47 s/setrgbcolor\s/ /o;
48 $c = $_;
49 $_ = $lines[$i++];
50 s/ moveto//o;
51 s/lineto stroke/stroke/o;
52 s/curveto stroke/curveto/o;
53 s/ setlinewidth stroke//o;
54 s/ lineto//go;
55 if (/stroke/o) {
56 $line[++$#line] = $c.$_;
57 }
58 elsif (/closepath fill/o) {
59 $vector[++$#vector] = $c.$_;
60 }
61 elsif (/arc /o) {
62 $circle[++$#circle] = $c.$_;
63 }
64 elsif (/arcn/o) {
65 $arc[++$#arc] = $c.$_;
66 }
67 elsif (/curveto/o) {
68 do {
69 $conic[++$#conic] = $c.$_;
70 $_ = $lines[$i++];
71 s/ moveto//o;
72 s/curveto stroke/curveto/o;
73 }
74 until $_ !~ /curveto/o;
75 }
76 }
77 }
78 until $i == $#lines;

How to Generate LATEX Picture Environments Using the GaPFilL Method 13

With Lines 42 to 78, the required data are extracted from the PostScript file.

Initially the array @lines contains all lines. The successive assignment of each

individual line to the general “last result variable” $_ takes place with Line 44.

Next, the “colour lines” are looked for and condensed as described above. With

Line 48, the result is assigned to the variable $c.

In the present version, only the next line has to be analysed subsequently. The

commands for searching and replacing in Lines 50 to 54 care for unambiguity and

for pure number sequences (apart from the last word). With PostScript versions

which contain the data in a later line, it is helpful to attach the intermediate lines

and the data line by removing the line breaks.

Depending on the different line endings, the data are collected in five arrays. For

example, Line 56 means that the array @line, whose last element has the index

$#line, is extended by one field which holds the preceding colour variable $c and

the character string of the coordinates of the starting point and the end point of

a line segment.

For any arrow, Cabri Geometry writes the coordinates of the four arrowhead

corners of a PSTricks style arrow into the PostScript file. With CABpict.pl

these data are not needed if the colour of the arrow is violet because the plot

command \vector is then available. Otherwise the arrowhead consists of two

filled triangles, and the arrow line is drawn as an unbroken or dotted line segment

according to the colouring.

The data of circles can be found in the lines ending with arc . Additionally a

full circle is characterized by 0 and 360 as fourth and fifth value respectively.

Therefore, circular arcs entered clockwise in Cabri Geometry can also be recog-

nized in lines ending with arc because they contain the starting angle and the

ending angle instead of 0 and 360. Lines with the data of circular arcs entered

anticlockwise end with arcn.

The Macintosh version of Cabri Geometry offers the possibility of drawing con-

ic sections determined by five points. In the linked PostScript file, the data

of approximating cubic Bézier curves are stored, namely nine for ellipses and

four for each open branch. The values from the corresponding lines ending with

curveto stroke are stored in the array @conic. These data can be processed

directly with the plot command \cbezier.

14 Herbert Möller

80 $pflag = 1;
81 $sflag = 1;
82 $thicknessflag = 1;
83 $coun = 0;
84 $xtex = "";
85 $mtex = "";

86: $bmax = 500;
89: $btex = "\\documentclass{article}\n\\usepackage{ebezier}\n\n";

These initialisations begin with flags for the starting corner of polygons, for the

starting values of the bounding box and for the currently selected thickness of

line segments. The parameter $coun yields the numbers for the places of text

and formulas. With $xtex, the character string is set up which finally is written

as LATEX text into the Perl output window through a print command. Since, in

any case, the text markers have to be edited finally, temporary storing in $mtex

enables the positioning at the end of the LATEX text where they can easily be

found.

If Bézier curves with more than 500 points are generated with the package

ebezier, it is necessary to enlarge the LATEX value 500 of \qbeziermax. There-

fore, with the aid of the variable $bmax the maximum number of points of Bézier

curves is determined. If $bmax exceeds 500, the value of \qbeziermax is adjusted

with \renewcommand in the character string $btex which contains the beginning

of the corresponding LATEX program. The insertion of $btex and $mtex in $xtex

is described on page 20.

87 # Lines and polygons
88 $cflag = 1;
89 foreach (@line) {
90 @coo = split;
91 $co0 = $coo[0];
92 $co2 = (-1) * $coo[2];
93 $co4 = (-1) * $coo[4];
94 if (($co0 ne $violet) and ($co0 ne $yellow)) {
95 if ($cflag) {
96 $xtex .= "%Lines, arrows, polygons and Bézier curves\n";
97 $cflag = 0;
98 }
99 if ($co0 ne $blue) {
100 bound($coo[1],$co2);
101 bound($coo[3],$co4);
102 }

How to Generate LATEX Picture Environments Using the GaPFilL Method 15

103 if (($co0 ne $red) and ($co0 ne $blue) and ($co0 ne $brown)
104 and ($co0 ne $darkbrown) and ($co0 ne $navy)) {
105 lin($co0,$coo[1],$co2,$coo[3],$co4);

Here begins the processing of the data of the arrays. Since these longer parts

have a similar structure for most combinations of graphic programs, PostScript

versions and LATEX packages, only essential or typical sections are explained as

follows.

The flag $cflag ensures that in the LATEX program, the commentaries pointing

out each of the emerging objects don’t repeat permanently. With the split

command the character strings delivered by foreach are transformed into lists

of character strings which in our case are the numbers and the last words of the

evaluated PostScript lines. In the shortened form of split used here, the spaces

cause the separation of the character string of the last result value $_.

Since most branchings depend on at least one colour, first the list element with in-

dex 0 which contains the colour, is abbreviated. Subsequently the “vertical reflec-

tion” which is necessary in this version takes place multiplying each y-coordinate

by -1.

Line 96 yields a typical LATEX comment line because the character string which is

added to $xtex by .= begins with the % sign and ends with the line feed command

\n of Perl .

With each of the Lines 100 and 101, the subroutine ‘bound’ for the determination

of the bounding box coordinates is called. It is defined in the Lines 944 to 957. In

this case the coordinates of the starting point and the end point of line segments

are evaluated. Objects with colour ‘blue’ are excluded because the diagonal

marking text or formulas is a two point polygon, and because for Bézier curves

51 points are considered.

There are nine subroutines which can be found from Line 390 on (356 with

CABebez.pl). The order of the subroutines plays no role. Therefore most of

these procedures are described at their first appearance.

The subroutine ‘lin’ generates all line segments which have to be drawn. In

CABpict.pl, the extended \line command from pict2e is available for unbroken

line segments, whereas dotted line segments have to be drawn with the command

\Lbezier from the ebezier package. In CABebez.pl also all line segments which

16 Herbert Möller

don’t fulfill the LATEX conditions for slopes or lengths must be built up with the

aid of \Lbezier.

107 if (($co0 ne $green) and ($co0 ne $darkgreen)) {
108 if ($pflag) {
109 $cb1 = $coo[1];
110 $cb2 = $co2;
111 $pol = $co0." ".$cb1." ".$cb2;
112 $pflag = 0;
113 }
114 else {
115 $pol .= " ".$coo[1]." ".$co2;
116 if (abs($coo[3] - $cb1) + abs($co4 - $cb2) < 2.0E-6) {
117 $poly[++$#poly] = $pol;
118 $pflag = 1;

Here, for each polygon which has to be filled, dotted or hatched, the array @poly

emerges which contains the coordinates of the corners.

123 if ($co0 eq $violet) {
124 $xtex .= "%Arrow\n";
...
127 $dx = $coo[3] - $coo[1];
128 $dy = $co4 - $co2;
129 $len = sp(abs($dx));
130 if ($len > 1.0E-3) {
131 @p = best(abs($dy / $dx));
132 $psx = sp($p[1]) * ($dx <=> 0);
133 $psy = sp($p[0]) * ($dy <=> 0);
...
140 $xb = sp($coo[1]);
141 $yb = sp($co2);
142 if (not $thicknessflag) {
143 $xtex .= "\\linethickness{0.8pt}\n";
144 $thicknessflag = 1;
145 }
146 $xtex .= "\\put(".$xb.",".$yb."){\\vector(".$psx.",".$psy.

"){".$len."}}\n";

For the generation of unbroken line segments respectively of complete arrows

with the package pict2e, the subroutine best is provided which yields the best

possible numerators and denominators for the rational approximations of the

slope with the aid of a continued fraction algorithm. Since, particularly, both

components are relatively prime, it is practically no restraint that they must lie

in the interval [−1000, 1000].

How to Generate LATEX Picture Environments Using the GaPFilL Method 17

With the two-line subroutine sp, the numbers which Cabri Geometry hands over

to the PostScript file with six decimal places, as well as all other decimal numbers

appearing in the LATEX picture environment, are rounded off to three places with

removal of all concluding zeros.

150 foreach (@poly) {
151 @po = split;
152 $p0 = $po[0];
153 $pon = $#po;
154 if (($p0 eq $red) or ($p0 eq $purple) or ($p0 eq $darkbrown)
155 or ($p0 eq $orange) or ($p0 eq $brown)) {

The evaluation of the data of the array @poly depends on the colour and on the

index $pon=$#po of the last element.

156 if ($pon == 6) {
157 tri($p0,$po[1],$po[2],$po[3],$po[4],$po[5],$po[6]);

If $pon = 6, then the subroutine tri is called which settles the filling, dotting

and hatching of triangles .

159 elsif ($pon == 8) {
160 ($p0,$u1,$v1,$u2,$v2,$u3,$v3,$u4,$v4) = @po;
161 $s1 = abs($u1 - $u4) + abs($u2 - $u3) + abs($v1 - $v2) +

abs($v3 -$v4);
162 $s2 = abs($u1 - $u2) + abs($u3 - $u4) + abs($v1 - $v4) +

abs($v2 -$v3);
163 if (($s1 < 4.0E-6) or ($s2 < 4.0E-6)) {
...
166 rect($p0,$u1,$v1,$u2,$v2,$u3,$v3,$u4,$v4);
167 }
168 else {
...
173 tri($p0,$u1,$v1,$u2,$v2,$u3,$v3);
174 tri($p0,$u1,$v1,$u3,$v3,$u4,$v4);
175 }
176 }
177 elsif ($pon > 8) {
...
179 for (my $j = 3; $j <= $pon - 3; $j += 2) {
...
181 tri($p0,$po[1],$po[2],$po[$j],$po[$j + 1],$po[$j +

2],$po[$j + 3]);

18 Herbert Möller

In case of $pon = 8, rectangles with sides parallel to the axes are treated with

the aid of the subroutine rect. This is simpler than the procedure for all other

polygons which first have to be cut up in triangles.

191 elsif ($p0 eq $blue) {
192 if ($pon == 4) {
193 # Text marker and Bézier curves:
194 $coun++;
...
201 $mtex .= "\\put(".$po1.",".$po2."){".$coun."}\n";
202 }
203 elsif ($pon == 6) {
204 $xtex .= "%Quadratic Bézier curve\n";
205 qbez($po[1],$po[2],$po[3],$po[4],$po[5],$po[6]);
206 }
207 elsif ($pon == 8) {
208 $xtex .= "%Cubic Bézier curve\n";
209 cbez($po[1],$po[2],$po[3],$po[4],$po[5],$po[6],$po[7],

$po[8]);

With colour $blue, $pon = 4 yields the text markers, whereas $pon = 6 and

$pon = 8 lead to the call of the subroutines qbez for quadratic Bézier curves and

cbez for cubic Bézier curves respectively.

214 # Arrows
215 foreach (@vector) {
216 @ve = split;
217 if ($ve[0] eq $darkgreen) {
...
235 tri($red,$vu0,$vu1,$vu2,$vu3,$ve[5],$ve[6]);
236 tri($red,$vu0,$vu1,$vu6,$vu7,$ve[5],$ve[6]);

Here, as already mentioned above, for arrows with a dotted arrow line (and

always for arrows in CABebez.pl) the arrowhead is put together joining two

filled triangles.

258 # Circles, halves and quarters of circles
259 $cflag = 1;
260 $aflag = 1;
261 foreach (@circle) {
262 @po = split;
263 $p0 = $po[0];
264 if ($p0 ne $yellow) {
265 $po[2] = (-1) * $po[2];
266 $di = 2 * $po[3];

How to Generate LATEX Picture Environments Using the GaPFilL Method 19

267 if ($po[4] > 1.0E-3 or abs($po[5] - 360) > 1.0E-3) {
268 if ($aflag) {
269 $xtex .= "%Arcs\n";
270 $aflag = 0;
271 }
272 $arce = ($po[4] > 0) ? 360 - $po[4] : 0;
273 $arcb = ($po[5] > 0) ? 360 - $po[5] : 0;
274 $darc = $arce - $arcb;
275 if ($darc < 0) {$darc += 360}
276 $quar = int($darc / 90);
277 if ($quar > 0) {
278 for (my $k = 1; $k <= $quar; $k++) {
279 arc($p0,$po[1],$po[2],$po[3],$arcb,$arcb + 90);
280 $arcb += 90;
281 if ($arcb > 360) {$arcb -= 360}
282 }
283 }
284 if ($darc > $quar * 90) {
285 arc($p0,$po[1],$po[2],$po[3],$arcb,$arce);
286 }
287 }
288 else {
289 if ($cflag) {
290 $xtex .= "%Circles, halves and quarters of circles\n";
291 $cflag = 0;
292 }
293 if ($p0 eq $navy) {
294 $xtex .= "\\put(".$po[1].",".$po[2]."){\\circle{".$di.

"}}\n";
...
299 }
300 elsif ($p0 eq $purple) {
301 $xtex .= "\\put(".$po[1].",".$po[2]."){\\oval[".$di."]

(".$di.",".$di.")[l]}\n";
...
340 elsif ($p0 eq $darkgreen) {
341 $r = $po[3];
342 $le = int(2 * $pointf * $ul * $Pi * $r);
343 $xtex .= "\\cCircle[".$le."](".$po[1].",".$po[2].")

{".$r."}[f]\n";

Circular arcs are cut up to quadrants of a circle and to a shorter remaining arc.

In CABebez.pl the subroutine quart approximates all quadrants of a circle (and

with that, also circles and semicircles) by a cubic Bézier curve. With pict2e,

the plot commands \oval and \circle are available without restraints. For all

20 Herbert Möller

remaining circular arcs the subroutine arc supplies the approximation by a cubic

Bézier curve. The plot command \cCircle of the package ebezier is used to

get dotted circles in CABpict.pl.

379 # Frame
380 if ($xtex . $mtex ne "") {
381 $xtex = "\\documentclass{article}\n\\usepackage{ebezier}\n".
382 "\\usepackage[pdftex,pstarrows]{pict2e}\n\n

\\begin{document}\n\n".
383 "\\setlength{\\unitlength}{".$ul."pt}\n".
384 "\\begin{picture}(".ceil(($xmax - $xmin)).",".
385 ceil(($ymax - $ymin)).")(".floor($xmin).",".floor($ymin).")\n".
386 "\\linethickness{0.8pt}\n"."\\thicklines\n".$xtex;
387 $xtex .= $mtex."\\end{picture}\n\n\\end{document}";
388 }
389 print $xtex."\n";

342: if ($bmax > 500) {
343: $bmax = 100 * ceil($bmax / 100);
344: $btex .= "\\renewcommand{\\qbeziermax}{".$bmax."}\n";
345: }
346: if ($xtex . $mtex ne "") {
347: $xtex = $btex."\\begin{document}\n\n\\setlength{\\unitlength}{".
348: $ul."pt}\n"."\\begin{picture}(".ceil(($xmax - $xmin)).",".
349: ceil(($ymax - $ymin)).")(".floor($xmin).",".floor($ymin).")\n".

Here the different parts of the character string $xtex are united and written into

the Perl output window by the print command.

Since the subsequently assembled subroutines can be used in other versions large-

ly unchanged, now follow only comments which explain the underlying theory.

In the main part of best, the entered decimal number is transformed into a con-

tinued fraction. Then, among all principal and intermediate convergents which

are “best approximations”, the one with the greatest possible numerator or de-

nominator is determined.

536 # Triangles
537 sub tri {
538 my ($q0,$qx1,$qy1,$qx2,$qy2,$qx3,$qy3) = @_;
...
545 if ($q0 eq $red) {
546 # Filled triangle
547 %ha = ($qx1,$qy1,$qx2+1e-07,$qy2+1e-07,$qx3+2e-07,

$qy3+2e-07);

How to Generate LATEX Picture Environments Using the GaPFilL Method 21

548 @hb = ();
549 @hc = ();
550 foreach (sort { $ha{$a} <=> $ha{$b} } keys %ha) {
551 $hb[++$#hb] = $_;
552 $hc[++$#hc] = $ha{$_};
553 }
554 ($qx1,$qx2,$qx3) = @hb;
555 ($qy1,$qy2,$qy3) = @hc;

Each of the three parts of tri begins with sorting out corners: For filling and dott-

ing, they are ordered according to the size of the y-coordinates and for hatching,

the order depends on the difference of both coordinates. For the sorting method

used by Perl for the data type “hash”, it should be taken into account that in our

case, each of the two associated arrays must consist of different elements. Here,

this is achieved by changing the seventh place behind the decimal point.

If, after sorting, one imagines a straight line passing through the first and third

corner, linear algebra yields the half-plane bordered by the straight line and

containing the second corner. Then, starting with the connecting line segment

of the first and third corner and with distinction of cases concerning the second

point, the objects which have to be inserted are constructed.

The intermediate points of quadratic and cubic Bézier curves needed for their

bounding box are calculated with the formulas of Section 4. The coefficients

of cubic Bézier curves which approximate parts of quadrants of circles in the

subroutine arc are derived in [2] (Pages 11 f).

8. The picture environment of LATEX

Using the capacity of geometry software or of drawing programs, also further ad-

vantages of the LATEX picture environment compared with the \special com-

mand come into effect:

• All graphic data are integrated in the TEX file. Particularly, no graphic files

can get lost during dissemination.

• LATEX proves its flexibility mainly with the positioning using minipages or

floats (sliding objects). Since the filter programs yield the size of the bound-

ing box as well as the offset value (for the upper left corner), each figure can

directly be placed in a minipage. Using that it can be moved horizontally

22 Herbert Möller

and vertically, for example, applying the commands \hspace and \raisebox

(see Figures 1 to 5).

• The final processing of figures can be done in the usual cycle edit-typeset-

preview.

• Even in documents with numerous complicated figures, memory requirements

can well be estimated and, particularly, applying pict2e, they are surpris-

ingly low. But also with the ebezier package, in BigTEX versions no lack

of memory has to be expected.

• If PDF files are generated from LATEX productions, the figures are taken over

automatically.

The completion of the LATEX picture environment with commands from the

color package mentioned in Section 3 is possible only with restraints. Due to a

technical difficulty, TEX possibly inserts vertical space at each change of colour

(see [3], Page 6). Therefore, without complicated corrections, only figures can be

coloured for which all connected parts have the same colour.

The development of filter programs for LATEX was initiated by the author’s wish

to take over about 80 figures created with the drawing program STAD on Atari

computers into a book designed with LATEX on Macintosh computers. The figures

were traced with the drawing program ClarisDraw, and the PostScript versions

were transformed to LATEX picture environments with an AppleScript program.

This first functioning PostScript filter program can be found in [6] in the section

‘Programme’.

References

[1] Adobe, Systems Incorporated: PostScript Language Reference Manual. Addison-Wesley,

2nd edition, 1995.

[2] Bachmaier, Gerhard A.: Using ebezier. Package in CTAN:/macros/latex/contrib/ebe-

zier, 2002.

[3] Carlisle, David P.: Packages in the ‘graphics’ bundle. CTAN:/macros/latex/required

/graphics/grfguide.pdf, 1999/2004.

[4] Gäßlein, Hubert and Niepraschk, Rolf: The pict2e-package. Package in CTAN:/macros

/latex/contrib/pict2e/pict2e.dtx, 2003.

How to Generate LATEX Picture Environments Using the GaPFilL Method 23

[5] Goossens, Michel, Rahtz, Sebastian and Mittelbach, Frank: The LATEX Graphics Compan-

ion. Addison-Wesley, Reading MA, 1997.

[6] Möller, Herbert: Mathcompass (http://wwwmath1.uni-muenster.de/u/mollerh).

[7] Nickalls, Richard W.D.: MathsPIC. CTAN:/graphics/pictex/mathspic, 1999.

[8] Nickalls, Richard W.D. and Apostolos Syropoulos: mathsPICPerl. CTAN:/graphics

/pictex/mathspic/Perl, 2005.

[9] Wichura, Michael J.: The PICTEX Manual, 1992. Package in CTAN:/graphics/pictex.

