The package EASYVECTOR

Enrico Bertolazzi

Department of Mechanics and Structures Engineering
University of Trento
via Mesiano 77, I – 38050 Trento, Italy

enrico.bertolazzi@ing.unitn.it

19th March 2002

Abstract

The EASYVECTOR package is a simple macro package that provides a C-like syntax for writing vectors or matrices.

Contents

1	Some examples with EASYVECTOR	2
2	Use of the \newvector command	2
3	Use of the ! command	3
4	Use of the $\new custom vector command \dots \dots$	4
5	The "definevectors" option	4
6	The "@" convention	1

1 Some examples with **EASYVECTOR**

The package is loaded by means of the usual way:

```
\documentclass{article}
.
.
\usepackage[spacesep, definevectors] {easyvector}
.
```

The package option spacesep means that the separator for the indices is the command \smallspace instead of "," (comma).

The package option definevectors means that the command $\aa,..., \zz$ and $\AA,..., \zz$ are predefined as vectors. It also defines the commands \Balpha , \Bbeta and so on, as bold greek vectors. The latex commands $\aa, \AA, \gg, \label{eq:lambda}$, \abelas , \abelas is the name of the old command.

2 Use of the \newvector command

The general syntax of \newvector command is

```
\newvector[\cmda,\cmdb]{cmd}

or
    \newvector(a)[cmd]
```

In the first case, it creates the new command (macro) \cmd which executes \cmda when in scalar mode and \cmdb when in vector mode. In the second case it creates a new command \cmd which substitutes the letter \mathit{a} when in scalar, mode and \mathbf{a} when in vector mode. Scalar mode is activated when \cmd is immediately followed by [. In scalar mode everything between [and] (with balancing) is assumed to be as an index. For example the commands

The structure of the [...] command is the following

```
[i,j,\ldots,k;x,y,\ldots,z]
```

where i, j, \ldots, k are subscripts and x, y, \ldots, z are superscripts. The comma "," is used as a separator between different indices, and the semi-colon ";" separates subscripts and superscripts. There are no limits on the number of indices, and the code is reentrant, as the following example illustrates

```
\label{eq:approx} $$ \ \operatorname{b}(av) = \operatorname{av}(av,1,1) & \operatorname{av}(1,2) \\ & \operatorname{av}(2,1) & \operatorname{av}(2,2) \\ & \operatorname{bv}(2,1) & \operatorname{av}(2,2) \\ & \operatorname{bv}(3,1) & \operatorname{av}(2,2) \\ & \operatorname{bv}(3,1) & \operatorname{av}(2,2) \\ & \operatorname{av}(3,1) & \operatorname{av}(3,2) \\ & \operatorname{av}(3,2) & \operatorname{av}(
```

3 Use of the! command

It is possible to enforce vector mode also when using indices by using the character! before [

```
\newvector(z)[zzz] \[ \zzz[1,2,3] \neq \zzz![1,2,3] \]  z_{1,2,3} \neq \mathbf{z}_{1,2,3}
```

4 Use of the \newcustomvector command

In some circumstances the command \newcustomvector can be useful. Is is essentially the \newvector command with an extra argument that is a macro to manage the index part.

Important: For old users (version < 0.6) the command \customindex is suppressed and the \newcustomvector is used instead.

5 The "definevectors" option

This option defines the following vectors for you:

```
\aa,\bb,...,\zz \AA,\BB,...,\ZZ \Balpha, \Bbeta, ..., \Bomega
```

for example

```
\[ \Balpha[i,j], \quad \Balpha, \quad \BB[i,j], \quad \BB, \] \\ \alpha_{i,j}, \quad \pmb{\alpha}, \quad B_{i,j}, \quad \pmb{\mathrm{B}}, \
```

6 The "@" convention

In linear algebra it is common to use the notation $A_{\bullet,j}$ to denote the vector formed by the j^{th} column of A. Note that A is in vector format not in scalar format (A).

We can use "ullet" as an index in a vector forcing the vector mode by using @ as follows:

\[\AA[@,j], \qquad \Balpha[i,j;@] \] ${f A}_{ullet,j}, \quad {m lpha}_{i,j}^{ullet}$