The package EASYVECTOR

Enrico Bertolazzi
Department of Mechanics and Structures Engineering
University of Trento
via Mesiano 77, I - 38050 Trento, Italy
enrico.bertolazzi@ing.unitn.it

19th March 2002

Abstract

The EASYVECTOR package is a simple macro package that provides a C-like syntax for writing vectors or matrices.

Contents

1 Some examples with EASYVECTOR 2
2 Use of the \newvector command 2
3 Use of the! command 3
4 Use of the \newcustomvector command 4
5 The "definevectors" option 4
6 The "@" convention 4

1 Some examples with EASYVECTOR

The package is loaded by means of the usual way:

```
\documentclass{article}
.
\usepackage[spacesep,definevectors]{easyvector}
```

The package option spacesep means that the separator for the indices is the command \smallspace instead of "," (comma).

The package option definevectors means that the command $\backslash a a, \ldots, \backslash z z$ and $\backslash A A, \ldots, \backslash Z Z$ are predefined as vectors. It also defines the commands $\backslash B a l p h a$, \backslash Bbeta and so on, as bold greek vectors. The latex commands \aa, \AA, \gg, $\backslash l l, \backslash s s, \backslash S S, \backslash t t$ are saved in the commands $\backslash o l d x x$ where $x x$ is the name of the old command.

2 Use of the \newvector command

The general syntax of \backslash newvector command is

```
\ newvector [\cmda,\cmdb] { cmd }
```

or

```
\newvector(a) [cmd]
```

In the first case, it creates the new command (macro) $\backslash \mathrm{cmd}$ which executes \backslash cmda when in scalar mode and \backslash cmdb when in vector mode. In the second case it creates a new command $\backslash \mathrm{cmd}$ which substitutes the letter \backslash mathit $\{a\}$ when in scalar, mode and \backslash mathbf $\{a\}$ when in vector mode. Scalar mode is activated when \backslash cmd is immediately followed by [. In scalar mode everything between [and] (with balancing) is assumed to be as an index. For example the commands

```
\newvector[\alpha,\beta]{W}
\newvector [X, \mathbf{X}]{X}
\[ \W = (\W[i,j]), \qquad \X = (\X[i,j;k])\]
```

$$
\beta=\left(\alpha_{i, j}\right), \quad \mathbf{X}=\left(X_{i, j}^{k}\right)
$$

The structure of the [...] command is the following

$$
[i, j, \ldots, k ; x, y, \ldots, z]
$$

where $\mathbf{i}, \mathbf{j}, \ldots, k$ are subscripts and $\mathbf{x}, \mathrm{y}, \ldots, \mathrm{z}$ are superscripts. The comma "," is used as a separator between different indices, and the semi-colon ";" separates subscripts and superscripts. There are no limits on the number of indices, and the code is reentrant, as the following example illustrates

```
\newvector(a)[av]
\newvector(b)[bv]
\[ \av = \pmatrix{ \av[1,1] & \av[1,2] \cr
    \av[2,1] & \av[2,2] \cr}, \qquad
    \bv = \left\{ \bv[\gamma,\bv[i,j;k];a] \right\}
\]
```

$$
\mathbf{a}=\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right), \quad \mathbf{b}=\left\{b_{\gamma, b_{i, j}^{k}}^{a}\right\}
$$

3 Use of the! command

It is possible to enforce vector mode also when using indices by using the character ! before [

```
\newvector(z)[zzz]
\[ \zzz[1,2,3] \neq \zzz![1,2,3] \]
```


4 Use of the \newcustomvector command

In some circumstances the command \newcustomvector can be useful. Is is essentially the \newvector command with an extra argument that is a macro to manage the index part.

```
\def\myindex[#1,#2,#3]{_{#1_{#2}}^{#3}}
\newcustomvector[\mathtt{a},\mathbf{a}]{aaa}\myindex
\[ \aaa[1,2,3], \qquad \aaa[3,2,1], \qquad \aaa \]
```

$$
\mathrm{a}_{1_{2}}^{3}, \quad \mathrm{a}_{3_{2}}^{1}, \quad \mathbf{a}
$$

Important: For old users (version <0.6) the command \backslash customindex is suppressed and the \backslash newcustomvector is used instead.

5 The "definevectors" option

This option defines the following vectors for you:

```
\aa,\bb,...,\zz \AA,\BB,...,\zz
\Balpha, \Bbeta, ..., \Bomega
```

for example

```
\ [
    \Balpha[i,j], \quad \Balpha,
    \quad \BB[i,j], \quad \BB,
\]
\(\alpha_{i, j}, \quad \boldsymbol{\alpha}, \quad B_{i, j}, \quad \mathbf{B}\),
```


6 The "@" convention

In linear algebra it is common to use the notation $\mathbf{A}_{\bullet, j}$ to denote the vector formed by the $j^{\text {th }}$ column of \mathbf{A}. Note that \mathbf{A} is in vector format not in scalar format (A).

We can use " \bullet " as an index in a vector forcing the vector mode by using @ as follows:

$$
\AA[@,j], \qquad \Balpha[i,j;@]
$$

$$
\mathbf{A}_{\bullet, j}, \quad \boldsymbol{\alpha}_{i, j}^{\bullet}
$$

