The KIEX 2¢ Sources

Johannes Braams
David Carlisle
Alan Jeffrey
Leslie Lamport
Frank Mittelbach
Chris Rowley
Rainer Schopf

2009,/09/24

Contents

a ltdirchk.dtx
1 ETEX System Dependent Initialisations

2 Initialisation
2.1 INITEX o e
2.2 Somebitsof 2e oL

3 texsys.cfg
3.1 texsys.cfg . .o
3.2 UNIX (web2c) o o
3.3 UNIX (other) o i i
3.4 MSDOS (emtex) . .« v v v v v
3.5 MSDOS (other)o
3.6 VMS (DECUS TEX,PD VMS 3.6)
37 VMS (277) 0 oo
3.8 MACINTOSH (OzTeX 1.6) oo
3.9 MACINTOSH (other)
3.10 FAKE EXAMPLE

4 Setting \Qcurrdir
5 Setting \input@path

6 Filename Parsing

w NN

SO OO UL UL UL OO W

J

TEX Versions

Itxcheck.tex

Itplain.dtx
Plain TgX

Itvers.dtx

10

10

11

11

21

10 Version Identification

d ltdefns.dtx

11 Definitions
11.1 Initex initialisations . .

11.2 Saved versions of TEX primitives

11.3 Command definitions . .

11.4 Robust commands and protect
11.5 Internal defining commands
11.6 Commands for Autoloading

e ltalloc.dtx

12 Counters

f ltentrl.dtx

13 Program control structure

g lterror.dtx

14 Error handling
14.1 General commands . . .
14.2 Specific errors

h ltpar.dtx

15 Paragraphs
15.1 Implementation

i Itspace.dtx

16 Spacing
16.1 User Commands
16.2 Chris’ comments
16.3 Some immediate actions
16.4 The code
16.5 Vertical spacing

16.6 Horizontal space (and breaks)

j ltlogos.dtx

17 Logos

k Itfiles.dtx

18 File Handling
18.1 Safe Input Macros . . .
18.2 Listing files

ii

21

22

22
22
22
23
29
32
33

34

34

35

35

38

38
38
42

46

46
46

48

48
48
48
50
50
54
56

59

59

1 ltoutenc.dtx

19 Font encodings

19.1 Removing encoding-specific commands
19.2 The order of declarations

19.3 Docstrip modules . . .

19.4 Definitions for the kernel
19.4.1 Declaration commands

19.4.2 Hyphenation

19.4.3 Miscellania . .

19.4.4 Default encodings oL

19.4.5 Math material

19.5 Definitions for the OT1 encoding
19.6 Definitions for the T1 encoding
19.7 Definitions for the OMS encoding
19.8 Definitions for the OML encoding
19.9 Definitions for the OT4 encoding
19.10Definitions for the TS1 encoding

20 Package files
20.1 The fontenc package

20.2 The textcomp package

20.2.1 Supporting oldstyle digits
20.2.2 Subset encoding defaults 0L

m ltcounts.dtx

21 Counters and Lengths

21.1 Environment Counter Macros

n ltlength.dtx

22 Lengths

o ltfssbas.dtx

23 Autoloading parts of NFSS

24 Preliminary macros

25 Macros for setting up the tables

26 Selecting a new font

26.1 Macros for the user . .

26.2 Macros for loading fonts o oo

27 Assigning math fonts to versions

p ltfsstrc.dtx

28 Introduction

29 A driver for this document

30 The Implementation

iii

69

69
71
71
72
72
72
78
78
78
80
81
82
86
87
87
89

92
93
94
100
101

103

103
103

106

106

107
107
107
108

112
112
115

120

125
125
125

125

31 Handling Options 126

32 Macros common to fam.tex and tracefnt.sty 127
32.1 General font loading o oo oL 127
32.2 Math fonts setup oo 131

32.2.1 Outline of algorithm for math font sizes 131
32.2.2 Code for math font size setting 132
32.2.3 Other code formath 133

33 Scaled font extraction 135
33.1 Sizefunctions L L 141

q ltfsscmp.dtx 145

34 Compatibility code for NFSS release 1 145

r ltfssdcl.dtx 149

35 Interface Commands 149

s ltfssini.dtx 168

36 NFSS Initialisation 168
36.1 Providing math wversions Lo oL 168
36.2 Miscellaneous L Lo 169

t fontdef.dtx 173

37 Introduction 173

38 Customization 173

39 The docstrip modules 174

40 A driver for this document 174

41 The fonttext.ltx file 174
41.1 Encodings oL 174
41.2 Defaults e 176

42 The fontmath.1ltx file 176
42.1 The font encodings used Lo 176

42.1.1 Symbolfont and Alphabet declarations 177
42.2 Math font sizeso 177
42.3 The math symbol assignments 178
42.3.1 Theletters L 178
42.3.2 Thedigits L 179
42.3.3 Punctuation, brace, etc. keyso 179
42.3.4 Delimitercodes for characters 179
42.4 Symbols accessed via control sequences 180
42.4.1 Greek letters Lo 180
42.4.2 Ordinary symbols oL 181
42.4.3 Large Operators 181
4244 Binary symbols oL L oL 181
42.4.5 Relations L oo 182
42.4.6 Arrowso 183

iv

42.4.7 Punctuation symbols oo
42.4.8 Math accents Lo
4249 Radicals
42.4.10 Over and under something, etc
42.4.11Delimiters e e
42.5 Math versions of text commands
42.6 Other special functions and parameters
42.6.1 Biggggeo
42.6.2 The log-like functions
42.6.3 Parameters

43 Default cfg files

u preload.dtx

44 Overview

45 Customization

46 Module switches for the DOCSTRIP program
47 A driver for this document

48 The code

v Itfntcmd.dtx
49 Introduction
50 The implementation

51 Initialization

w ltpageno.dtx

52 Page Numbering

x ltxref.dtx

53 Cross Referencing

53.1 Cross Referencing
53.2 An extension of counter referencing

y ltmiscen.dtx

54 Miscellaneous Environments

54.1 Environments L
54.2 Center, Flushright, Flushleft
54.3 Verbatim e

Itmath.dtx

188
188
188
188
189

189

191
191
193

197

198

198

199

199
199
201

202

202
202
205
207

210

55 Math setup
55.1 Math commands based on plain TEX
55.1.1 The log-like functions
55.1.2 Bigggegg
55.1.3 The UNSORTED Rest
55.2 Math Environments 0L
55.3 External options to the standard document classes
55.3.1 Left equation numbering oL
55.3.2 Flush left equations

A ltlists.dtx

56 List, and related environments
56.1 List and Trivlist Lo
56.2 Vertical Spacing (skips)o o
56.3 Penalties oL Lo
56.4 Horizontal Spacing (dimens)
56.5 Default Values
56.6 Itemize and Enumerate oL

B Itboxes.dtx

57 BTEX Box commands
57.1 Some low-level constructs

C lttab.dtx

58 Tabbing, Tabular and Array Environments
58.1 tabbing
58.2 array and tabular environments oL L

D ltpictur.dtx

59 Picture Mode
5.1 CUIVES . .« v o o e e

E Itthm.dtx

60 Theorem Environments

F ltsect.dtx

61 Sectioning Commands
61.1 The Title e
61.2 Sectioning
61.2.1 Initializations
61.3 Table of Contents etc.
61.3.1 Convention
61.3.2 Commands e

G ltfloat.dtx

vi

210
210
210
211
211
214
216
216
217

219

219
220
220
221
221
221
229

232

232
240

241

241
241
248

260

260
276

279

279

282

282
282
283
288
288
288
288

291

62 Floats
62.1 Floating Environments
62.2 Footnotes

H Itidxglo.dtx

63 Index and Glossary Generation

I Itbibl.dtx

64 Bibliography Generation
64.1 Default definitions

J ltpage.dtx

65 Page styles and related commands

65.1 Page Style Commands

65.2 How a page style makes running heads and feet

65.3 marking conventions

K ltoutput.dtx

66 Output Routine
66.1 Floats
66.1.1 Kludgeins

66.1.2 Float control

66.1.3 Float placement parameters

L Itclass.dtx

67 Introduction

68 User interface
68.1 Option processing

69 Class and Package interface
69.1 Class name and version .
69.2 Package name and version
69.3 Requiring other packages
69.4 Declaring new options
69.5 Safe Input Macros

70 Implementation
70.1 Hooks
70.2 Providing shipment

71 After Preamble
M lthyphen.dtx

N ltfinal.dtx

vii

305

305

307

307
309

311

311
311
311
311

314

314
314
349
352
360

363
363

363
364

364
364
364
364
365
366

366
375
376

378

379

380

72 Final settings

72.1 Debugging

72.2 Typesetting parameters oo
72.3 Lccodes for hyphenation

72.4 Hyphenation
72.5 Font loading
72.6 Input encoding . . .

72.7 Lccodes and uccodes
72.8 Applying Patch files

72.9 Freeing Memory . .
72.10Initialise file list . . .

72.11Dumping the format

O ltpatch

Change History

Index

viii

380
380
380
380
381
382
382
383
384
385
386
386

387

388

433

\@currdir

\input@path

\filename@parse

\@TeXversion

File a
Itdirchk.dtx

1 ETEX System Dependent Initialisations

This file implements the semi-automatic determination of various system depen-
dent parts of the initialisation. The actual definitions may be placed in a file
texsys.cfg. Thus for operating systems for which the tests here do not result in
acceptable settings, a ‘hand written’ texsys.cfg may be produced.

The macros that must be defined are:

\@currdir(filename)(space) should expand to a form of the filename that
uniquely refers to the ‘current directory’ if this is possible. (The expansion should
also end with a space.) on UNIX| this is \def\@currdir{./}. For more exotic
operating systems you may want to make \@currdir a macro with arguments de-
limited by . and/or (space). If the operating system has no concept of directory
structure, this macro should be defined to be empty.

If the primitive \openin searches the same directories as the primitive \input,
then it is possible to tell (using \ifeof) whether a file exists before trying to input
it. For systems like this, \input@path should be left undefined.

If \openin does not ‘follow’ \input then \input@path must be defined to be
a list of directories to search for input files. The format for each directory is as
for \@currdir, normally just a prefix is required, but it may be a macro with
space-delimited argument. That is, if (dir) is an entry in the input path, TgX will
try to load the expansion of (dir){filename)(space)

So either (dir) should be defined as a macro with argument delimited by space,
or it should just expand to a directory name, including the final directory sepa-
rator, so that it may be concatenated with the (filename). This means that for
UNIX-like syntax, each (dir) should end with a slash, /.

\input@path should expand to a list of such directories, each in a {} group.

After a call of the form: \filename@parse{(filename)}, the three macros
\filename®@area, \filename®base,\filename@ext should be defined to be the
‘area’ (or directory), basename and extension respectively. If there was no ex-
tension specified in (filename), \filename@ext should be \let to \relax (so this
case may be tested with \@ifundefined{filename®@ext} and, perhaps a default
extension substituted).

Normally one would not need to define this macro in texsys.cfg as the au-
tomatic tests can supply parsers that work with UNIX and VMS and Macintosh
syntax, as well as a basic parser that will cover many other cases. However some
operating systems may need a ‘hand produced’ parser in which case it should be
defined in this file.

The UNIX parser also works for most MSDOS TgX versions. Currently if
the UNIX, VMS or Macintosh parser is not used, \filename@parse is defined
to always return an empty area, and to split the argument into basename and
extension at the first ‘.’ that occurs in the name. Parsers for other formats may
be defined in texsys.cfg, in which case they will be used in preference to the
default definitions.

\@TeXversion is now set automatically by the initialisation tests in this file.
You should not need to set it in texsys.cfg, however the following documentation
is left for information. IXTEX does not set this variable exactly, the automatic tests
set it to:

2 for any version, v, v < 3.0

3 for any version, v, 3.0 < v < 3.14

(undefined) otherwise.

However these values are accurate enough for M TEX to take appropriate action for
these old TEXs.

If your TEX is older than version 3.141, then you should define \@TeXversion

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 1

(using \def) to be the version number. If you do not do this' , WTEX will not
work around a bug in old TEX versions, and so error messages will appear in a
very strange format, with ~~J appearing instead of line breaks:

! LaTeX Error: \rubbish undefined.""J""JSee the LaTeX manual or LaTeX Companion
for explanation.”"JType H <return> for immediate help.

1.3 \renewcommand{\rubbish}

{3

?

However if you put \def\@TeXversion{3.14} in texsys.cfg the following format
will be used:

! LaTeX Error: \rubbish undefined.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.
!

1.3 \renewcommand{\rubbish}
{

?

Note that this has an extra line ! . which does not appear in error messages that
use the default settings with a current version of TEX, but this should not cause
any confusion we hope.

2 Initialisation

As this file is read at a very early stage, some definitions that are normally con-
sidered to be part of the format must be made here.

2.1 INITEX

1 (xdircheck)

2 (kinitex)

3 (initex) \ifnum\catcode ‘\{=1

4 (initex) \errmessage

5 (initex) {LaTeX must be made using an initex with no format preloaded}
6 (initex) \fi

7 \catcode ‘\{=1

8 \catcode ‘\}=2

9 \catcode ‘\#=6

10 \catcode ‘\"=7

11 \chardef\active=13

12 \catcode ‘\@=11

13 \countdef\count@=255

14 \let\bgroup={ \let\egroup=}

15 \ifx\@@input\@undefined\let\@@input\input\fi
16 \ifx\@0@end\@undefined\let\@Cend\end\fi

17 \chardef\@inputcheck0

18 \chardef\sixt@@n=16

19 \newlinechar ‘\~"J

20 \def\typeout{\immediate\writel7}

21 \def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&/
22 \do\#\do\~\do_\do\%\do\~}

23 \def\@makeother#1{\catcode ‘#1=12\relax}

L Actually if your TEX is really old, version 2, IATEX can detect this, and sets \@TeXversion
to 2 if it is not set in the cfg file.

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 2

\strip@prefix

24 \def\space{ }

25 \def\Otempswafalse{\let\if@tempswa\iffalse}

26 \def\@tempswatrue{\let\if@tempswa\iftrue}

27 \let\if@tempswa\iffalse

28 \def\loop#1\repeat{\def\iterate{#1\relax\expandafter\iterate\fi}},
29 \iterate \let\iterate\relax}

30 \let\repeat\fi

31 (/initex)

2.2 Some bits of 2e

32 (*2ekernel)

33 \def\two@digits#1{\ifnum#1<10 O\fi\number#1}
34 \long\def\@firstoftwo#1#2{#1}

35 \long\def\@secondoftwo#1#2{#2}

This is a special version of \ProvidesFile for initex use.
36 \def\ProvidesFile#1{},
37 \begingroup

38 \catcode‘\ 10 %

39 \ifnum \endlinechar<256

40 \ifnum \endlinechar>\m@ne
41 \catcode\endlinechar 10 }
42 \fi

43 \fi

44 \@makeother\/Y

45 \@ifnextchar[{\@providesfile{#1}}{\@providesfile{#1}[]1}}
46 \def\@providesfile#1 [#2]{}

47 \wlog{File: #1 #2}),

48 \@addtofilelist{ #2})

49 \endgroup}

50 \long\def\@addtofilelist#1{}

51 \def\@empty{}

52 \catcode ‘\}=12

53 \def\@percentchar{}}

54 \catcode ‘\/=14

55 \1let\@currdir\@undefined

56 \let\input@path\@undefined

57 \let\filename@parse\Qundefined

58 \def\strip@prefix#1>{}
59 (/2ekernel)

3 texsys.cfg

As mentioned above, any site specific definitions required to describe the filename
handling must be entered into a file texsys.cfg. If texsys.cfg can not be located
by \openin, we write a default version out. The default version only contains
comments, so we do not actually input the file in that case. The automatic tests

later will, hopefully, correctly define the required macros.

The tricky code below checks to see if texsys.cfg exists. If it does not, all
the text in this file between START and END is copied verbatim to a new file
texsys,cfg. If texsys.cfg is found, then it is simply input. This is only done

when this file is being used unstripped.

60 (xdocstrip)

61 \openinib=texsys.cfg-not-found

62 \ifeof15

63 \typeout{** Writing a default texsys.cfg}
64 \immediate\openoutl5=texsys.cfg

65 \begingroup

66 \catcode ‘\""M\activey,

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y

\@currdir

\input@path

\filename@parse

67 \let~"M\pary

68 \def\reserved@a#1~"M{},

69 \def\reserved@b{#1}},

70 \ifx\reserved@b\reserved@c\endgroup\elsey

71 \immediate\writel5{#1})

72 \expandafter\reserved@a\fi}y

73 \def\reserved@d#1START~"M{\let\do\@mnakeother\dospecials\reserved@al}y
74 \catcode ‘\7=12

75 \def\reserved@c{/END}

76 \reserved@d

START

3.1 texsys.cfg

This file contains the site specific definitions of the four macros
\@currdir, \input@path, \filename@parse and \@TeXversion.

As distributed it only contains comments, however this ‘empty’ file will work
on many systems because of the automatic tests built into 1tdirchk.dtx. You
are allowed to edit this file to add definitions of these macros appropriate to your
system.

The macros that must be defined are:

\@currdir(filename)(space) should expand to a form of the filename that
uniquely refers to the ‘current directory’ if this is possible. (The expansion should
also end with a space.) on UNIX, this is \def\@currdir{./}. For more exotic
operating systems you may want to make \@currdir a macro with arguments de-
limited by . and/or {space). If the operating system has no concept of directory
structure, this macro should be defined to be empty.

If the primitive \openin searches the same directories as the primitive \input,
then it is possible to tell (using \ifeof) whether a file exists before trying to input
it. For systems like this, \input@path should be left undefined.

If \openin does not ‘follow’ \input then \input@path must be defined to be
a list of directories to search for input files. The format for each directory is as
for \@currdir, normally just a prefix is required, but it may be a macro with
space-delimited argument. That is, if (dir) is an entry in the input path, TEXwill
try to load the expansion of

(dir){filename)(space)

So either (dir) should be defined as a macro with argument delimited by space,
or it should just expand to a directory name, including the final directory sepa-
rator, so that it may be concatenated with the (filename). This means that for
UNIX-like syntax, each (dir) should end with a slash, /. One exception to this
rule is that the input path should always contain the empty directory {} as this
will allow ‘full pathnames’ to be used, and the ‘current directory’ to be searched.

\input@path should expand to a list of such directories, each in a {} group.

After a call of the form: \filename@parse{(filename)}, the three macros
\filename®@area, \filename®@base,\filename@ext should be defined to be the
‘area’ (or directory), basename and extension respectively. If there was no ex-
tension specified in (filename), \filename@ext should be \let to \relax (so this
case may be tested with \@ifundefined{filename®@ext} and, perhaps a default
extension substituted).

Normally one would not need to define this macro in texsys.cfg as the auto-
matic tests can supply parsers that work with UNIX and VMS syntax, as well as
a basic parser that willcover many other cases. However some operating systems
may need a ‘hand produced’ parser in which case it should be defined in this file.

The UNIX parser also works for most MSDOS TEX versions. Currently if the
UNIX or VMS parser is not used, \filename@parse is defined to always return an
empty area, and to split the argument into basename and extension at the first ¢.’
that occurs in the name. Parsers for other formats may be defined in texsys.cfg,
in which case they will be used in preference to the default definitions.

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 4

\@TeXversion

You should not need to set this macro in texsys.cfg. ETEX tests to set this
automatically. See the comments in the opening section of 1tdirchk.dtx.

The following sections give examples of definitions which might work on various
systems. These are currently mainly untested as I only have access to a few
systems, all of which do not need this file as the automatic tests work. All the
code is commented out.

3.2 UNIX (web2c)

This implementation does make \openin and \input look in the same places.
Acceptable settings are made by 1tdirchk.dtx, and so this file may be empty.
The definitions below are therefore just for information.

77 %\def\@currdir{./}
78 %\let\input@path\Qundefined

3.3 UNIX (other)

Apparently some commercial UNIX implementations have different paths for
\openin and \input. For these one could use definitions like the following (with
whatever directories are used at your site): note that the directory names should
end with /.

79 7 \def\@currdir{./}

80 % \def\input@path{},

81 7% {/usr/local/lib/tex/inputs/distrib/}},

82 7, {/usr/local/lib/tex/inputs/contrib/}},

83 % {/usr/local/lib/tex/inputs/local/}},

84 74 }

3.4 MSDOS (emtex)

This implementation does make \openin and \input look in the same places.
Acceptable settings are made by 1tdirchk.dtx, and so this file may be empty.
The definitions below are therefore just for information.

85 % \def\@currdir{./}
86 % \let\input@path\@undefined

3.5 MSDOS (other)

Some PC implementations have different paths for \openin and \input. For these
one could use definitions like the following (with whatever directories are used at
your site): note that the directory names should end with /. This assumes the
implementation uses UNIX style / as the directory separator.

87 % \def\@currdir{./}

88 % \def\input@path{}

89 %, {c:/tex/inputs/distrib/}},

90 7, {c:/tex/inputs/contrib/}},

91 4 {c:/tex/inputs/local/}},

92 7 F

3.6 VMS (DECUS TgX, PD VMS 3.6)

This implementation does make \openin and \input look in the same places.
Acceptable settings are made by 1tdirchk.dtx, and so this file may be empty.
The definitions below are therefore just for information.

93 % \def\@currdir{[]}
94 7 \let\input@path\@undefined

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 5

3.7 VMS (?77)

Some VMS implementations have different paths for \openin and \input. For
these one could use definitions like the following:

95 7, \def\@currdir{[]}

96 7 \def\input@path{},

97 7 {tex_inputs:}J

98 , {SOMEDISK: [SOME.TEX.DIRECTORY]})
9 7% F

3.8 MACINTOSH (OzTeX 1.6)

This implementation does make \openin and \input look in the same places.
Acceptable settings are made by 1tdirchk.dtx, and so this file may be empty.
The definitions below are therefore just for information.

100 7 \def\@currdir{:}
101 4 \let\input@path\@undefined

3.9 MACINTOSH (other)

Some Macintosh implementations have different paths for \openin and \input.
For these one could use definitions like the following (with whatever folders are
used on your machine): note that the directory names should end with :, and
they should contain no spaces.

102 7 \def\@currdir{:}

103 7 \def\input@path{}

104 4 {Hard-Disk:Applications:TeX:TeX-inputs:}}

105 4 {Hard-Disk:Applications:TeX:My-inputs:}},

106 % }

3.10 FAKE EXAMPLE

This example is for an operating system that has filenames of the form <area>name
For maximum compatability with macro sets, you want name.ext to be mapped
to <ext>name. and <area>name.ext to be mapped to <area.ext>name. \input
does this mapping automatically, but \openin does not, and does not look in the
same places as \input. <>name is the desired ‘current directory’ syntax.
the following code would possibly work:
107 % \def\edir#1#2 {J
108 4 \eder{#1}#2..\enil}
109 % \def\eder#1#2.#3.#4\Cnil{},
110 % <\ifx\@dir#i\@dir\else#1\ifx\@dir#3\@dir\else.\fi\fi#3>#2 }
111 7
112 % \def\@currdir{\edir{}}
113 7 \def\input@path{},
114 % {\@dir{area.one}}),
115 % {\@dir{area.twol}}/
116 4 }

END
117 \immediate\closeout15
If texsys.cfg did exist, then input it.

118 \else

119 \typeout{** Using the existing texsys.cfg}
120 \closein1b

121 \input texsys.cfg

122 \fi

123 (/docstrip)

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 6

\@currdir
\IfFileExists

\today

If the stripped version of this file is being used (in latex2e.ltx) then texsys.cfg
should be there, so just input it.

124 (dircheck)\input texsys.cfg

4 Setting \Qcurrdir

This is a local definition of \IfFileExists. It tries to relocate texsxys.aux. If
it succeeds, then the \@currdir syntax has been determined. If all the tests fail
then \@currdir will be set to \@empty, and ltxcheck will warn of this when it
checks the format.

125 \begingroup

126 \count@\time

127 \divide\count@ 60

128 \count2=-\count@

129 \multiply\count2 60

130 \advance\count2 \time

The current date and time stamp.

131 \edef\today{%
132 \the\year/\two@digits{\the\month}/\two@digits{\the\day}:’
133 \two@digits{\the\count@}:\two@digits{\the\count2}}

Create a file texsys.aux (hopefully in the current directory), then try to locate
it again.
134 \immediate\openout15=texsys.aux
135 \immediate\writel5{\today~"~J}
136 \immediate\closeout15 7%

#1 is the file to try, #2 is what to do on success, #3 on failure.

137 \def\IfFileExists#1#2#3{/
138 \openin\@inputcheck#1 %
139 \ifeof\@inputcheck

140 #3\relax

141 \else

142 \read\@inputcheck to \reserved@a

143 \ifx\reserved@a\today

144 \typeout{#1 found}#2\relax

145 \else

146 \typeout{BAD: old file \reserved@a (should be \today)}/
147 #3\relax

148 \fi

149 \fi

150 \closein\@inputcheck}
151 \endlinechar=-1

If \@currdir has not been pre-defined in texsys.cfg then test for UNIX,
VMS and Oz-TgX-Mac. syntax.
152 \ifx\@currdir\@undefined
153 \IfFileExists{./texsys.aux}{\gdef\@currdir{./}}/
154 {\IfFileExists{[]texsys.aux}{\gdef\Q@currdir{[1}}%
155 {\IfFileExists{:texsys.aux}{\gdef\@currdir{:}}{}}}
If it is still undefined at this point, all the above tests failed. Earlier versions
interactively prompted for a definition at this point, but it seems impossible to
reliably obtain information from users at this point in the installation. This version
of the file produces a format with no user-interaction. Later if the format is not
suitable for the system, texsys.cfg may be edited and the format re-made.
156 \ifx\@currdir\@undefined
157 \global\let\@currdir\Qempty
158 \typeout{~~J~"J%

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 7

\input@path

159 'l No syntax for the current directory could be found~"~J}

160 o
161 \fi

Otherwise \@currdir was defined in texsys.cfg. In this case check that the
syntax specified works on this system. (In case a complete KTEX system has been
copied from one system to another.) If the test fails, give up. The installer should
remove or correct the offending texsys.cfg and try again.

162 \else

163 \IfFileExists{\@currdir texsys.aux}{}%

164 \edef\reserved@a{\errhelp{/

165 texsys.cfg specifies the current directory syntax to be~"JJ
166 \meaning\@currdir~"J%

167 but this does not work on this system.”"J%

168 Remove texsys.cfg and restart.l}}\reserved@a

169 \errmessage{Bad texsys.cfg file: \noexpand\@currdir}\@@end}

The version of \@currdir in texsys.cfg looks OK.
170 \fi

171 \immediate\closeout15 Y
172 \endgroup

173 \typeout{~~J""~J%

174 \noexpand\@currdir set to:
175 \expandafter\strip@prefix\meaning\@currdir.""~J}
176 }

Stop here if the file is being used unstripped.
177 (xdocstrip)
178 \relax\endinput
179 (/docstrip)

5 Setting \input@path

Earlier versions of this file attempted to automatically test whether \input@path
was required, and interactively prompt for a path if necessary. This was not found
to be very reliable The first-time installer of ITEX 2z can not be expected to
have enough information to supply the correct information to the prompts. Now
the interaction is omitted. After the format is made the installer can attempt to
run the test document 1txcheck.tex through IWTEX 2¢. This will check, amongst
other things, whether texsys.cfg will need to be edited and the format remade.

Now set up the \input@path.
\input@path should either be undefined, or a list of directories as described
in the introduction.

180 \typeout{~"J%

181 Assuming \noexpand\openin and \noexpand\input~"J/
182 \ifx\input@path\@undefined

\input@path has not been pre-defined.

183 have the same search path.~"J%

184 \else

\input@path has been defined in texsys.cfg.

185 have different search paths.”"J}

186 LaTeX will use the path specified by \noexpand\input@path:~"~J%
187 \fi

188 }

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 8

6 Filename Parsing

\filename@parse Split a filename into its components.

189 \ifx\filename®@parse\Qundefined
190 \def\reserved@a{./}\ifx\@currdir\reserved@a

\filename@parse was not specified in texsys.cfg, but \Qcurrdir looks like

UNIX..

191 \typeout{~"JDefining UNIX/DOS style filename parser.”"J}
192 \def\filename@parse#1{/

193 \let\filename®@area\Qempty

194 \expandafter\filename@path#1/\\}

Search for the last /.
195 \def\filename@path#1/#2\\{/

196 \ifx\\#2\\7%

197 \def\reserved@a{\filename@simple#1.\\1}/
198 \else

199 \edef\filename@area{\filename®@area#1/}/
200 \def\reserved@a{\filename@path#2\\1}7
201 \fi

202 \reserved@a}

203 \else\def\reserved@a{[]}\ifx\@currdir\reserved@a

\filename@parse was not specified in texsys.cfg, but \Qcurrdir looks like

VMS. ..
204 \typeout{~~JDefining VMS style filename parser.”"J}
205 \def\filename@parse#1{/
206 \let\filename®@area\Qempty
207 \expandafter\filename@path#1]\\}

Search for the last].
208 \def\filename@path#1]#2\\{/
209 \ifx\\#2\\7
210 \def\reserved@a{\filename@simple#1.\\1}/
211 \else
212 \edef\filename@area{\filename®@area#1]}/
213 \def\reserved@a{\filename@path#2\\1}7
214 \fi
215 \reserved@a}

216 \else\def\reserved@a{:}\ifx\@currdir\reserved@a

\filename@parse was not specified in texsys.cfg, but \@Qcurrdir looks like Mac-

intosh. . .
217 \typeout{~"JDefining Mac style filename parser.”"J}
218 \def\filename@parse#1{/
219 \let\filename®@area\Qempty
220 \expandafter\filename@path#1:\\}
Search for the last :.
221 \def\filename@path#1:#2\\{%
222 \ifx\\#2\\7%
223 \def\reserved@a{\filename@simple#1.\\1}/
224 \else
225 \edef\filename@area{\filename®@area#1l:1}/
226 \def\reserved@a{\filename@path#2\\}%
227 \fi
228 \reserved@a}
229 \else

\filename@parse was not specified in texsys.cfg. So just make a simple parser
that always sets \filename®@area to empty.

230 \typeout{~"JDefining generic filename parser.”~J}

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 9

\@TeXversion

231 \def\filename@parse#1{}
232 \let\filename®@area\@empty
233 \expandafter\filename@simple#1.\\}
234 \fi\fi\fi
\filename@simple is used by all three versions. Finally we can split off the
extension.
235 \def\filename@simple#1.#2\\{/
236 \ifx\\#2\\7%

237 \let\filename@ext\relax

238 \else

239 \edef\filename@ext{\filename@dot#2\\}/
240 \fi

241 \edef\filename@base{#1}}

Remove a final dot, added earlier.
242 \def\filename@dot#1.\\{#1}

243 \else

Otherwise, \filename@parse was specified in texsys.cfg.
244 \typeout{~~J~"J%

245 \noexpand\filename@parse was defined in texsys.cfg:~"~J%
246 \expandafter\strip@prefix\meaning\filename®@parse.""~J%
247 }

248 \fi

7 'TEX Versions

TEX versions older than than 3.141 require \@TeXversion to be set. This can be
determined automatically due to a trick suggested by Bernd Raichle. (Actually
this will not always get the correct version number, eg TEX3.14 would be detected
as TEX3, but ITEX only needs to take account of TEX'’s older than 3, or between
3 and 3.14.

249 \ifx\@TeXversion\Qundefined

250 \ifx\Qundefined\inputlineno

251 \def\@TeXversion{2}

252 \else

253 {\catcode‘\""J=\active

254 \def\reserved@a#1#2\@@{\if#1\string~3\fi}

255 \edef\reserved@a{\expandafter\reserved@a\string~~J\0@Q}
256 \ifx\reserved@a\@empty\else\gdef\@TeXversion{3}\fi}
257 \fi

258 \fi

259 (/dircheck)

8 Iltxcheck.tex

After the format has been made, and article.cls moved with the other files to the
‘standard input directory’ as specified in install.txt, the format may be checked
by running the file 1txcheck.tex.

File a: 1tdirchk.dtx Date: 2001/06/04 Version v1.0y 10

File b
Itplain.dtx

9 Plain TEX

ETEX includes almost all of the functionality of Knuth’s original ‘Basic Macros’
That is, the plain TEX format described in Appendix B of the TEXBook. However,
some of the user commands are not much use so, in order to save memory, we may
remove them from the kernel into a package. Here is a list of the commands that
may be removed (PROBABLY NOT COMPLETE).

\magstep \magstephalf

\mathhexbox
\vglue \vgla@
\hglue \hgl@

This file is by now very small as most of it has been moved to more appropriate
kernel files: it may disappear completely one day.

ETEX font definitions are done using NFSS2 so none of PLAIN’s font definitions
are in BTEX.

ETEX has its own tabbing environment, so PLAIN’s is disabled.

KTEX uses its own output routine, so most of the plain one was removed.

1 (x2ekernel | autoload)

2 \catcode‘\{=1 % left brace is begin-group character

3 \catcode‘\}=2 ¥, right brace is end-group character

4 \catcode‘\$=3 I, dollar sign is math shift

5 \catcode‘\&=4 J, ampersand is alignment tab

6 \catcode‘\#=6 7, hash mark is macro parameter character

7 \catcode‘\"=7 % circumflex and uparrow are for superscripts
8 \catcode‘_=8 7, underline and downarrow are for subscripts
9 \catcode‘\""I=10 % ascii tab is a blank space

10 \chardef\active=13 \catcode‘\"=\active % tilde is active

11 \catcode‘\""L=\active \outer\def "L{\parl}) ascii form-feed is \outer\par

12 \message{catcodes,}

We had to define the \catcodes right away, before the message line, since
\message uses the { and } characters. When INITEX (the TEX initializer) starts
up, it has defined the following \catcode values:

\catcode‘\""0@=9 % ascii null is ignored
\catcode‘\""M=5 ¥ ascii return is end-line
\catcode‘\\=0 % backslash is TeX escape character
\catcode‘\%=14 % percent sign is comment character
\catcode‘\ =10 % ascii space is blank space
\catcode‘\""?7=15 ¥ ascii delete is invalid
\catcode‘\A=11 ... \catcode‘\Z=11 %, uppercase letters
\catcode‘\a=11 ... \catcode‘\z=11 % lowercase letters
all others are type 12 (other)
Here is a list of the characters that have been specially catcoded:
13 \def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
14 \do\#\do\"\do_\do\%\do\"}
(not counting ascii null, tab, linefeed, formfeed, return, delete) Each symbol in
the list is preceded by , which can be defined if you want to do something to every
item in the list.

We make @ signs act like letters, temporarily, to avoid conflict between user

names and internal control sequences of plain format.

15 \catcode‘@=11

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 11

\@ne
\twe@
\three
\sixt@@n
\@cclv

\@cclvi
\@m

\@M
\@MM

To make the plain macros more efficient in time and space, several constant
values are declared here as control sequences. If they were changed, anything
could happen; so they are private symbols.

Small constants are defined using \chardef.

16 \chardef\@ne=1

17 \chardef\tw@=2

18 \chardef\thr@e=3

19 \chardef\sixt@@n=16
20 \chardef\@cclv=255

Constants above 255 defined using \mathchardef.

21 \mathchardef\@cclvi=256
22 \mathchardef\@m=1000
23 \mathchardef\@M=10000
24 \mathchardef\@MM=20000

Allocation of registers

Here are macros for the automatic allocation of \count, \box, \dimen, \skip,
\muskip, and \toks registers, as well as \read and \write stream numbers, \fam
codes, \language codes, and \insert numbers.

25 \message{registers,}

When a register is used only temporarily, it need not be allocated; grouping
can be used, making the value previously in the register return after the close of
the group. The main use of these macros is for registers that are defined by one
macro and used by others, possibly at different nesting levels. All such registers
should be defined through these macros; otherwise conflicts may occur, especially
when two or more macro packages are being used at the same time.

The following counters are reserved:

0 to 9 page numbering

10 count allocation

11 dimen allocation

12 skip allocation

13 muskip allocation

14 box allocation

15 toks allocation

16 read file allocation

17 write file allocation

18 math family allocation
19 language allocation

20 insert allocation

21 the most recently allocated number
22 constant -1

New counters are allocated starting with 23, 24, etc. Other registers are allo-
cated starting with 10. This leaves 0 through 9 for the user to play with safely,
except that counts 0 to 9 are considered to be the page and subpage numbers (since
they are displayed during output). In this scheme, \count 10 always contains the
number of the highest-numbered counter that has been allocated, \count 14 the
highest-numbered box, etc. Inserts are given numbers 254, 253, etc., since they
require a \count, \dimen, \skip, and \box all with the same number; \count 20
contains the lowest-numbered insert that has been allocated. Of course, \box255
is reserved for \output; \count255, \dimen255, and \skip255 can be used freely.

It is recommended that macro designers always use \global assignments with
respect to registers numbered
1,3,5,7,9,
and always non-\global assignments with respect to registers
0, 2, 4, 6, 8, 255.

This will prevent “save stack buildup” that might otherwise occur.

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 12

\insc@unt

\allocationnumber

\m@ne

\wlog

\count@
\dimen®@
\dimen@i
\dimen@ii
\skip@
\toks@

\newcount
\newdimen
\newskip
\newmuskip
\newbox
\newhelp
\newtoks

\newread

\newwrite

\newlanguage

26 \count10=22 % allocates \count registers 23, 24,
27 \count11=9 % allocates \dimen registers 10, 11,
28 \count12=9 Y allocates \skip registers 10, 11,
29 \count13=9 %, allocates \muskip registers 10, 11,
30 \count14=9 % allocates \box registers 10, 11,

31 \count15=9 % allocates \toks registers 10, 11,
32 \count16=-1 % allocates input streams 0, 1,

33 \count17=-1 % allocates output streams O, 1,

34 \count18=3 % allocates math families 4, 5,

35 \count19=0 % allocates \language codes 1, 2,

36 \count20=255 % allocates insertions 254, 253,

The insertion counter and most recent allocation.

37 \countdef\insc@unt=20
38 \countdef\allocationnumber=21

The constant —1.

39 \countdef\m@ne=22 \m@ne=-1

Write on log file (only)
40 \def\wlog{\immediate\write\m@ne}

Here are abbreviations for the names of scratch registers that don’t need to be
allocated.

41 \countdef\count@=255

42 \dimendef\dimen®@=0

43 \dimendef\dimen@i=1 j global only

44 \dimendef\dimen@ii=2

45 \skipdef\skip@=0

46 \toksdef\toks@=0

Now, we define \newcount, \newbox, etc. so that you can say \newcount\foo and
\foo will be defined (with \countdef) to be the next counter.

To find out which counter \foo is, you can look at \allocationnumber.

Since there’s no \boxdef command, \chardef is used to define a \newbox,
\newinsert, \newfam, and so on.

KTEX change: remove \outer from \newcount and \newdimen (FMi) This is
necessary to use \newcount inside \if... later on. Also remove from \newskip,
\newbox \newwrite and \newfam (DPC) to save later redefinition.

47 \def\newcount{\alloc@0\count\countdef\insc@unt}

48 \def\newdimen{\alloc@l\dimen\dimendef\insc@unt}

49 \def\newskip{\alloc@2\skip\skipdef\insc@unt}

50 \def\newmuskip{\alloc@3\muskip\muskipdef\@cclvi}

51 \def\newbox{\alloc@4\box\chardef\insc@unt}

52 \def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}
53 \def\newtoks{\alloc@5\toks\toksdef\Q@cclvi}

54 \def\newread{\alloc@6\read\chardef\sixt@@n}
55 \def\newwrite{\alloc@7\write\chardef\sixt@@n}

KTEX defines \newfam in 1tfss.dtx.

\def\newfam{\alloc@8\fam\chardef\sixt@@n}

56 \def\newlanguage{\alloc@9\language\chardef\@cclvi}

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 13

\alloc@

\newinsert

\ch@ck

\maxdimen

\hideskip

\p@

\z@
\z@skip
\voidb@x

57 \def\alloc@#1#2#3#4#5{\global\advance\count1#1\@ne
58 \chQ@ck#1#4#2), make sure there’s still room

59 \allocationnumber\counti#1%

60 \global#3#5\allocationnumber

61 \wlog{\string#5=\string#2\the\allocationnumber}}

62 \def\newinsert#1{\global\advance\inscQunt \m@ne

63 \ch@ckO\insc@unt\count

64 \ch@ckl\insc@unt\dimen

65 \ch@ck2\inscQunt\skip

66 \ch@ck4\insc@unt\box

67 \allocationnumber\insc@unt

68 \global\chardef#1\allocationnumber

69 \wlog{\string#l=\string\insert\the\allocationnumberl}}

70 (/2ekernel | autoload)

71 (x2ekernel | autoload | autoerr)

72 \gdef\ch@ck#1#2#3{J,

73 \ifnum\countl#1<#2\else

74 (lautoload) \errmessage{No room for a new #3}
75 (autoload) \@autoerr\ch@ck#1#2#3},

76 \fi}

77 (/2ekernel | autoload | autoerr)

78 (*2ekernel | autoload)

Here are some examples of allocation.

79 \newdimen\maxdimen \maxdimen=16383.99999pt % the largest legal <dimen>
80 \newskip\hideskip \hideskip=-1000pt plus 1fill % negative but can grow

81 \newdimen\p@ \p@=1pt % this saves macro space and time
82 \newdimen\z@ \z@=0pt % can be used both for Opt and O
83 \newskip\z@skip \z@skip=0Opt plusOpt minusOpt

84 \newbox\voidb@x 7 permanently void box register

85 \message{compatibility for TeX 2, }

If this file is used in an old TEX we define the new features of TEX 3.0 as simple
macros or counters so that files that uses these features can be processed in such
an environment (They will however produce some other results).

86 \ifx\@undefined\inputlineno
87 \newcount\inputlineno

This could be used to detect that an old TEX is in force
88 \inputlineno-1
Extra test for MLTeX 2, RmS 91/11/07.

89 \ifx\@undefined\language
90 \newcount\language

91 \fi

92 \newcount\lefthyphenmin

93 \newcount\righthyphenmin
94 \newcount\errorcontextlines
95 \newcount\holdinginserts
96 \newdimen\emergencystretch
97 \newcount\badness

98 \let\noboundary\relax

99 \newcount\setlanguage

100 \fi

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 14

Assign initial values to TEX’s parameters
101 \message{parameters,}

All of TEX’s numeric parameters are listed here, but the code is commented
out if no special value needs to be set. INITEX makes all parameters zero except
where noted.

102 \pretolerance=100

103 \tolerance=200 % INITEX sets this to 10000
104 \hbadness=1000

105 \vbadness=1000

106 \1inepenalty=10

107 \hyphenpenalty=50

108 \exhyphenpenalty=50

109 \binoppenalty=700

110 \relpenalty=500

111 \clubpenalty=150

112 \widowpenalty=150

113 \displaywidowpenalty=50
114 \brokenpenalty=100

115 \predisplaypenalty=10000

\postdisplaypenalty=0

\interlinepenalty=0

\floatingpenalty=0, set during \insert
\outputpenalty=0, set before TeX enters \output

116 \doublehyphendemerits=10000
117 \finalhyphendemerits=5000
118 \adjdemerits=10000

\looseness=0, cleared by TeX after each paragraph
\pausing=0

\holdinginserts=0

\tracingonline=0

\tracingmacros=0

\tracingstats=0

\tracingparagraphs=0

\tracingpages=0

\tracingoutput=0

119 \tracinglostchars=1

\tracingcommands=0
\tracingrestores=0
\language=0

120 \uchyph=1

\lefthyphenmin=2 \righthyphenmin=3 set below

\globaldefs=0

\maxdeadcycles=25 % INITEX does this

\hangafter=1 % INITEX does this, also TeX after each paragraph
\fam=0

\mag=1000 % INITEX does this

\escapechar=‘\\ % INITEX does this

121 \defaulthyphenchar=‘\-
122 \defaultskewchar=-1

\endlinechar=‘\""M Y% INITEX does this
\newlinechar=-1 \LaTeX\ sets this in ltdefns.dtx.

123 \delimiterfactor=901

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 15

\time=now % TeX does this at beginning of job
\day=now % TeX does this at beginning of job

\month=now % TeX does this at beginning of job
\year=now % TeX does this at beginning of job

In BTEX we don’t want box information in the transcript unless we do a full
tracing.

124 \showboxbreadth=-1
125 \showboxdepth=-1
126 \errorcontextlines=-1

127 \hfuzz=0. 1pt

128 \vfuzz=0. 1pt

129 \overfullrule=5pt

130 \maxdepth=4pt

131 \splitmaxdepth=\maxdimen
132 \boxmaxdepth=\maxdimen

\lineskiplimit=0pt, changed by \normalbaselines

133 \delimitershortfall=5pt

134 \nulldelimiterspace=1.2pt

135 \scriptspace=0.5pt
\mathsurround=0pt
\predisplaysize=0pt, set before TeX enters $$
\displaywidth=0pt, set before TeX enters $$
\displayindent=0pt, set before TeX enters $$

136 \parindent=20pt

\hangindent=0pt, zeroed by TeX after each paragraph
\hoffset=0pt
\voffset=0pt

\baselineskip=0pt, changed by \normalbaselines
\lineskip=0pt, changed by \normalbaselines

137 \parskip=0Opt plus 1pt

138 \abovedisplayskip=12pt plus 3pt minus 9pt

139 \abovedisplayshortskip=0Opt plus 3pt

140 \belowdisplayskip=12pt plus 3pt minus 9pt

141 \belowdisplayshortskip=7pt plus 3pt minus 4pt

\leftskip=0pt
\rightskip=0pt

142 \topskip=10pt
143 \splittopskip=10pt

\tabskip=0pt
\spaceskip=0pt
\xspaceskip=0pt

144 \parfillskip=Opt plus 1fil

\normalbaselineskip We also define special registers that function like parameters:

\normallineskip 145 \newskip\normalbaselineskip \normalbaselineskip=12pt
\normallineskiplimit 146 \newskip\normallineskip \normallineskip=1pt
147 \newdimen\normallineskiplimit \normallineskiplimit=0pt

\interfootlinepenalty

148 \newcount\interfootnotelinepenalty \interfootnotelinepenalty=100

Definitions for preloaded fonts

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 16

\magstephalf
\magstep

\frenchspacing

\nonfrenchspacing

\normalbaselines

\M
\I

\1q
\rq

\lbrack
\rbrack

\aa
\AA

\endgraf

\endline

\space

\empty

\null

\bgroup
\egroup

\obeylines

\obeyspaces

149 \def\magstephalf{1095 }
150 \def\magstep#1{\ifcase#1 \Om\or 1200\or 1440\or 1728\or
151 2074\or 2488\fi\relax}

Macros for setting ordinary text

152 \def\frenchspacing{\sfcode‘\.\@m \sfcode‘\7?\@m \sfcode‘\!\@m

153 \sfcode‘\:\@m \sfcode‘\;\@m \sfcode‘\,\@m}

154 \def\nonfrenchspacing{\sfcode‘\.3000\sfcode‘\73000\sfcode ‘\!3000%
155 \sfcode‘\:2000\sfcode‘\;1500\sfcode‘\,1250 }

156 \def\normalbaselines{\lineskip\normallineskip
157 \baselineskip\normalbaselineskip \lineskiplimit\normallineskiplimit}

Save a bit of space by using \let here.

158 \def\""M{\ } % control <return> =
159 \1et\""I\""M J, same for <tab>

control <space>

160 \def\1q{‘}
161 \def\rq{’}

162 \def\1lbrack{ [}
163 \def\rbrack{]}

These are not from plain.tex but they are similar to other commands found here
and nowhere else, being alternate input forms for characters.

164 \def \aa {\r a}
165 \def \AA {\r A}

166 \let\endgraf=\par
167 \let\endline=\cr

168 \def\space{ }

This probably ought to go altogether, but let it to the EXTEX version to save space.
169 \let\empty\Qempty

170 \def\null{\hbox{}}

171 \let\bgroup={
172 \1let\egroup=}

In \obeylines, we say \let~"M=\par instead of \def~"M{\par} since this allows,
for example, \let\par=\cr \obeylines \halignf{...

173 {\catcode‘\""M=\active 7 these lines must end with %

174 \gdef\obeylines{\catcode‘\""M\active \let~"M\parl}/,

175 \globalllet~"M\par} % this is in case "“"M appears in a \write

176 \def\obeyspaces{\catcode‘\ \active}

177 {\obeyspaces\global\let =\space}

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 17

\loop
\iterate
\repeat

\nointerlineskip

\offinterlineskip

\vglue
\hglue

\slash

\break

\nobreak
\allowbreak

\filbreak
\goodbreak

\eject

\removelastskip

\smallbreak

\medbreak
\bigbreak

\m@th

We use Kabelschacht’s method of doing loops, see TUB 8#2 (1987). (unless that
breaks something :-). It turned out to need an extra \relax: see pr/642 (\loop
could do one iteration too much in certain cases).

178 \long\def \loop #1\repeat{’

179 \def\iterate{#1\relax ¥ Extra \relax
180 \expandafter\iterate\fi
181 i

182 \iterate

183 \let\iterate\relax

184 }

This setting of \repeat is needed to make \loop...\if...\repeat skippable
within another \if....

185 \let\repeat=\fi

ETEX defines \smallskip, etc. in ltspace.dtx.

186 \def\nointerlineskip{\prevdepth-\@m\p@}
187 \def\offinterlineskip{\baselineskip-\@m\p@
188 \lineskip\z@ \lineskiplimit\maxdimen}

189 \def\vglue{\afterassignment\vgl@\skip@=}

190 \def\vgl@{\par \dimen®@\prevdepth \hrule \G@height\z@

191 \nobreak\vskip\skip@ \prevdepth\dimen@}

192 \def\hglue{\afterassignment\hgl@\skip@=}

193 \def\hgl@{\leavevmode \count@\spacefactor \vrule \Q@width\z@
194 \nobreak\hskip\skip@ \spacefactor\count@}

KTEX defines ~ in 1tdefns.dtx.

195 \def\slash{/\penalty\exhyphenpenalty} % a ¢/’ that acts like a ‘-’

196 \def\break{\penalty-\@M}
197 \def\nobreak{\penalty \@M}
198 \def\allowbreak{\penalty \z@}

199 \def\filbreak{\par\vfil\penalty-200\vfilneg}
200 \def\goodbreak{\par\penalty-500 }

Define \eject as in plain TEX but define \supereject only in the compatibility
file.

201 \def\eject{\par\break}

202 \def\removelastskip{\ifdim\lastskip=\z@\else\vskip-\lastskip\fi}

203 \def\smallbreak{\par\ifdim\lastskip<\smallskipamount
204 \removelastskip\penalty-50\smallskip\fi}

205 \def\medbreak{\par\ifdim\lastskip<\medskipamount

206 \removelastskip\penalty-100\medskip\fi}

207 \def\bigbreak{\par\ifdim\lastskip<\bigskipamount

208 \removelastskip\penalty-200\bigskip\fi}

209 \def\m@th{\mathsurround\z@}

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 18

\underbar

\strutbox
\strut

\hidewidth

\narrower

\leavevmode

\mathhexbox

\ialign

\oalign
\o@lign
\ooalign

\sh@ft

\1tx@sheft

Due to ITEX’s redefinition of \underline plain TEX’s \underbar can be done in
a simpler fashion (but do we need it at all?).

210 \def\underbar#1{\underline{\sbox\tw@{#1}\dp\tw@\z@\box\tw@}}

TEX sets \strutbox in \set@fontsize.

211 \newbox\strutbox
212 \def\strut{\relax\ifmmode\copy\strutbox\else\unhcopy\strutbox\fi}

For alignment entries that can stick out.
213 \def\hidewidth{\hskip\hideskip}

214 \def\narrower{’,
215 \advance\leftskip\parindent
216 \advance\rightskip\parindent}

ETEX defines \ae and similar commands elsewhere.

217 \chardef\%=\%
218 \chardef\&=‘\&
219 \chardef\#="\#

Most text commands are actually encoding specific and therefore defined later,
so commented out or removed from this file.

begins a paragraph, if necessary
220 \def\leavevmode{\unhbox\voidb@x}

221 \def\mathhexbox#1#2#3{\mbox{$\m@th \mathchar"#1#2#3$}}

222 \def\ialign{\everycr{}\tabskip\z@skip\halign} % initialized \halign

223 \def\oalign#1{\leavevmode\vtop{\baselineskip\z@skip \lineskip.25ex%
224 \ialign{##\crcr#i\crcr}}}

225 \def\o@lign{\lineskiplimit\z@ \oalign}

226 \def\ooalign{\lineskiplimit-\maxdimen \oalign}

The definition of this macro in plain.tex was improved in about 1997; but as a

result its usage was changed and its new definition is not appropriate for IXTEX.
Since the version given here has been in use by ITEX for many years it does

not seem prudent to remove it now. As far as we can tell it has only been used to

define \b and \d but this cannot be certain.

227 \def\sh@ft#1{\dimen@.00#1lex\multiply\dimen@\fontdimeni\font

228 \kern-.0156\dimen@} Y, compensate for slant in lowered accents

This is the IMTEX version of the second incarnation of the plain macro \sheft,
which takes a dimension as its argument. It shifts a pseudo-accent horizontally
by an amount proportional to the product of its argument and the slant-per-point
(fontdimen 1).

229 \def\1tx@sheft #1{%

230 \dimen®@ #17,

231 \kern \strip@pt

232 \fontdimenl\font \dimen@

233 } % kern by #1 times the current slant

ETEX change: the text commands such as \d, \b, \c, \copyright, \TeX are
now defined elsewhere.
ETEX change: Make \t work in a moving argument. Now defined elsewhere.

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 19

\hrulefill I#TEX change: \kern\z@ added to end of \hrulefill and \dotfill to make them
\dotfill work in ‘tabular’ and ‘array’ environments. (Change made 24 July 1987). BTEX
change: \leavevmode added at begining of \dotfill and \hrulefill so that

they work as expected in vertical mode.

234 \def\hrulefill{\leavevmode\leaders\hrule\hfill\kern\z@}

The box in \dot£ill originally contained (in plain.tex): \mkern 1.5mu .\mkern 1.5mu;
the width of .44em differs from this by .04pt which is probably an acceptable dif-
ference within leaders.
235 \def\dot£ill{%
236 \leavevmode
237 \cleaders \hb@xt@ .44em{\hss.\hss}\hfill
238 \kern\z@}

INITEX sets \sfcode x=1000 for all x, except that \sfcode ‘X=999 for upper-
case letters. The following changes are needed:

239 \sfcode‘\)=0 \sfcode‘\’=0 \sfcode‘\]=0

The \nonfrenchspacing macro will make further changes to \sfcode values.
Definitions related to output
\magnification doesn’t work in IATEX.

\def\magnification{\afterassignment\m@g\count@}
\def\mOg{\mag\count®
\hsize6.5truein\vsize8.9truein\dimen\footins8truein}

\showoverfull The following commands are used in debugging;:

240 \def\showoverfull{\tracingonline\@ne}

\showoutput

\loggingoutput 241 (/2ekernel | autoload)
242 (x2ekernel | autoerr)
243 \gdef\loggingoutput{\tracingoutput\@ne
244 \showboxbreadth\maxdimen\showboxdepth\maxdimen\errorstopmode}
245 \gdef\showoutput{\loggingoutput\showoverfull}
246 (/2ekernel | autoerr)
247 (autoload)\def\showoutput{\@autoerr\showoutput}

\tracingall

\loggingall 245 (x2ekernel | autoerr)
249 \gdef\loggingall{\tracingcommands\tw@\tracingstats\tw@
250 \tracingpages\@ne\tracinglostchars\@ne
251 \tracingmacros\tw@\tracingparagraphs\@e\tracingrestores\@ne
252 \errorcontextlines\maxdimen\loggingoutput}
253 \gdef\tracingall{\loggingall\showoverfull}
254 (/2ekernel | autoerr)
255 (autoload)\def\tracingall{\@autoerr\tracingall}

KTEX change: \showhyphens Defined later.
Punctuation affects the spacing.

256 (*2ekernel | autoload)
257 \nonfrenchspacing
258 (/2ekernel | autoload)

File b: 1tplain.dtx Date: 2005/09/27 Version v1.ly 20

\fmtname

\fmtversion

File c
Itvers.dtx

10 Version Identification

First we identify the date and version number of this release of KTEX, and set
\everyjob so that it is printed at the start of every BTEX run.

1 (x2ekernel)
2 \def\fmtname{LaTeX2e}
3 \edef\fmtversion{2009/09/24%}

Check that the format being made is not too old. The error message complains
about ‘more than 5 years’ but in fact the error is not triggered until 65 months.

This code is currently not activated as we don’t know if we already got to the
last official 2e version (due to staff shortage or due to a successor (think positive:-

))-

4 \iffalse

5 \def\reserved@a#1/#2/#3\Cnil{’

6 \count@\year

7 \advance\count@-#1\relax

8 \multiply\count@ by 12\relax

9 \advance\count@\month

10 \advance\count@-#2\relax}

11 \expandafter\reserved@a\fmtversion\@nil

\count@ is now the age of this file in months. Take a generous definition of ‘year’
so this message is not generated too often.

12 \ifnum\count@>65
13 \typeout{~"J%

E R N NN /A
15! You are attempting to make a LaTeX format from a source file""JY
16 ! That is more than five years old.""J%

17 177 3%

18 ! If you enter <return> to scroll past this message then the format~"J%
19 ! will be built, but please consider obtaining newer source files™"J/
20 ! before continuing to build LaTeX.""~J}

AR N N R A
22 }

23 \errhelp{To avoid this error message, obtain new LaTeX sources.}

24 \errmessage{LaTeX source files more than 5 years old!}

25 \fi

26 \let\reserved@a\relax

27 \fi

This startup banner may be further modified by the code in 1tfinal.dtx if a
patch file is present.

28 \everyjob{\typeout{\fmtname

29 (autoload) \space (autoload version)}

30 \space<\fmtversion>}}
31 \immediate\writel6{\fmtname

32 (autoload) \space (autoload version)

33 \space<\fmtversion>}
34 (/2ekernel)

File c: 1tvers.dtx Date: 2009/09/24 Version v1.01 21

\two@digits

\typeout

\newlinechar

\@@par

\@Q@hyph
\-

File d
Itdefns.dtx

11 Definitions

This section contains commands used in defining other macros.

1 (*2ekernel)

11.1 Initex initialisations

Prefix a number less than 10 with ‘0.

2 \def\two@digits#1{\ifnum#1<10 O\fi\number#1}

Display something on the terminal.

3 \def\typeout#1{\begingroup\set@display@protect
4 \immediate\write\Qunused{#1}\endgroup}

A char to be used as new-line in output to files.

5 \newlinechar‘\~"J

11.2 Saved versions of TEX primitives

The TeX primitive \foo is saved as \@@foo. The following primitives are handled
in this way:

6 \let\@@par=\par
7 %\let\@@input=\input %%% moved earlier
8 %\let\@Qend=\end YN

The following comment was added when these commands were first set up, 19
April 1986: the \- command is redefined to allow it to work in the \ttfamily
type style, where automatic hyphenation is suppressed by setting \hyphenchar
to —1. The original primitive TEX definition is saved as \@@hyph just in case
anyone needs it.

There is a need for a robust command for a discretionary hyphen since its exact
representation depends on the glyphs available in the current font. For example,
with suitable fonts and the T1 font encoding it is possible to use hanging hyphens.

A suitable robust definition that allows for many possible types of font and
encoding may be as follows:

\DeclareRobustCommand {\-}{Y%
\discretionary {%
\char \ifnum\hyphenchar\font<\z@

\defaulthyphenchar

\else
\hyphenchar\font

\fi

HI3%

The redefinition (via \let) of \- within tabbing also makes the use of a robust
command advisable since then any redefinition of \- via \DeclareRobustCommand
will not cause a conflict.

Therefore, macro writers should be hereby warned that these internals will
probably change! It is likely that a future release of INTEX will make \- effectively
an encoding specific text command.

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 22

\@dischyph

\@@italiccorr

\@height

\@depth
\@width
\@minus

\@plus

\hb@xt@

\@namedef

\@nameuse

\@ifnextchar

\@ifstar

\@dblarg

\@ifundefined

\@ifdefinable

\newcommand

\renewcommand

\newenvironment

\renewenvironment

9 \let\@Chyph=\- % Save original primitive definition
10 \def\-{\discretionary{-}{}{}}

11 \let\@dischyph=\-

Save the original italic correction.

12 \let\@@italiccorr=\/

The following definitions save token space. E.g., using \@height instead of height
saves b tokens at the cost in time of one macro expansion.

13 \def\@height{height} \def\@depth{depth} \def\@width{width}

14 \def\@minus{minus}

15 \def\@plus{plus}

The next one is another 100 tokens worth.

16 \def\hb@xt@{\hbox to}

17 \message{hacks, }

11.3 Command definitions

This section defines the following commands:

{(NAME)}

Expands to \def\{(NAME)}, except name can contain any characters.

{(NAME)}

Expands to \{(NAME)}.

X{(YES)X{(NO)}

Expands to (YES) if next character is an ‘X’, and to (NO) otherwise. (Uses
\reserved@a—-\reserved@c.) NOTE: GOBBLES ANY SPACE FOLLOWING
IT.

{(YES)}(NO)}

Gobbles following spaces and then tests if next the character is a "*’. If it is, then
it gobbles the “*’ and expands to (YES), otherwise it expands to (NO).

{(CMD)}{(ARG)}

Expands to \{(CMD)}[(ARG)1{(ARG)}. Use \@dblarg\CS when \CS takes ar-
guments [ARG1]{ARG2}, where default is ARG1 = ARG2.

{(NAME)}{(YES)}{(NO)}

: If \NAME is undefined then it executes (YES), otherwise it executes (NO). More
precisely, true if \NAME either undefined or = \relax.

\NAME{(YES)} Executes (YES) if the user is allowed to define \NAME, otherwise
it gives an error. The user can define \NAME if \@ifundefined{NAME} is true, 'NAME’
'relax’ and the first three letters of 'NAME’ are not ’end’, and if \endNAME is not
defined.

*{(\FO0)} [(i)J{(TEXT)}

User command to define \FOO0 to be a macro with i arguments (i = 0 if missing)
having the definition (TEXT). Produces an error if \FOO already defined.

Normally the command is defined to be \long (ie it may take multiple para-
graphs in its argument). In the star-form, the command is not defined as \long
and a blank line in any argument to the command would generate an error.

*{(\FOO)}Y[(:)]{(TEXT)?}

Same as \newcommand, except it checks if \FOO already defined.

*{(FOO)}[{i)1{(DEF1)}{(DEF2)%}
equivalent to:

\newcommand{\FOO0} [i] {DEF1} \def{\endFOO}{DEF2}
(or the appropriate star forms).

Obvious companion to \newenvironment.

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 23

\@cons

\@car
\@cdr

\typeout
\typein

\typein

\typein

\@namedef

\@nameuse

\@cons

\@car
\@cdr

\@carcube

\@onlypreamble
\@preamblecmds

\@star@or@long

\1l@ngrel@x

: See description of \output routine.

\@car T1 T2 ... Tn\@nil == T1 (unexpanded)
\@cdr T1 T2 ... Tn\@nil == T2 ... Tn (unexpanded)
{(message)}

Produces a warning message on the terminal.
{{message)}

Types message, asks the user to type in a command, then executes it
[(\CS)I{(MSG)}

Same as above, except defines \CS to be the input instead of executing it.

18 \def\typein{/
19 \let\@typein\relax
20 \@testopt\@xtypein\@typein}

21 \def\@xtypein [#1]#2{%

22 \typeout{#2}/,

23 \advance\endlinechar\@M

24 \read\@inputcheck to#1Y

25 \advance\endlinechar-\@M
26 \@typein}

27 \def\@namedef#1{\expandafter\def\csname #1\endcsname}

28 \def\@nameuse#1{\csname #1\endcsname}

29 \def\@cons#1#2{\begingroup\let\Q@elt\relax\xdef#1{#1\@elt #2}\endgroup}

30 \def\Q@car#1#2\@nil{#1}
31 \def\@cdr#1#2\@nil{#2}

\@carcube T1 ... Tn\@nil =T1T2T3,n >3
32 \def\Qcarcube#1#2#3#4\@nil{#1#2#3}

This macro adds its argument to the list of commands stored in \@preamblecmds
to be disabled after \begin{document}. These commands are redefined to gener-
ate \@notprerr at this point.

33 \def\@preamblecmds{}

34 \def\@onlypreamble#1{%

35 \expandafter\gdef\expandafter\@preamblecmds\expandafter{y,

36 \@preamblecmds\do#1}}

37 \@onlypreamble\Qonlypreamble

38 \@onlypreamble\@preamblecmds

Look ahead for a *. If present reset \1@ngrel®x so that the next definition, #1,
will be non-long.

39 \def\@star@or@long#1{%

40 \@ifstar

41 {\let\l@ngrel@x\relax#1}},

42 {\let\l@ngrel@x\long#1}}

This is either \relax or \long depending on whether the *-form of a definition
command is being executed.

43 \let\l@ngrel@x\relax

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 24

\newcommand

\new@command

\@newcommand

\@argdef
\@xargdef

\@testopt

\@protected@testopt

User level \newcommand.

44 \def\newcommand{\@star@or@long\new@command}

45 \def\new@command#1{%
46 \O@testopt{\@newcommand#1}0}

Handling arguments for \newcommand.

47 \def\@newcommand#1 [#2] {7

48 \kernel@ifnextchar [{\@xargdef#1[#2]}}
49 {\@argdef#1 [#2]1}}

Define #1 if it is definable.

Both here and in \@xargdef the replacement text is absorbed as an argument
because if we are not allowed to make the definition we have to get rid of it
completely.

50 \long\def\Q@argdef#1 [#2]#3{%
51 \@ifdefinable #1{\@yargdef#1\One{#2}{#3}}}

Handle the second optional argument.
52 \long\def\@xargdef#1 [#2] [#3]1#4{/,
53 \@ifdefinable#1{},
Define the actual command to be:
\def\foo{\@protected@testopt\foo\\foo{default}}
where \\foo is a csname generated from applying \csname and \string to \foo, ie
the actual name contains a backslash and therefore can’t clash easily with exisiting
command names. “Default” is the contents of the second optional argument of
(re)newcommand.

The \aut@global command below is only used in the autoload format. If it is
\global then a global definition will be made.

54 (autoload) \aut@global

55 \expandafter\def\expandafter#l\expandafter{y,
56 \expandafter

57 \@protected@testopt

58 \expandafter

59 #17,

60 \csname\string#1\endcsname

61 {#3}}%

Now we define the internal macro ie \\foo which is supposed to pick up all argu-
ments (optional and mandatory).

62 \expandafter\Qyargdef

63 \csname\string#1\endcsname
64 \tw@

65 {#2}%

66 {#4}}}

This macro encapsulates the most common call to \@ifnextchar, saving several
tokens each time it is used in the definition of a command with an optional argu-
ment. #1 The code to execute in the case that there is a [need not be a single
token but can be any sequence of commands that ‘expects’ to be followed by [.
If this command were only used in \newcommand definitions then #1 would be a
single token and the braces could be omitted from {#1} in the definition below,
saving a bit of memory.

67 \long\def\@testopt#1#2{/

68 \kernel@ifnextchar [{#1}{#1[{#2}]1}}

Robust version of \@testopt. The extra argument (#1) must be a single token. If
protection is needed the call expands to \protect applied to this token, and the
2nd and 3rd arguments are discarded (by \@x@protect). Otherwise \@testopt is
called on the 2nd and 3rd arguments.

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 25

\Q@yargdef
\@yargdef

\@reargdef

\renewcommand

\renew@command

This method of making commands robust avoids the need for using up two
csnames per command, the price is the extra expansion time for the \ifx test.

69 \def\@protected@testopt#1{i%
70 \ifx\protect\@typeset@protect

71 \expandafter\@testopt
72 \else

73 \@xQ@protect#1,

74 \fi}

These generate a primitive argument specification, from a WIEX [{digit)] form;
in fact (digit) can be anything such that \number (digit) is single digit.

Reorganised slightly so that \renewcommand{\reserved®@al}[1]{foo} works.
I am not sure this is worth it, as a following \newcommand would over-write the
definition of \reserved@a.

Recall that IXTEX2.09 goes into an infinite loop with \renewcommand[1] {\@tempa}{foo}
(DPC 6 October 93).

Reorganised again (DPC 1999). Rather than make a loop to construct the
argument spec by counting, just extract the required argument spec by using a
delimited argument (delimited by the digit). This is faster and uses less tokens.
The coding is slightly odd to preserve the old interface (using #2 = \tw@ as the
flag to surround the first argument with []. But the new method did not allow for
the number of arguments #3 not being given as an explicit digit; hence (further
expansion of this argument and use of) \number was added later in 1999.

It is not clear why these are still \long.

75 \long \def \@yargdef #1#2#3{J,

76 \ifx#2\twe@
77 \def\reserved@b##11{ [####1]}),

78 \else

79 \let\reserved@b\@gobble

80 \fi

81 \expandafter

82 \@yargd@f \expandafter{\number #3}#1
83 }

The \aut@global command below is only used in the autoload format. If it is
\global then a global definition will be made.
84 \long \def \@yargde@f#1#2{}
85 \def \reserved®@a ##1#1##2##{),
86 (autoload) \aut@global

87 \expandafter\def\expandafter#2\reserved@b ##1#1%

88 Y

89 \1l@ngrel@x \reservedQa O##1##2##3HH#AHHOHHOHETHHBH#O#HH1],
90 }

91 \long\def\Q@reargdef#1 [#2]{%
92 \@yargdef#1\@ne{#2}}

Check the command name is already used. If not give an error message. Then
temporarily disable \@ifdefinable then call \newcommand. (Previous version
\let#1=\relax but this does not work too well if #1 is \@tempa-—e.)

93 \def\renewcommand{\@star@or@long\renew@command}

94 \def\renew@command#1{%

95 \begingroup \escapechar\m@ne\xdef\@gtempa{{\string#1}}\endgroup
96 \expandafter\@ifundefined\@gtempa

97 {\@latex@error{\noexpand#iundefined}\@ehc}/,

98 \relax

99 \let\@ifdefinable\@rc@ifdefinable

100 \new@command#1}

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 26

\@ifdefinable

\@eifdefinable
\@rc@ifdefinable

\newenvironment

\new@environment

\@newenva

\@newenvb

\renewenvironment

\renew@environment

\@newenv

Test is user is allowed to define a command.

101 \long\def\@ifdefinable #1#2{J,

102 \edef\reserved@a{\expandafter\@gobble\string #13}}

103 \@ifundefined\reserved@a

104 {\edef\reserved@b{\expandafter\@carcube \reserved@a xxx\@nill}y
105 \ifx \reserved@b\@gend \@notdefinable\else

106 \ifx \reserved@a\@qrelax \@notdefinable\else

107 #2Y,

108 \fi

109 \fi}%

110 \@notdefinable}

Saved definition of \@ifdefinable.
111 \let\@@ifdefinable\@ifdefinable

Version of \@ifdefinable for use with \renewcommand. Does not do the check
this time, but restores the normal definition.

112 \long\def\@rc@ifdefinable#1#2{Y

113 \let\@ifdefinable\@@ifdefinable

114 #23}

Define a new user environment. #1 is the environment name. #2# Grabs all the
tokens up to the first {. These will be any optional arguments. They are not
parsed at this point, but are just passed to \@newenv which will eventually call
\newcommand. Any optional arguments will then be parsed by \newcommand as it
defines the command that executes the ‘begin code’ of the environment.

This #2# trick removed with version 1.2i as it fails if a { occurs in the optional
argument. Now use \@ifnextchar directly.

115 \def\newenvironment{\@star@or@long\newlenvironment}

116 \def\new@environment#1{J,
117 \@testopt{\@newenva#1}0}

118 \def\@newenva#il [#2] {%
119 \kernel@ifnextchar [{\@newenvb#1[#2]}{\@newenv{#1}{[#2]}}}

120 \def\@newenvb#1 [#2] [#3] {\@newenv{#1}{ [#2] [{#3}]11}}

Redefine an environment. For \renewenvironment disable \@ifdefinable and
then call \newenvironment. It is OK to \let the argument to \relax here as
there should not be a @temp. .. environment.

121 \def\renewenvironment{\@star@or@long\renew@environment}

122 \def\renew@environment#1{%

123 \@ifundefined{#1}J

124 {\@latex@error{Environment #1 undefined}\@ehc
125 H\relax

126 \expandafter\let\csname#1\endcsname\relax

127 (autoload) \aut@global
128 \expandafter\let\csname end#1\endcsname\relax
129 \new@environment{#1}}

The internal version of \newenvironment.

Call \newcommand to define the (begin-code) for the environment. \def is used
for the (end-code) as it does not take arguments. (but may contain \pars)

Make sure that an attempt to define a ‘graf’ or ‘group’ environment fails.

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 27

\newif

\@if

\providecommand

\provide@command

\CheckCommand

\check@command

130 \long\def\@newenv#1#2#3#4{}
131 \@ifundefined{#1}}

132 {\expandafter\let\csname#1\expandafter\endcsname
133 \csname end#1\endcsnamely,
134 \relax

135 \expandafter\new@command

136 \csname #1\endcsname#2{#31}/,

137 (autoload) \aut@global
138 \l@ngrel@x\expandafter\def\csname end#1\endcsname{#4}}

And here’s a different sort of allocation: For example, \newif\iffoo creates
\footrue, \foofalse to go with \iffoo.

139 \def\newif#1{J

140 \count@\escapechar \escapechar\m@ne

141 (autoload) \aut@global

142 \let#1\iffalse
143 \@if#1\iftrue
144 \@if#1\iffalse

145 \escapechar\count@}

146 \def\@if#1#2{%

147 (autoload) \aut@global

148 \expandafter\def\csname\expandafter\@gobbletwo\string#1J,

149 \expandafter\Qgobbletwo\string#2\endcsname
150 {\let#1#2}}

\providecommand takes the same arguments as \newcommand, but discards them
if #1 is already defined, Otherwise it just acts like \newcommand. This imple-
mentation currently leaves any discarded definition in \reserved@a (and possibly
\\reserved@a) this wastes a bit of space, but it will be reclaimed as soon as these
scratch macros are redefined.

151 \def\providecommand{\@star@or@long\provide@command}

152 \def\provide@command#1{%

153 \begingroup

154 \escapechar\m@ne\xdef\Ogtempa{{\string#1}}%
155 \endgroup

156 \expandafter\@ifundefined\@gtempa

157 {\def\reserved@a{\new@command#1}}/

158 {\def\reserved@a{\renew@command\reserved@al}/
159 \reserved@alj,

\CheckCommand takes the same arguments as \newcommand. If the command
already exists, with the same definition, then nothing happens, otherwise a
warning is issued. Useful for checking the current state befor a macro pack-
age starts redefining things. Currently two macros are considered to have the
same definition if they are the same except for different default arguments.
That is, if the old definition was: \newcommand\xxx[2] [a]l{(#1) (#2)} then
\CheckCommand\xxx [2] [b]{(#1) (#2)} would not generate a warning, but, for
instance \CheckCommand\xxx [2]{(#1) (#2)} would.

160 \def\CheckCommand{\@star@or@long\check@command}

\CheckCommand is only available in the preamble part of the document.

161 \@onlypreamble\CheckCommand

162 \def\check@command#1#2#{\@check@c#1{#2}}
163 \@onlypreamble\check@command

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 28

\@check@c

\@check@eq

\@gobble

\@gobbletwo
\@gobblefour

\@firstofone

\@efirstoftwo
\@secondoftwo

\@iden

\@thirdofthree

\@expandtwoargs

\@backslashchar

\CheckCommand itself just grabs all the arguments we need, without actually look-
ing for [optional argument forms. Now define \reserved@a. If \\reserved@a is
then defined, compare it with the “\#1’ otherwise compare \reserved@a with #1.

164 \long\def\@check@c#1#2#3{/,

165 \expandafter\let\csname\string\reserved@a\endcsname\relax
166 \renew@command\reserved@a#2{#3}J,

167 \@ifundefined{\string\reserved@a}y

168 {\@check@eq#1i\reserved@aly,

169 {\expandafter\@check@eq

170 \csname\string#1\expandafter\endcsname

171 \csname\string\reserved@a\endcsnamel}}

172 \@onlypreamble\@check@c

Complain if #1 and #2 are not \ifx equal.

173 \def\@checkQeq#1#2{/,
174 \ifx#1#2\else

175 \@latex@warning@no@line

176 {Command \noexpand#1 has

177 changed.\MessageBreak

178 Check if current package is validl}/
179 \fi}

180 \@onlypreamble\@check@eq

The \@gobble macro is used to get rid of its argument.

181 \long\def \@gobble #1{}

182 \long\def \@gobbletwo #1#2{}

183 \long\def \@gobblefour #1#2#3#4{}

Some argument-grabbers.

184 \long\def\@firstofone#1{#1}

185 \long\def\@firstoftwo#1#2{#1}

186 \long\def\@secondoftwo#1#2{#2}

\@iden is another name for \@firstofone for compatibility reasons.

187 \let\@iden\@firstofone

Another grabber now used in the encoding specific section.

188 \long\def\@thirdofthree#1#2#3{#3}

A macro to totally expand two arguments to another macro

189 \def\Q@expandtwoargs#1#2#3{/,
190 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}

A category code 12 backslash.
191 \edef\@backslashchar{\expandafter\Q@gobble\string\\}

11.4 Robust commands and protect

Fragile and robust commands are one of the thornier issues in BKTEX’s commands.
Whilst typesetting documents, X TEX makes use of many of TEX’s features, such as
arithmetic, defining macros, and setting variables. However, there are (at least)
three different ocassions when these commands are not safe. These are called
‘moving arguments’ by I¥TEX, and consist of:

e writing information to a file, such as indexes or tables of contents.
e writing information to the screen.

e inside an \edef, \message, \mark, or other command which evaluates its
argument fully.

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 29

\Qunexpandable@protect

\@unexpandable@noexpand

\DeclareRobustCommand

\declare@robustcommand

The method ATEX uses for making fragile commands robust is to precede them
with \protect. This can have one of five possible values:

e \relax, for normal typesetting. So \protect\foo will execute \foo.
e \string, for writing to the screen. So \protect\foo will write \foo.

e \noexpand, for writing to a file. So \protect\foo will write \foo followed
by a space.

e \OQunexpandable@protect, for writing a moving argument to a file. So
\protect\foo will write \protect\foo followed by a space. This value
is also used inside \edefs, \marks and other commands which evaluate their
arguments fully.

e \Qunexpandable@noexpand, for performing a deferred write inside an \edef.
So \protect\foo will write \foo followed by a space. If you want
\protect\foo to be written, you should use \Qunexpandable@protect.
(Removed as never used).

These commands are used for setting \protect inside \edefs.

192 \def\@unexpandable@protect{\noexpand\protect\noexpand}
193 %\def \@unexpandable@noexpand{\noexpand\noexpand\noexpand}

This is a package-writers command, which has the same syntax as \newcommand,
but which declares a protected command. It does this by having
\DeclareRobustCommand\foo
define \foo to be \protect\foo<space>,
and then use \newcommand\foo<space>.
Since the internal command is \foo<space>, when it is written to an auxiliary
file, it will appear as \foo.

We have to be a bit cleverer if we're defining a short command, such as _,
in order to make sure that the auxiliary file does not include a space after the
command, since _ a and _a aren’t the same. In this case we define _ to be:

\x@protect_\protect_<space>
which expands to:

\ifx\protect\@typeset@protect\else
\@x@protect@_

\fi

\protect_<space>

Then if \protect is \@typeset@protect (normally \relax) then we just perform
_<space>, and otherwise \@x@protect@ gobbles everything up and expands to
\protect_.

Note: setting \protect to any value other than \relax whilst in ‘typesetting’
mode will cause commands to go into an infinite loop! In particular, setting \relax
to \@empty will cause _ to loop forever. It will also break lots of other things,
such as protected \ifmmodes inside \haligns. If you really really have to do such
a thing, then please set \@typeset@protect to be \@empty as well. (This is what
the code for \patterns does, for example.)

More fun with \expandafter and \csname.

194 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}

195 \def\declare@robustcommand#1{%

196 \ifx#1\@undefined\else\ifx#1\relax\else

197 \@latex@info{Redefining \string#1}},

198 \fi\fi

199 \edef\reserved@a{\string#11}/,

200 \def\reserved@b{#1}/,

201 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}y,

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 30

\@x@protect
\x@protect

\@typeset@protect

\set@display@protect
\set@typeset@protect

\protected@edef

\protected@xdef
\unrestored@protected@xdef
\restore@protect

\protect

202 (autoload) \aut@global
203 \edef#1{Y

204 \ifx\reserved@a\reserved@b

205 \noexpand\x@protect

206 \noexpand#1,

207 \fi

208 \noexpand\protect

209 \expandafter\noexpand\csname

210 \expandafter\@gobble\string#1l \endcsname
211 iy

212 \let\@ifdefinable\@rc@ifdefinable

213 \expandafter\new@command\csname

214 \expandafter\@gobble\string#1 \endcsname
215 }

216 \def\x@protect#1{/,

217 \ifx\protect\@typeset@protect\else
218 \@x@protect#1%

219 \fi

220 }

221 \def\@xQ@protect#1\fi#2#3{/,

222 \fi\protect#1%

223 }

224 \let\@typeset@protect\relax

These macros set \protect appropriately for typesetting or displaying.

225 \def\set@display@protect{\let\protect\string}
226 \def\setQ@typeset@protect{\let\protect\Q@typeset@protect}

The commands \protected@edef and \protected@xdef perform ‘safe’ \edefs
and \xdefs, saving and restoring \protect appropriately. For cases where restor-
ing \protect doesn’t matter, there’s an ‘unsafe’ \unrestored@protected@xdef,
useful if you know what you're doing!

227 \def\protected@edef{},

228 \let\@@protect\protect

229 \let\protect\Qunexpandable@protect

230 \afterassignment\restore@protect
231 \edef
232 }

233 \def\protected@xdef{},
234 \let\@@protect\protect
235 \let\protect\Qunexpandable@protect

236 \afterassignment\restore@protect
237 \xdef
238 }

239 \def\unrestored@protected@xdef{}

240 \let\protect\@unexpandable@protect

241 \xdef

242 }

243 \def\restore@protect{\let\protect\@@protect}

The normal meaning of \protect

244 \set@typeset@protect

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 31

\@ifundefined

\@gend
\@grelax

\@ifnextchar

\kernel@ifnextchar

\@ifnch

\@sptoken

\@xifnch

11.5 Internal defining commands
These commands are used internally to define other BTEX commands.

Check if first arg is undefined or \relax and execute second or third arg depending,

245 \def\@ifundefined#1{},
246 \expandafter\ifx\csname#1\endcsname\relax

247 \expandafter\@firstoftwo
248 \else
249 \expandafter\@secondoftwo
250 \fi}

The following define \@gend and \@qrelax to be the strings ‘end’ and ‘relax’
with the characters \catcoded 12.

251 \edef\@gend{\expandafter\@cdr\string\end\@nil}
252 \edef\@qrelax{\expandafter\@cdr\string\relax\@nil}

\@ifnextchar peeks at the following character and compares it with its first ar-
gument. If both are the same it executes its second argument, otherwise its third.
253 \long\def\Q@ifnextchar#1#2#3{%

254 \let\reserved@d=#1%

255 \def\reserved@a{#2}

256 \def\reserved@b{#3}Y

257 \futurelet\@let@token\@ifnch}

This macro is the kernel version of \@ifnextchar which is used in a couple of
places to prevent the AMS variant from being used since in some places this
produced chaos (for example if an f£d file is loaded in a random place then the
optional argument to \ProvidesFile could get printed there instead of being
written only in the log file. This happened when there was a space or a newline
between the mandatory and optional arguments! It should really be fixed in the
amsmath package one day, but. ..

Note that there may be other places in the kernel where this version should be
used rather than the original, but variable, version.

258 \let\kernel@ifnextchar\@ifnextchar

\@ifnch is a tricky macro to skip any space tokens that may appear before the
character in question. If it encounters a space token, it calls xifnch.

259 \def\@ifnch{¥%
260 \ifx\@let@token\@sptoken

261 \let\reserved@c\@xifnch

262 \else

263 \ifx\@let@token\reserved@d
264 \let\reserved@c\reserved@a
265 \else

266 \let\reserved@c\reserved@b
267 \fi

268 \fi

269 \reserved@c}

The following code makes \@sptoken a space token. It is important here that the
control sequence \ : consists of a non-letter only, so that the following whitespace is
significant. Together with the fact that the equal sign in a \let may be followed
by only one optional space the desired effect is achieved. NOTE: the following
hacking must precede the definition of \: as math medium space.

270 \def\:{\let\@sptoken= } \: 7 this makes \@sptoken a space token

In the following definition of \@xifnch, \: is again used to get a space token as
delimiter into the definition.

271 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 32

\makeatletter
\makeatother

\@ifstar

\@dblarg
\@xdblarg

\@sanitize

\@onelevel@sanitize

\aut@global

\@autoload

Make internal control sequences accessible or inaccessible.

272 \def\makeatletter{\catcode‘\@11\relax}
273 \def\makeatother{\catcode‘\@12\relax}

The new implementation below avoids passing the (true code) Through one more
\def than the (false code), which previously meant that # had to be written as
in one argument, but ## in the other. The * is gobbled by \@firstoftwo.

274 \def\Q@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}

275 \long\def\@dblarg#l{\kernel@ifnextchar [{#1}{\@xdblarg{#1}}}
276 \long\def\@xdblarg#1#2{#1 [{#2}]1{#2}}

The command \@sanitize changes the catcode of all special characters except
for braces to ‘other’. It can be used for commands like \index that want to write
their arguments verbatim. Needless to say, this command should only be executed
within a group, or chaos will ensue.

277 \def\@sanitize{\@makeother\ \@makeother\\\@makeother\$\@makeother\&’
278 \@makeother\#\@makeother\~\@makeother_\@makeother\’\@makeother\~}

This makes the whole “meaning” of #1 (its one-level expansion) into catcode 12
tokens: it could be used in \DeclareRobustCommand.
If it is to be used on default float specifiers, this should be done when they are
defined.
279 \def \@onelevel@sanitize #1{%
280 \edef #1{\expandafter\strip@prefix
281 \meaning #13}J,
282 }

283 (/2ekernel)

11.6 Commands for Autoloading
284 (*autoload)

This command is only defined in the ‘autoload’ format. It is normally \relax
but may be set to \global, in which case \newif and the commands based on
\newcommand will all make global definitions.

285 \let\aut@global\relax

This macro is only defined in the ‘autoload’ format. It inputs a package
‘auto#1l.sty’ within a local group, and with normalised catcodes. \aut@global is
set to \global so that \newif \newcommand and related commands make global
definitions.

286 \def\@autoload#1{%

287 \begingroup

288 \makeatletter

289 \let\aut@global\global

290 \nfss@catcodes

291 \catcode‘\ =10

292 \let\@latex@e@error\@gobble

293 \@@input auto#1l.sty\relax

294 \endgroup}

295 (/autoload)

File d: 1tdefns.dtx Date: 2004/09/18 Version v1.3g 33

\@xxxii

\@Mi
\@Mii
\@Miii
\@Cmiv

\@tempcnta
\@tempcntb

\if@tempswa

\@tempdima

\@tempdimb
\@tempdimc

\@tempboxa

\@tempskipa
\@tempskipb

\@temptokena

\@flushglue

File e
Italloc.dtx

12 Counters

This section deals with counter and other variable allocation.

1 (x2ekernel)

The following are from plain TEX:

\z@ A zero dimen or number. It’s more efficient to write \parindent\z@ than

\parindent Opt.
\@ne The number 1.
\m@ne The number —1.
\tw@ The number 2.
\sixt@0n The number 16.
\@m The number 1000.
\@M The number 20000.

The constant 32.
2 \chardef\@xxxii=32

Constants 1001-1004.

3 \mathchardef\@Mi=10001

4 \mathchardef\@Mii=10002
5 \mathchardef\@Miii=10003
6 \mathchardef\@Miv=10004

Scratch count registers used by KTEX kernel commands.

7 \newcount\@tempcnta
8 \newcount\@tempcntb

General boolean switch used by ITEX kernel commands.

9 \newif\if@tempswa

Scratch dimen registers used by ETEX kernel commands.

10 \newdimen\@tempdima
11 \newdimen\@tempdimb
12 \newdimen\@tempdimc
Scratch box register used by EXTEX kernel commands.

13 \newbox\@tempboxa

Scratch skip registers used by KTEX kernel commands.

14 \newskip\@tempskipa
15 \newskip\@tempskipb

Scratch token register used by IXTEX kernel commands.

16 \newtoks\Q@temptokena

Glue used for \right- & \leftskip = Opt plus 1fil
17 \newskip\@flushglue \@flushglue = Opt plus 1fil

18 (/2ekernel)

File e: 1talloc.dtx Date: 1996/07/26 Version v1.1lc

34

File f
Itcntrl.dtx

13 Program control structure

This section defines a number of control structure macros, such as while-loops and
for-loops.

1 (x2ekernel)
2 \message{control,}

\@whilenum TEST \do {BODY}
\@whiledim TEST \do {BODY?} : These implement the loop
while TEST do BODY od
where TEST is a TeX \ifnum or \ifdim test, respectively.
They are optimized for the normal case of TEST initially false.

\@whilesw SWITCH \fi {BODY?} : Implements the loop
while SWITCH do BODY od
Optimized for normal case of SWITCH initially false.

\eéfor NAME := LIST \do {BODY?} : Assumes that LIST expands to
Al1,A2,

... ,An .

Executes BODY n times, with NAME = Ai on the i-th
iteration.

Optimized for the normal case of n = 1. Works for n=0.

\@tfor NAME := LIST \do {BODY}
if, before expansion, LIST = T1 ... Tn where each Ti is a
token or {...}, then executes BODY n times, with NAME = Ti
on the i-th iteration. Works for n=0.

NOTES: 1. These macros use no \@temp sequences.
2. These macros do not work if the body contains anything that
looks syntactically to TeX like an improperly balanced \if
\else \fi.

\@whilenum TEST \do {BODY} ==
BEGIN
if TEST
then BODY
\@iwhilenum{TEST \relax BODY}
END

\@iwhilenum {TEST BODY} ==
BEGIN
if TEST
then BODY
\@nextwhile = def(\@iwhilenum)
else \@nextwhile = def(\@whilenoop)
fi
\@nextwhile {TEST BODY}
END

\@whilesw SWITCH \fi {BODY} ==
BEGIN

File f: 1tentrl.dtx Date: 2007/08/06 Version v1.0h 35

if SWITCH
then BODY
\@iwhilesw {SWITCH BODY}\fi
fi
END

\@iwhilesw {SWITCH BODY} \fi ==
BEGIN
if SWITCH
then BODY
\@nextwhile = def(\@iwhilesw)
else \@nextwhile = def(\@whileswnoop)
fi
\@nextwhile {SWITCH BODY} \fi
END

\@whilenoop

\@vhilenum 3 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax
\@iwhilenum 4 #2\relax}\fi}
5 \long\def\@iwhilenum#1{\ifnum #1\expandafter\Q@iwhilenum
6 \else\expandafter\@gobble\fi{#1}}

\@vhiledim

\@iwhiledim 7 \long\def\@whiledim#1\do #2{\ifdim #1\relax#2\@iwhiledim{#1\relax#2}\fi}
8 \long\def\@iwhiledim#1{\ifdim #1\expandafter\@iwhiledim
9 \else\expandafter\Q@gobble\fi{#1}}

\@whileswnoop

\@whilesw 10 \long\def\@whilesu#1\fi#2{#1#2\@ivhilesw{#1#2}\fi\fi}
\@iwhilesw 11 \long\def\@iwhilesw#1\fi{#1\expandafter\Q@iwhilesw
12 \else\Q@gobbletwo\fi{#1}\fi}

\@for NAME := LIST \do {BODY} ==
BEGIN \e@forloop expand(LIST)\@nil,\e@nil \e@ NAME {BODY}
END

\@forloop CAR, CARCDR, CDRCDR \@ee NAME {BODY} ==
BEGIN
NAME = CAR
if def(NAME) = def(\@nnil)
else BODY;
NAME = CARCDR
if def(NAME) = def(\@nnil)
else BODY
\@iforloop CDRCDR \ee NAME \do {BODY}

i
END

\@iforloop CAR, CDR \ee NAME {BODY} =
NAME = CAR
if def(NAME) = def(\@nnil)
then \@nextwhile = def(\@fornoop)
else BODY ;
\@nextwhile = def(\@iforloop)

File f: 1tentrl.dtx Date: 2007/08/06 Version v1.0h 36

\@nextwhile name cdr {body}

\@tfor NAME := LIST \do {BODY}
= \@tforloop LIST \eénil \@@ NAME {BODY}

\@tforloop car cdr \@@ name {body} =
name = car
if def(name) = def(\@nnil)

then \@nextwhile == \@formnoop
else body ;
\@nextwhile == \@forloop
fi
\@nextwhile name cdr {body}
\@nnil
13 \def\@nnil{\@nil}
\@empty
14 \def\@empty{}
\@fornoop
15 \long\def\@fornoop#1\Qo#2#3{}
\efor
16 \long\def\@for#1:=#2\do#3{/,
17 \expandafter\def\expandafter\@fortmp\expandafter{#2}J
18 \ifx\@fortmp\@empty \else
19 \expandafter\Q@forloop#2,\@nil, \O@nil\Q@@#1{#3}\fi}
\@forloop
20 \long\def\@forloop#1,#2, #3\00#4#5{\def#4{#1}\ifx #4\@nnil \else
21 #5\def#4{#2}\ifx #4\@nnil \else#5\Q@iforloop #3\Q@#4{#5}\fi\fi}
\@iforloop
22 \long\def\@iforloop#1, #2\00#3#4{\def#3{#1}\ifx #3\@nnil
23 \expandafter\@fornoop \else
24 #4\relax\expandafter\Q@iforloop\fi#2\Q0#3{#4}}
\@tfor

25 \def\Qtfor#1l:={\@tfor#1 }

26 \long\def\@tfor#1#2\do#3{\def\@fortmp{#2}\ifx\@fortmp\space\else
27 \@tforloop#2\@nil\@nil\Q@@#1{#3}\fi}

28 \long\def\@tforloop#1#2\00#3#4{\def#3{#1}\ifx #3\@nnil

29 \expandafter\@fornoop \else

30 #4\relax\expandafter\Q@tforloop\fi#2\Q@e#3{#4}}

\@break@tfor Break out of a \@tfor loop. This should be called inside the scope of an \if. See
\@iffileonpath for an example.

31 \long\def\@break@tfor#1\Qe#2#3{\fi\fi}

\@removeelement Removes an element from a comma-separated list and puts it into a control se-
quence, called as \@removeelement{({element)}{(list)}{(cs)}.
32 \def\@removeelement#1#2#3{%
33 \def\reservedQa##1l,#1,##2\reserved@a{##1,##2\reserved@bl},
34 \def\reserved@bi##1l,\reserved@##2\reserved@b{

35 \ifx,##1\Q@empty\else##1\fi}}
36 \edef#3{Y
37 \expandafter\reserved@b\reserved@a,#2,\reserved@b,#1,\reserved@al}}

38 (/2ekernel)

File f: 1tentrl.dtx Date: 2007/08/06 Version v1.0h 37

\MessageBreak

\GenericInfo

\GenericWarning

\GenericError

File g
Iterror.dtx

14 Error handling

This section defines IXTEX’s error commands.

The ‘2ekernel’ code ensures that a \usepackage{autoerr} is essentially ig-
nored if a ‘full’ format is being used that has the error messages already in the
format.

1 (2ekernel)\expandafter\let\csname ver@autoerr.sty\endcsname\fmtversion

2 (x2ekernel | autoload)

14.1 General commands

This command prints a new-line inside a message, followed by a continuation line
begun with \@msg@continuation. Normally it is defined to be \relax, but inside
messages, it is let to \@message@break.

3 \let\MessageBreak\relax

This takes two arguments: a continuation and a message, and sends the result to
the log file.

4 \DeclareRobustCommand{\GenericInfol} [2]{%
\begingroup
\def\MessageBreak{~~J#11}%
\set@display@protect
\immediate\write\m@ne{#2\on@line.}},
\endgroup

ot

1

S © 0w N O

}

This takes two arguments: a continuation and a message, and sends the result to
the screen.

11 \DeclareRobustCommand{\GenericWarning} [2]{%
12 \begingroup

13 \def\MessageBreak{~~J#1}%

14 \set@display@protect

15 \immediate\write\Qunused{~~J#2\on@line." " J}%
16 \endgroup

17 }

18 (/2ekernel | autoload)

This macro takes four arguments: a continuation, an error message, where to go
for further information, and the help information. It displays the error message,
and sets the error help (the result of typing h to the prompt), and does a horrible
hack to turn the last context line (which by default is the only context line) into
just three dots. This could be made more efficient.

19 (autoload)\def\GenericError{\@autoerr\GenericError}
20 (x2ekernel | def)

21 \bgroup

22 \lccode‘\@=‘\ %

23 \lccode‘\ =\ ¥

24 \lccode‘\}=‘\ %

25 \lccode ‘\{=°\ %

26 \lccode ‘\T=‘\T},

27 \lccode ‘\H=‘\H/,

28 \catcode‘\ =11\relax,
29 \lowercase{%

30 \egroup/

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 38

Unfortunately TEX versions older than 3.141 have a bug which means that
~~J does not force a linebreak in \message and \errmessage commands. So for
these old TEX’s we use \typeout to produce the message, and then have an empty
\errmessage command. This causes an extra line of the form

To appear on the terminal, but if you do not like it, you can always upgrade your
TEX! In order for your format to use this version, you must define the macro
\@TeXversion to be the version number, e.g., 3.14 of the underlying TEX. See the
comments in 1tdircheck.dtx.

31 \dimen@\ifx\Q@TeXversion\Qundefined4\else\@TeXversion\fi\p@y,
32 \ifdim\dimen@>3.14\p@’
First the ‘standard case’.
33 \DeclareRobustCommand{\GenericError}[4]{},
34 \begingroup’
35 \immediate\write\Qunused{}}
36 \def\MessageBreak{"~"~J}/,
37 \set@display@protect?,

38 \edef’,
39 % Hh<mmmmmm do not delete this space!-----———-—————————- >Y,
40 \@erra@ %

41 {{#4}}%
42 \errhelp

43 % h<—=m—=mmmmmm e m o do not delete this space!-——--———-—————————- >%
44 \Qerr@ %
45 \let

46 % h<—mm—mmmmmm o do not delete this space!-———-———-—————————- >%
47 \@err@ %
48 \@empty

49 \def\MessageBreak{~~J#1}/,
50 \def“{\errmessage{’
51 #2.7°J°"J%

52 #37°J%,

53 Type H <return> for immediate help

54 % h<—==——mmmmmm do not delete this space!-——--——--—————————- >%
55 \Qerr@ %
56 }}%

57 “h

58 \endgroupl}’,
59 \else’,

Secondly the version for old TEX’s.

60 \DeclareRobustCommand{\GenericError}[4]{}
61 \begingroup’

62 \immediate\write\@unused{}%

63 \def\MessageBreak{~"~J}

64 \set@display@protect’

65 \edef?,

66 % h<—=m——mmmmmmmmm - do not delete this space!-———-———-—————————- >%
67 \@err@ Y
68 {{#4}}%

69 \errhelp

70 % h<mmmmm e do not delete this space!--———------————---——- >%
71 \Qerr@ %
72 \let

73 % h<m—mmm o do not delete this space!-————----—————————- >%
74 \Qerr@ %

75 \errmessage

76 \def\MessageBreak{"~~J#1}%
77 \def ~{\typeout{! ¥

78 #2.°°J°"J%

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 39

\PackageError
\PackageWarning
\PackageWarningNoLine
\PackageInfo
\ClassError
\ClassWarning
\ClassWarningNoLine
\ClassInfo

79 #3°°J%,

80 Type H <return> for immediate help.}

81 % h<mmmm o do not delete this space!-————----—————————- >%
82 \Qerr@ %
83 {3}

84 ~%

85 \endgroupl}/,

86 \fi}%
87 (/2ekernel | def)

These commands are intended for use by package and class writers, to give infor-
mation to authors. The syntax is:

\PackageError{(package)}{{error)}{(help)}
\PackageWarning{(package)}{(warning)}
\PackageWarningNoLine{(package)}H (warning)}
\PackageInfo{(package)}{(info)}

and similarly for classes. The Error commands print the {error) message, and
present the interactive prompt; if the author types h, then the (help) information
is displayed. The Warning commands produce a warning but do not present the
interactive prompt. The WarningNoLine commands do the same, but don’t print
the input line number. The Info commands write the message to the log file.
Within the messages, the command \MessageBreak can be used to break a line,
\protect can be used to protect command names, and \space is a space, for
example:

\newcommand{\foo}{FO0}

\PackageWarning{ethel}{/
Your hovercraft is full of eels,\MessageBreak
and \protect\foo\space is \foo}

produces:

Package ethel warning: Your hovercraft is full of eels,
(ethel) and \foo is FOO on input line 54.

88 (autoload)\def\PackageError{\Q@autoerr\PackageError}
89 (x2ekernel | def)
90 \gdef\PackageError#1#2#3{%

91 \GenericError{/

92 (#1) \@spaces\@spaces\@spaces\@spaces

93 H%

94 Package #1 Error: #2J

95 Hb%

96 See the #1 package documentation for explanation.%
97 H#3}%

98 }

99 (/2ekernel | def)

100 (*2ekernel | autoload)
101 \def\PackageWarning#1#2{%
102 \GenericWarning{/,

103 (#1) \@spaces\@spaces\@spaces\@spaces
104 H

105 Package #1 Warning: #2,

106 Yh

107 }

108 \def\PackageWarningNoLine#1#2{Y

109 \PackageWarning{#1}{#2\@gobble},
110 }

111 \def\PackageInfo#1#2{/

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 40

\@latex@error
\@latex@warning
\@latex@warning@no@line
\@latex@info
\@latex@info@no@line

112 \GenericInfo{’

113 (#1) \@spaces\@spaces\@spaces
114 H

115 Package #1 Info: #2J,

116 Yh

117}

118 (/2ekernel | autoload)

119 (autoload)\def\ClassError{\@autoerr\ClassError}
120 (x2ekernel | def)

121 \gdef\ClassError#1#2#3{/,

122 \GenericError{/,

123 (#1) \space\@spaces\@spaces\@spaces

124 H%

125 Class #1 Error: #2J

126 M

127 See the #1 class documentation for explanation.’
128 H#3},

129 }

130 (/2ekernel | def)

131 (x2ekernel | autoload)
132 \def\ClassWarning#1#2{Y
133 \GenericWarning{’

134 (#1) \space\@spaces\@spaces\@spaces
135 H%

136 Class #1 Warning: #2J,

137 iy

138 }

139 \def\ClassWarningNoLine#1#2{J,

140 \ClassWarning{#1}{#2\@gobblel}/
141

142 \def\ClassInfo#1#2{%

143 \GenericInfo{/

144 (#1) \space\space\@spaces\@spaces
145 M

146 Class #1 Info: #2,

147 Y

148 }

149 (/2ekernel | autoload)

Errors and other info, for use in the KTEX core.

150 (autoload)\def\@latex@error{\Qautoerr\@latex@error}
151 (*2ekernel | def)

152 \gdef\@latex@error#1#2{J

153 \GenericError{/

154 \space\space\space\@spaces\@spaces\@spaces

155 M

156 LaTeX Error: #17

157 H%

158 See the LaTeX manual or LaTeX Companion for explanation.’
159 H#2}%

160 }

161 (/2ekernel | def)

162 (x2ekernel | autoload)
163 \def\Q@latex@warning#1{J,
164 \GenericWarning{/,

165 \space\space\space\@spaces\@spaces\@spaces
166 Hi

167 LaTeX Warning: #1

168 Y

169

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 41

\c@errorcontextlines

\on@line

\@warning

\@@warning
\@latexerr

\@spaces

\@eha
\@ehb
\@ehc
\@ehd

170 \def\@latex@warning@no@line#1{},
171 \@latex@warning{#1\@gobble}}

172 \def\@latex@info#1{}
173 \GenericInfo{%

174 \@spaces\@spaces\@spaces
175

176 LaTeX Info: #1%

177 Y

178 ¥

179 \def\@latex@info@no@line#1{%
180 \@latex@info{#1\@gobble}}

\@font@warning and \@font@info are defined later since they have to be
redefined by the tracefnt package.

\def\@font@warning#1{/
\GenericWarning{/,
{(font)\@spaces\@spaces}’
{Font Warning: #1}J,
}
\def\@font@info#1{}
\GenericInfo{%
(font) \space\@spaces
Ho
Font Info: #17%
Y
}

\errorcontextlines as a I¥TEX counter, so that it may be be manipulated with
\setcounter (once it is defined :-)

181 \let\c@errorcontextlines\errorcontextlines
182 \c@errorcontextlines=-1

The message ¢ on input line n’, if possible.

183 \ifnum\inputlineno=\m@ne

184 \let\on@line\@empty

185 \else

186 \defl\on@line{ on input line \the\inputlineno}
187 \fi

Older I¥TEX messages. For the moment, these \1let to the new message commands.
They may be changed later, once only obsolete packages and classes contain them.

188 \let\@warning\@latex@warning

189 \1let\@@warning\@latex@warning@no@line
190 (/2ekernel | autoload)

191 \global\let\@latexerr\@latex@error

Four spaces.

192 (*2ekernel | autoload)
193 \def\@spaces{\space\space\space\space}
194 (/2ekernel | autoload)

14.2 Specific errors

The more common error help messages.

195 (x2ekernel | def)

196 \gdef\@eha{’

197 Your command was ignored.\MessageBreak

198 Type \space I <command> <return> \space to replace it %

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 42

\@autoerr

\@notdefinable

\@nolnerr

\@nocounterr

\@nocnterr

\@ctrerr

\@nodocument

199 with another command,\MessageBreak

200 or \space <return> \space to continue without it.}
201 \gdef\@ehb{%

202 You’ve lost some text. \space \Q@ehc}

203 \gdef\@ehc{%

204 Try typing \space <return>

205 \space to proceed.\MessageBreak

206 If that doesn’t work, type \space X <return> \space to quit.}
207 \gdef\@ehd{/,

208 You’re in trouble here. \space\@ehc}

209 (/2ekernel | def)

As \latex@error triggers the autoload, these definitions should not be needed in
the autoload format, but just to be safe. ..

210 (*autoload)
211 \let\@eha\Q@empty\let\Q@ehb\Q@empty\let\Q@ehc\Q@empty\let\@ehd\Qempty
212 (/autoload)

Here are most of the error message-generating commands of KTEX.

Make this autoload command robust, as it may be read in at unpredicatble times.

213 (autoload)\def\Qautoerr{\protect\Q@autoload{err}\protect}

Error message generated in \@ifdefinable from calls to one of the commands
\newcommand, \newlength or \newtheorem specifying an already-defined com-
mand name or one that begins \end. ...

214 \gdef\@notdefinable{}
215 (lautoload) \@latex@error{Y

216 (lautoload) Command \@backslashchar\reserved@a\space
217 (lautoload) already defined.\MessageBreak

218 (lautoload) Or name \@backslashchar\@gend... illegal,
219 (lautoload) see p.192 of the manual}\Qeha}

220 (autoload) \@autoerr\@notdefinable}

Generated by \newline and \\ when called in vertical mode.

221 \gdef\@nolnerr{%
222 (lautoload) \@latex@error{There’s no line here to end}\@eha}
223 (autoload) \@autoerr\@nolnerr}

Generated by \setcounter, \addtocounter or \newcounter if applied to an un-
defined counter (cnt).

Obsolete error message generated in I4TEX2.09 by \setcounter, \addtocounter
or \newcounter for undefined counter. DO NOT use for BWTEX2¢ it MIGHT
vanish! Use \@nocounterr{(cnt)} instead.

224 \gdef\@nocounterr#1{/,

225 (lautoload) \@latex@error{No counter ’#1’ defined}\@eha}

226 (autoload) \@autoerr\@nocounterr}

227 \gdef\@nocnterr{\@nocounterr?}

Called when trying to print the value of a counter numbered by letters that’s
greater than 26.

228 \gdef\Q@ctrerr{/
229 (lautoload) \@latex@error{Counter too large}\@ehb}
230 (autoload) \@autoerr\@ctrerr}

Error produced if paragraphs are typeset in the preamble.

231 (!def)\gdef\@nodocument{Y,
232 (Idef) \@latex@error{Missing \protect\begin{document}}\@ehd}

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 43

\@badend

\@badmath

\@toodeep

\@badpoptabs

\@badtab

\@preamerr

\@badlinearg

\@parmoderr

Called by \end that doesn’t match its \begin. RmS 1992/08/24: added code to
\@badend to display position of non-matching \begin. FMi 1993/01/14: missing
space added.

233 \gdef\@badend#1{/,

234 (lautoload) \@latex@error{\protect\begin{\@currenvir}\@currenvline

235 (lautoload) \space ended by \protect\end{#1}}\@eha}

236 (autoload) \@autoerr\@badend}

Called by \ [, \], \(C or \) when used in wrong mode.

237 \gdef\@badmath{%,
238 (lautoload) \@latex@error{Bad math environment delimiter}\@eha}
239 (autoload) \@autoerr\@badmath}

Called by a list environment nested more than six levels deep, or an enumerate or
itemize nested more than four levels.
240 \gdef\@toodeep{%
241 (lautoload) \@latex@error{Too deeply nested}\@ehd}
242 (autoload) \@autoerr\@toodeep}

Called by \endtabbing when not enough \poptabs have occurred, or by \poptabs
when too many have occurred.
243 \gdef\@badpoptabs{%
244 (lautoload) \@latex@error{\protect\pushtabs\space and \protect\poptabs
245 (lautoload) \space don’t match}\@ehd}
246 (autoload) \@autoerr\@badpoptabs}

Called by \>, \+, \- or \< when stepping to an undefined tab.

247 \gdef\@badtab{%
248 (lautoload) \@latexQerror{Undefined tab position}\@ehd}
249 (autoload) \@autoerr\@badtab}

This error is special: it appears in places where we normally have to \protect
expansions. However, to prevent a protection of the error message itself (which
would result in the message getting printed not issued on the terminal) we need
to locally reset \protect to \relax.

250 \gdef\@preamerr#1{%
251 \begingroup

252 \let\protect\relax

253 (*lautoload)

254 \@latex@error{\ifcase #1 Illegal character\or
255 Missing @-exp\or Missing p-arg\fi\space

256 in array arg}\@ehd

257 (/lautoload)
258 (autoload) \@autoerr\@preamerr{#11}/,
259 \endgroup}

Occurs in \1line and \vector command when a bad slope argument is encoun-
tered.

260 \gdef\@badlinearg{’
261 (lautoload) \@latex@error{%

262 (lautoload) Bad \protect\line\space or \protect\vector
263 (lautoload) \space argument}\Q@ehb}
264 (autoload) \@autoerr\@badlinearg}

Occurs in a float environment or a \marginpar when encountered in inner vertical
mode.

265 \gdef\@parmoderr{,

266 (lautoload) \@latex@error{Not in outer par mode}\Qehb}

267 (autoload) \@autoerr\@parmoderr}

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 44

\@fltovf

\@latexbug

\@badcrerr

\@noitemerr

\@notprerr

\@inmatherr

\@invalidchar

Occurs in float environment or \marginpar when there are no more free boxes for
storing floats.
268 \gdef\e@fltovf{}

269 (lautoload) \@latex@error{Too many unprocessed floats}\@ehb}
270 (autoload) \@autoerr\@fltovf}

Occurs in output routine. This is bad news.

271 \gdef\@latexbug{}
272 (lautoload) \@latex@error{This may be a LaTeX bug}{Call for help}}
273 (autoload) \@autoerr\@latexbug}

This error was removed and replaced by \@nolnerr.

274 % \def\@badcrerr {\@latex@error{Bad use of \protect\\}\@ehc}

\addvspace or \addpenalty was called when not in vmode. Probably caused by
a missing \item.

275 \gdef\@noitemerr{y,

276 (lautoload) \@latex@error{Something’s wrong--perhaps a missing ¥

277 (lautoload) \protect\item}\@ehc}

278 (autoload) \@autoerr\@noitemerr}

A command that can be used only in the preamble appears after the command
\begin{document}.

279 \gdef\@notprerr{y,

280 (lautoload) \@latex@error{Can be used only in preamble}\@eha}

281 (autoload) \@autoerr\@notprerr}

Issued by commands that don’t work correctly within math (like \item). There
is no real error recovery happening, e.g., the user might get additional errors
afterwards.

282 \gdef\Q@inmatherr#1{%

283 \relax

284 \ifmmode

285 (lautoload) \@latex@error{Command \protect#1 invalid in math mode}\@ehc

286 (autoload) \@autoerr\@inmatherr#1%

287 \fi}

An error for use with invalid characters. This is commented out, since we decided
to use chatcode 15 instead.

288 %\def\@invalidchar{\@latex@error{Invalid character in inputl}\@ehc}

As well as the above error commands some error messages are directly coded
to save space. The Messages alrerady present in ITEX2.09 included:
Environment --- undefined
Issued by \begin for undefined environment.
tab overflow
Occurs in \= when maximum number of tabs exceeded.
\< in mid line
Occurs in \< when it appears in middle of line.
Float(s) lost
In output routine, caused by a float environment or \marginpar occurring in inner
vertical mode.

File g: 1terror.dtx Date: 1998/05/28 Version v1.2n 45

File h
Itpar.dtx

15 Paragraphs

This section of the kernel declares the commands used to set \par and \everypar
when ever their function needs to be changed for a long time.

15.1 Implementation

There are two situations in which \par may be changed:
e Long-term changes, in which the new value is to remain in effect until the

current environment is left. The environments that change \par in this way
are the following:

— All list environments (itemize, quote, etc.)

— Environments that turn \par into a noop: tabbing, array and tabular.

e Temporary changes, in which \par is restored to its previous value the next
time it is executed. The following are all such uses.

— \end when preceded by \@endparenv, which is called by \endtrivlist

— The mechanism for avoiding page breaks and getting the spacing right
after section heads.

\@setpar To permit the proper interaction of these two situations, long-term changes
are made by the \@setpar{(VAL)} command. It’s function is:

To set \par. It \def’s \par and \@par to (VAL).

\@restorepar Short-term changes are made by the usual \def\par commands. The original
values are restored after a short-term change by the \@restorepar commands.
\@@par \@@par always is defined to be the original TEX \par.
\everypar \everypar is changed only for the short term. Whenever \everypar is set

non-null, it should restore itself to null when executed.
The following commands change \everypar in this way:

e \item

e \end when preceded by \@endparenv, which is called by endtrivlist

e \minipage

When dealing with \par and \everypar remember the following two warnings:

1. Commands that make short-term changes to \par and \everypar must take
account of the possibility that the new commands and the ones that do the
restoration may be executed inside a group. In particular, \everypar is exe-
cuted inside a group whenever a new paragraph begins with a left brace. The
\everypar command that restores its definition should be local to the cur-
rent group (in case the command is inside a minipage used inside someplace
where \everypar has been redefined). Thus, if \everypar is redefined to
do an \everypar{} it could take several executions of \everypar before the
restoration “holds”. This usually causes no problem. However, to prevent
the extra executions from doing harm, use a global switch to keep anything
harmful in the new \everypar from being done twice.

2. Commands that change \everypar should remember that \everypar might
be supposed to set the following switches false:

File h: 1tpar.dtx Date: 1995/04/29 Version v1.1c 46

e @nobreak

e Gminipage
they should do the setting if necessary.

1 (*2ekernel)
2 \message{par,}
\@setpar Initiate a long-term change to \par.
\@par 3 \def\@setpar#i{\def\par{#1}\def\@par{#1}}

The default definition of \@par will ensure that if \@restorepar defines \par
to execute \@par it will redefine itself to the primitive \@@par after one iteration.

4 \def\@par{\let\par\@@par\par}
5 (/2ekernel)

\@restorepar Restore from a short-term change to \par.
6 \def\@restorepar{\def\par{\@parl}}

File h: 1tpar.dtx Date: 1995/04/29 Version v1.1c 47

\nopagebreak

\pagebreak
\linebreak
\nolinebreak

\samepage

\\

File i
Itspace.dtx

16 Spacing

This section deals with spacing, and line- and page-breaking.

16.1 User Commands
()] : (i) = 0,... 4.

Default argument = 4. Puts a penalty into the vertical list output as follows:
: penalty = 0
: penalty = \@lowpenalty
: penalty = \@medpenalty
: penalty = \@highpenalty
: penalty = 10000
[(i)] : same as except negatives of its penalty
[(i)] : analog of the above
[(i)] : analog of the above
: inhibits page breaking most places by setting the following penalties to 10000:
\interlinepenalty
\postdisplaypenalty
\interdisplaylinepenalty
\@beginparpenalty
\@endparpenalty
\@itempenalty
\@secpenalty
\interfootnotelinepenalty
: initially defined to be \newline
\\ [{length)] : initially defined to be \vspace{{length)}\newline
Note: * adds a \vadjust{\penalty 10000}
OBSOLETE COMMANDS (which never made it into the manual):
\obeycr : defines {CR; == \\\relax
\restorecr : restores jCRj, to its usual meaning.

W~ O

16.2 Chris’ comments

There are several aspects of the handling of space in horizontal mode that are
inconsistent or do not work well in some cases. These are largely concerned with
ignoring the effect of space tokens that would otherwise typeset an inter-word
space.

Negating the effect of such space tokens is achieved by two mechanisms:

e \unskip is used to remove the glue just added by a space that has already
had its effect; it is sometimes invoked after an \ifdim test on \lastskip
(see below);

e \ignorespaces is used to ignore space-tokens yet to come.

The test done on \lastskip is sometimes for equality with zero and sometimes
for being positive. Recall also that the test is only on the natural length of the
glue and that no glue cannot be distinguished from glue whose natural length is
zero: to summarise, a pretty awful test. It is not clear why these tests are not all
the same; I think that they should all be for equality. One place where \unskip is
often used is just before a \par (which itself internally does an \unskip) and one
bit of code (in \@item) even has two \unskips before a \par. These uses may be
fossil code but if they are necessary, maybe \@killglue would be even safer.

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 48

Such removal of glue by \unskip may sometimes have the wrong result, re-
moving not the glue from a space-token but other explicit glue; this is sometimes
not what is intended.

A common way to prevent such removal is to add an \hskip\z@ after the glue
that should not be removed. This protects that glue against one \unskip with no
test but not against more than one. It does work for ‘tested \unskips’. This is
used by \hspace* but not by \hspace; this is inconsistent as the star is supposed
to prevent removal only at the beginning of a line, not at the end, or in a tabular,
etc.

If this reason for removing glue were the only consideration then a tested-
\unskip and protection by \hskip\z@ would suffice but would need to be consis-
tently implemented.

However, the class of invisibles, commands and environments tries to be even
cleverer: one of these tries to leave only one inter-word space whenever there is
one before it and one after it; and it does this quite well.

But problems can arise when there is not a space-token on both sides of it; in
particular, when an invisible appears at the beginning or end of a piece of text the
method still leaves one space token whereas usually in these cases it should leave
none.

Also, the current rules do not work well when more than one such command
appears consecutively, separated by space-tokens; it leaves glue between every
other invisible.

There is also a question about what these commands should do when they
occur next to spaces that do not come from space tokens but, for example, from
\hspace. Should they still produce ‘just one space’? If so, which one? It is good
to note that the manual is sufficiently cautious about invisibles that we are not
obliged to make anything work.

Another interesting side-road to explore is whether the space-tokens either side
of an \hspace{. ..} should be ignored.

One alternative to the current algorithm that is often suggested is that all glue
around the invisible should be consolidated into a space after it (usually without
stating how much glue should be put there). The command \nolinebreak is
implemented this way (and \linebreak should also be). This does not work
correctly for the following common case:

. some text
\index{some-word}
some-word and more text.

This is optimal coding since it is normal to index a word that gets split across
a page-break on its starting page. This would, on the other hand, fix another
common (and documented) failure of the current system: when the invisible is
the last thing in a paragraph the space before it is not removed and, worse, it is
also hidden from the paragraph-ending mechanism so that an ‘empty’ line can be
created at the end of the paragraph.

Another deficiency (I think) of the current system is that the following is
treated as having the \index command between the paragraphs, which is probably
not what the author intended (since there is no empty line after it).

\index{beginnings}
Beginnings of paragraphs ...

I know of no algorithm that will handle satisfactorily even all the most common
cases; note that it could be that the best algorithm may be different for different
invisibles since, for example, the common uses and expected behaviour of \index,
\marginpar, \linebreak, \pagebreak and \vspace are somewhat different. [For
example, is \vspace ever used in the middle of a paragraph?]

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 49

One method that can (and is) used to make invisible commands produce no
space when used at the beginning of text is to put in some glue that is nearly
enough the same as no glue or glue of zero length in all respects except for the pre-
cise test for not being exactly equal to zero; examples of such glue are \hskip 1sp
and, possibly better but more complex, \hskip -1sp \hskip 1sp. However, this
only works when it is known that user-supplied text is about to start.

Some similar concerns apply to the handling of space and penalties in vertical
mode; there is an extra hurdle here as \unskip does not work on the main vertical
list. The complexity of the tests done by \addvspace have never been explained.

The implementation of space hacks etc for vertical mode is another major
area that needs further attention; my earlier experiments did not produce much
improvement over the current unsatisfactory situation.

One particular problem is what happens when the following very natural coding
is used (part of the problem here is that this looks like an hmode problem, but it
is not):

. end of text.

\begin{enumerate}
\item \label{item:xxx} Item text.
\end{enumerate}

16.3 Some immediate actions
e Fix bug in \linebreak.
e Fix bug in *.

e Reimplement \\, etc, removing extra \vadjusts and getting better error
trapping (this seems to involve a lot more tokens).

e Investigate whether \\, etc need to be errors in vmode; I think that they
could be noops (maybe with a warning).

e Make all(?) \unskips include test for zero skip (rather than other tests or
no test).

¢

e Consider replacing \hskip 1sp by something better (here called an ‘in-
finitesimal’ skip).

e Look at all \hskip\z@ (or similar) to see if they should be changed to an
‘infinitesimal’ skip.

e Resolve the inconsistency between \hspace and \hspacex.
e Remove unnecessary \unskips.
e Investigate and rationalise the ‘newline’ code.

e Find better algorithms for all sorts of things or, easier(?), fix TEX itself.

16.4 The code

1 (x2ekernel)
2 \message{spacing,}

\pagebreak

\nopagebreak 3 \def\pagebreak{\@testopt{\@noGpgbk-}4}
4 \def\nopagebreak{\@testopt\@no@pgbk4}

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 50

\@no@pgbk

\linebreak

\nolinebreak

\@no@lnbk

\samepage

\\

\@normalcr

5 \def\@no@pgbk #1[#2]{/

6 \ifvmode

7 \penalty #1\@getpen{#2}/,

8 \else

9 \@bsphack

10 \vadjust{\penalty #1\@getpen{#2}1}/,
11 \@esphack

12 \fi}

13 \def\linebreak{\@testopt{\@no@lnbk-}4}
14 \def\nolinebreak{\@testopt\@no@lnbk4}

15 \def\@no@lnbk #1 [#2]{Y%
16 \ifvmode

17 \@nolnerr

18 \else

19 \@tempskipa\lastskip

20 \unskip

21 \penalty #1\@getpen{#2}/,
22 \ifdim\@tempskipa>\z@

23 \hskip\@tempskipa

24 \ignorespaces

25 \fi

26 \fi}

27 \def\samepage{\interlinepenalty\@M
28 \postdisplaypenalty\@M

29 \interdisplaylinepenalty\@M

30 \@beginparpenalty\@M

31 \@endparpenalty\oM

32 \@itempenalty\@M

33 \@secpenalty\@M

34 \interfootnotelinepenalty\@M}

The purpose of the new code is to fix a few bugs; however, it also attempts to
optimize the following, in order of priority:

1. efficient execution of plain \\;
2. efficient execution of \\[...];
3. memory use;

4. name-space use.

The changes should make no difference to the typeset output. It appears to be safe
to use \reserved@e and \reserved@f here (other reserved macros are somewhat
disastrous).

These changes made \newline even less robust than it had been, so now it is
explicitly robust, like \\.

The internal definition of the ‘normal’ definition of \\.

35 \DeclareRobustCommand\\{%
36 \let \reserved@e \relax
37 \let \reserved@f \relax
38 \@ifstar{\let \reserved@e \vadjust \let \reserved@f \nobreak
39 \@xnewlinel}y,

40 \@xnewline}
41 \expandafter\let\expandafter\@normalcr
42 \csname\expandafter\Q@gobble\string\\ \endcsname

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 51

\newline

\@xnewline

\@newline

\@gnewline

\@getpen

\if@nobreak

\@savsk
\@savsf

\@bsphack

A simple form of the ‘normal’ definition of \\.

43 \DeclareRobustCommand\newline{\@normalcr\relax}

44 \def\@xnewline{\@ifnextchar[)] bracket matching
45 \@newline
46 {\@gnewline\relax}}

47 \def\C@newline[#1]{\let \reserved@e \vadjust
48 \@gnewline {\vskip #1}}

The \nobreak added to prevent null lines when \\ ends an overfull line. Change
made 24 May 89 as suggested by Frank Mittelbach and Rainer Schopf

49 \def\@gnewline #1{J
50 \ifvmode

51 \@nolnerr

52 \else

53 \unskip \reserved@e {\reserved@f#1}\nobreak \hfil \break
54 \fi}

55 \def\OQgetpen#1{\ifcase #1 \z@ \or \@lowpenalty\or
56 \@medpenalty \or \@highpenalty
57 \else \@M \fi}

Switch used to avoid page breaks caused by \label after a section heading, etc.
It should be GLOBALLY set true after the \nobreak and globally set false by
the next invocation of \everypar.

Commands that reset \everypar should globally set it false if appropriate.
58 \def\@nobreakfalse{\global\let\if@nobreak\iffalse}
59 \def\O@nobreaktrue {\global\let\if@nobreak\iftrue}
60 \@nobreakfalse

Registers used to save the space factor and last skip.

61 \newdimen\@savsk
62 \newcount\@savsf

\@bsphack and \@esphack used by macros such as \index and \begin{@float}
...\end{@float} that want to be invisible — i.e., not leave any extra space when
used in the middle of text. Such a macro should begin with \@bsphack and end
with \@esphack The macro in question should not create any text, nor change the
mode.

Before giving the current definition we give an extended definition that is
currently not used (because it doesnt work as advertised:-)

These are generalised hacks which attempt to do sensible things when ‘invisible
commands’ appear in vmode too.

They need to cope with space in both hmode (plus spacefactor) and vmode,
and also cope with breaks etc. In vmode this means ensuring that any following
\addvspace, etc sees the correct glue in \lastskip.

In fact, these improved versions should be used for other cases of ‘whatsits,
thingies etc’ which should be invisible. They are only for commands, not environ-
ments (see notes on \@Esphack).

BTW, anyone know why the standard hacks are surrounded by \ifmmode\else
rather than simply \ifhmode?

And are there any cases where saving the spacefactor is essential? I have some
extensions where it is, but it does not appear to be so in the standard uses.

\def \@bsphack{’

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 52

\relax \ifvmode
\@savsk \lastskip
\ifdim \lastskip=\z@
\else

\vskip -\lastskip
\fi
\else
\ifhmode
\@savsk \lastskip
\@savsf \spacefactor
\fi
\fi
}

I think that, in vmode, it is the safest to put in a \nobreak immediately after
such things since writes, inserts etc followed by glue give valid breakpoints and,
in general, it is possible to create breaks but impossible to destroy them.

\def \@esphack{’
\relax \ifvmode
\nobreak
\ifdim \@savsk=\z@
\else
\vskip\@savsk
\fi
\else
\ifhmode
\spacefactor \@savsf
\ifdim \@savsk>\z@
\ignorespaces
\fi
\fi
\fi
}

For the moment we are going to ignore the vertical versions until they are correct.

63 \def\@bsphack{/,

64 \relax

65 \ifhmode

66 \@savsk\lastskip

67 \@savsf\spacefactor
68 \fi}

\@esphack Companion to \@bsphack.
69 \def\Q@esphack{%

70 \relax

71 \ifhmode

72 \spacefactor\@savsf
73 \ifdim\@savsk>\z@
74 \ignorespaces

75 \fi

76 \fi}

\@Esphack A variant of \@esphack that sets the @ignore switch to true (as \@esphack used
to do previously). This is currently used only for floats and similar environments.

77 \def\@Esphack{’,

78 \relax

79 \ifhmode

80 \spacefactor\@savsf
81 \ifdim\@savsk>\z@
82 \@ignoretrue

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 53

83 \ignorespaces
84 \fi
85 \fi}

\@vbsphack Another variant which is useful for invisible things which should not live in vmode
(this is how some people feel about marginals).
If it occurs in vmode then it enters hmode and ensures that \@savsk is nonzero
so that the \ignorespaces is put in later. It is not used at present.

\def \@vbsphack{ %
\relax \ifvmode
\leavevmode
\@savsk 1sp
\@savsf \spacefactor
\else
\ifhmode
\@savsk \lastskip
\@savsf \spacefactor
\fi
\fi

16.5 Vertical spacing

ETEX supports the plain TEX commands \smallskip, \medskip and \bigskip.
However, it redefines them using \vspace instead of \vskip.

Extra vertical space is added by the command \addvspace{(skip)}, which
adds a vertical skip of (skip) to the document. The sequence
\addvspace{(s!)} \addvspace{(s2)} is equivalent to
\addvspace{(mazimum of s1, s2)}.

\addvspace should be used only in vertical mode, and gives an error if it’s not.
The \addvspace command does not add vertical space if @minipage is true. The
minipage environment uses this to inhibit the addition of extra vertical space at
the beginning.

Penalties are put into the vertical list with the \addpenalty{(penalty)} com-
mand. It works properly when \addpenalty and \addvspace commands are
mixed.

The @nobreak switch is set true used when in vertical mode and no page break
should occur. (Right now, it is used only by the section heading commands to
inhibit page breaking after a heading.)

\addvspace{SKIP} ==
BEGIN
if vmode
then if @minipage
else if \lastskip =0
then \vskip SKIP
else if \lastskip < SKIP
then \vskip -\lastskip
\vskip SKIP
else if SKIP < 0 and \lastskip >= 0
then \vskip -\lastskip
\vskip \lastskip + SKIP
fi fi fi fi
else useful error message (CAR).
fi
END

\@xaddvskip Internal macro for \vspace handling the case that space has previously been
added.

86 \def\Oxaddvskip{%

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 54

87 \ifdim\lastskip<\@tempskipb

88 \vskip-\lastskip

89 \vskip\@tempskipb

90 \else

91 \ifdim\@tempskipb<\z@
92 \ifdim\lastskip<\z@
93 \else

94 \advance\@tempskipb\lastskip
95 \vskip-\lastskip
96 \vskip \@tempskipb
97 \fi

98 \fi

99 \fi}

\addvspace Add vertical space taking into account space already added, as described above.

100 \def\addvspace#1{/,
101 \ifvmode

102 \if@minipage\else

103 \ifdim \lastskip =\z@
104 \vskip #1\relax
105 \else

106 \@tempskipb#1\relax
107 \@xaddvskip

108 \fi

109 \fi

110 \else

111 \@noitemerr

112 \fi}

\addpenalty

113 \def\addpenalty#1{}
114 \ifvmode

115 \if@minipage

116 \else

117 \if@nobreak

118 \else

119 \ifdim\lastskip=\z@
120 \penalty#1l\relax
121 \else

122 \@tempskipb\lastskip
123 \vskip -\lastskip
124 \penalty#1%

125 \vskip\@tempskipb
126 \fi

127 \fi

128 \fi

129 \else

130 \@noitemerr

131 \fi}

\vspace The new code for these commands depends on the following facts:

(¢ . .
\Cuspace e The value of prevdepth is changed only when a box or rule is created and

@ i i
\@vspacer added to a vertical list;

e The value of prevdepth is used only when a box is created and added to a
vertical list;

e The value of prevdepth is always local to the building of one vertical list.

132 \DeclareRobustCommand\vspace{\@ifstar\Q@vspacer\@vspace}
133 \def\@vspace #1{J,
134 \ifvmode

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 55

\smallskip

\medskip
\bigskip

\smallskipamount

\medskipamount
\bigskipamount

\nobreakdashes

135 \vskip #1

136 \vskip\z@skip

137 \else

138 \@bsphack

139 \vadjust{\@restorepar
140 \vskip #1

141 \vskip\z@skip
142 Y

143 \@esphack

144 \fi}

145 \def\@vspacer#1{J,
146 \ifvmode

147 \dimen®@\prevdepth

148 \hrule \G@height\z@

149 \nobreak

150 \vskip #1

151 \vskip\z@skip

152 \prevdepth\dimen@

153 \else

154 \@bsphack

155 \vadjust{\@restorepar
156 \hrule \@height\z@
157 \nobreak

158 \vskip #1

159 \vskip\z@skip}
160 \@esphack

161 \fi}

162 \def\smallskip{\vspace\smallskipamount}
163 \def\medskip{\vspace\medskipamount}
164 \def\bigskip{\vspace\bigskipamount}

165 \newskip\smallskipamount \smallskipamount=3pt plus 1pt minus 1pt
166 \newskip\medskipamount \medskipamount =6pt plus 2pt minus 2pt
167 \newskip\bigskipamount \bigskipamount =12pt plus 4pt minus 4pt

16.6 Horizontal space (and breaks)

This idea is borrowed from the amsmath package but here we define a robust
command.

This command is a low-level command designed for use only before hyphens
or dashes (such as -, -—, or —=-).

It could probably be better implemented: it may need its own private token
register and temporary commmand.

Setting the hyphen in a box and then unboxing it means that the normal
penalty will not be added after it—and if the penalty is not there a break will not
be taken (unless an explicit penalty or glue follows, thus the final \nobreak).

Note that even if it is not followed by a ‘-’; it still leaves vmode and sets the
spacefactor; so use it carefully!

168 \DeclareRobustCommand{\nobreakdashes}{%

169 \leavevmode

170 \toks@{}V

171 \def\reserved@a##1{\toks@\expandafter{\the\toks@-1}J

172 \futurelet\@let@token \reserved@bl},

173 \def\reserved@b {\ifx\@let@token -

174 \expandafter\reserved@a

175 \else

176 \setbox\z@ \hbox{\the\toks@\nobreak}/,

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 56

\nobreakspace

\@xobeysp

\@

\hspace

\@hspace

\@hspacer

\fill

\stretch

\thinspace
\negthinspace
\enspace

\enskip
\quad
\qquad

177 \unhbox\z@

178 \spacefactor\sfcode ‘\-
179 \fi}¥%

180 \futurelet\@let@token \reserved@b

181 }

This is a robust command that produces a horizontal space at which, in paragraph-
mode, a line-break is not possible. We then define an active ~ to expand to it since
this is the documented behaviour of . One reason for introducing this is that some
8-bit input encodings have a slot for such a space and we do not want to use active
characters as the TEX internal commands.

The braces in the definition of ~ are needed to ensure that a following space is
preserved when reading to/from internal files.

We need to keep \@xobeysp as it is widely used; so here it is let to the non-
robust command \nobreakspace .

182 \DeclareRobustCommand{\nobreakspace}{/

183 \leavevmode\nobreak\ }

184 \catcode ‘\"=13

185 \def“"{\nobreakspace{}}

186 \expandafter\let\expandafter\@xobeysp\csname nobreakspace \endcsname

Used in paragraph mode produces a \thinspace. It has the ordinary definition
in math mode. Useful for quotes inside quotes, as in ‘ ¢\, ‘Foo’, he said.’’

187 \DeclareRobustCommand{\ , }{%
188 \relax\ifmmode\mskip\thinmuskip\else\thinspace\fi
189 }

Placed before a ’.”, makes it a sentence-ending period. Does the right thing for
other punctuation marks as well. Does this by setting spacefactor to 1000.

190 \def\@{\spacefactor\@m}

191 \DeclareRobustCommand\hspace{\@ifstar\@hspacer\@hspace}

192 \def\@hspace#1{\hskip #1\relax}

extra \hskip Opt added 1985/17/12 to guard against a following \unskip \relax
added 13 Oct 88 for usual TEX lossage replaced both changes by \hskip\z@skip
27 Nov 91

193 \def\@hspacer#1{\vrule \@width\z@\nobreak
194 \hskip #1\hskip \z@skip}

195 \newskip\fill
196 \fill = Opt plus 1fill

197 \def\stretch#1{\z@ \@plus #1fill\relax}

198 \def\thinspace{\kern .16667em }
199 \def\negthinspace{\kern-.16667em }
200 \def\enspace{\kern.5em }

201 \def\enskip{\hskip.5em\relax}
202 \def\quad{\hskiplem\relax}
203 \def\qquad{\hskip2em\relax}

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 57

\obeycr The following definitions will probably get deleted or moved to compatibility mode
\restorecr SOOIL.

204 {\catcode‘\""M=13 \gdef\obeycr{\catcode‘\""M13 \def~"M{\\\relax}/
205 \@gobblecrl}y,

206 {\catcode ‘\""M=13 \gdef\@gobblecr{\Q@ifnextchar

207 \@gobble\ignorespaces}}

208 \gdef\restorecr{\catcode‘\""M5 }}

209 (/2ekernel)

File i: 1tspace.dtx Date: 2004/02/15 Version v1.3a 58

File j
Itlogos.dtx

17 Logos

Various logos are defined here.

\TeX The TEX logo, adjusted so that a full stop after the logo counts as ending a
sentence.

1 (*2ekernel)
2 \def\TeX{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125emX\@}

\LaTeX The IXTEX logo.

3 \DeclareRobustCommand{\LaTeX}{L\kern-.36em},

4 {\sbox\z@ T%

5 \vbox to\ht\z@{\hbox{\check@mathfonts

6 \fontsize\sf@size\z@

7 \math@fontsfalse\selectfont
8 AYY

9 \vss}

10 iy

11 \kern-.15em}

12 \TeX}

\LaTeXe The KTEX 2¢ logo as proposed by A-W designers.

13 \DeclareRobustCommand{\LaTeXe}{\mbox{\m@th

14 \if b\expandafter\@car\f@series\@nil\boldmath\fi
15 \LaTeX\kern.15em2$_{\textstyle\varepsilon}$}}

16 (/2ekernel)

File j: 1tlogos.dtx Date: 1998/08/17 Version v1.1i 59

\document
\nofiles

\includeonly

\include

\input

\IfFileExists

\InputIfFileExists

File k
Itfiles.dtx

18 File Handling

The following user commands are defined in this part:
(ie \begin{document})
Reads in the .AUX files and \catcode’s @ to 12.

Suppresses all file output by setting \@filesw false.
{(NAME1, ... ,NAMEn)}
Causes only parts NAMEL, ... NAMEn to be read by their \include commands.
Works by setting partsw true and setting \@partlist to NAMEIL, ... NAMEn.
{(NAME)}
Does an \input NAME unless \@partsw is true and NAME is not in \@partlist.
If \@filesw is true, then it directs .AUX output to NAME.AUX, including a
checkpoint at the end.
{(NAME)}
The same as TeX’s \input, except it allows optional braces around the file name.
In BTEX 2¢, it also avoids the primitive ‘missing file’ error, if the file can not be
found.
{(NAME)}{(then)}{(else)}
If the file exists on the system, execute then otherwise execute else.
{{(NAME)}{(then)}{(else)}
If the file exists on the system, execute then and input NAME otherwise execute
else.

1 (x2ekernel | autoload)
2 \message{files,}

VARIABLES, SWITCHES AND INTERNAL COMMANDS:

\@mainaux : Output file number for main .AUX file.
\@partaux : Output file number for current part’s .AUX file.
\@auxout : Either \@mainout or \@partout, depending on

which .AUX file output goes to.
\@input{foo} : If file foo exists, then \input’s it,
otherwise types a warning message.

Q@filesw : Switch — set false if no .AUX, .TOC, .IDX etc
files are to be written
Q@partsw : Set true by a \includeonly command.
\@partlist : Set to the argument of the \includeonly command.
\cp@FO0 : The checkpoint for \include’d file FOO.TEX, written

by \@writeckpt at the end of file FOO.AUX

\includeonly{FILELIST} ==
BEGIN
\@partsw := T
\@partlist := FILELIST
END

\include{FILE} ==
BEGIN

\clearpage

if \@filesw = T

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11 60

then \immediate\write\@mainaux{\string\@input{FILE.AUX2}}
fi

if \@partsw = T
then \Q@tempswa := F

\reserved@ == FILE
for \reserved@a := \@partlist
do if eval(\reserved@a) = eval(\reserved@b)
then \@tempswa := T fi
od

fi

if \@tempswa = T
then \@auxout := \@partaux
if \efilesw = T
then \immediate\openout\@partaux{FILE.AUX}
\immediate\write\@partaux{\relax}

fi
\@input{FILE. TEX}
\clearpage
\@writeckpt{FILE}
if @filesw then \closeout \@partaux fi
\@auxout := \@mainaux
else \cp@FILE
fi

END

\@writeckpt{FILE} ==

BEGIN

if \efilesw = T
\immediate\write on file \@partaux:
\@setckpt{FILE}{ hh }
for \reserved@a := \cl@@ckpt
do \immediate\write on file \@partaux:
\global\string\setcounter

{eval(\reserved@a) }{eval(\c@eval (\reserved@a))}
od hh L
\immediate\write on file \@partaux: }
fi
END

\@setckpt{FILE}LIST} ==
BEGIN

G \cp@FILE := LIST
END

INITTALIZATION
\@tempswa := T

\@inputcheck Allocate read stream for testing and output stream.
\Qunused 3 \newread\@inputcheck
4 \newwrite\@unused
\@mainaux

\@partaux 5 \newwrite\@mainaux
6 \newwrite\@partaux

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11

61

\if@filesw
\if@partsw

\@clubpenalty

\document

7 \newif\if@filesw \@fileswtrue
8 \newif\if@partsw \@partswfalse

This stores the current normal (non-infinite) value of \clubpenalty; it should
therefore be reset whenever the normal value is changed (as in the bibliography
in the standard styles).

9 \newcount\@clubpenalty
10 \@clubpenalty \clubpenalty

Cancel the \begingroup from \begin

11 \def\document{\endgroup

If some options on \documentclass haven’t been used by any package we will now
give a warning since this is most certainly a misspelling.

12 \ifx\@unusedoptionlist\@empty\else

13 \@latex@warning@no@line{Unused global option(s):~"J%
14 \@spaces[\Qunusedoptionlist]}%
15 \fi

16 \@colht\textheight

17 \@colroom\textheight \vsize\textheight
18 \columnwidth\textwidth

19 \@clubpenalty\clubpenalty

20 \if@twocolumn

21 \advance\columnwidth -\columnsep
22 \divide\columnwidth\tw@ \hsize\columnwidth \@firstcolumntrue
23 \fi

24 \hsize\columnwidth \linewidth\hsize
25 \begingroup\@floatplacement\@dblfloatplacement

26 \makeatletter\let\Q@writefile\@gobbletwo
27 \global \let \@multiplelabels \relax
28 \@input{\jobname.aux}%

29 \endgroup
30 \if@filesw

31 \immediate\openout\@mainaux\jobname.aux
32 \immediate\write\@mainaux{\relax}%
33 \fi

Dateline 1991/03/26: FMi added \process@table to support NFSS; This will
also work with old lfonts if no other style defines \process@table. The following
line forces the initialization of the math fonts.

34 \process@table
35 \let\glb@currsize\Q@empty %% Force math initialization.

36 \normalsize
37 \everypar{}%

So that punctuation in headings is not disturbed by verbatim or other local
changes to the space factor codes, save the document default here. This will be
locally reset by the output routine. For special cases a class may want to define
\normalsfcodes directly, in case that definition will be used. (This is an old bug,
problem existed in BTEX2.0x and plain TEX.)

38 \ifx\normalsfcodes\@empty

39 \ifnum\sfcode‘\.=\@m

40 \let\normalsfcodes\frenchspacing

41 \else

42 \let\normalsfcodes\nonfrenchspacing
43 \fi

44 \fi

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11 62

\normalsfcodes

\nofiles

Way back in 1991 (08/26) FMi & RmS set the \@noskipsec switch to true in the
preamble and to false here. This was done to trap lists and related text in the
preamble but it does not catch everything; hence Change 1.1g was introduced.

45 \O@noskipsecfalse

46 \let \@refundefined \relax

Just before disabling the preamble commands we execute the begin document
hook which contains any code contributed by \AtBeginDocument. Also disable
the gathering of the file list, if no \1istfiles has been issued. \AtBeginDocument
is redefined at this point so that and such commands that get into the hook do
not chase their tail. ..

47 \let\AtBeginDocument\@firstofone
48 \@begindocumenthook

Most of the following assignments will be done globally in case the user adds
something like \begin{multicols} to the document hook, i.e. starts are group
in \begin{document}.

Since a value of exactly Opt for \topskip causes \twocolumn[] to misbehave,
we add this check, hoping that it will not cause any problems elsewhere.
49 \ifdim\topskip<isp\global\topskip 1sp\relax\fi
50 \global\@maxdepth\maxdepth
51 \global\let\@begindocumenthook\@undefined
52 \ifx\@listfiles\@undefined

53 \globalllet\@filelist\relax
54 \globalllet\@addtofilelist\@gobble
55 \fi

At the very end we disable all preamble commands. This has to happen after the
begin document hooks was executed so that this hook can still use such commands.

56 \gdef\do##1{\global\let ##1\Onotprerr}y,

57 \@preamblecmds

The next line saves tokens and also allows \@nodocument to be used directly to
trap preamble errors.

58 \globalllet \@nodocument \relax

The next line is a pure safety measure in case a do list is ever expanded at the
wrong place. In addition it will save a few tokens to get rid of the above definition.
59 \global\let\do\noexpand

Use of \AtBeginDocument hook might mean that we are already in horizontal
mode, so ignore the space after \begin{document}.

60 \ignorespaces}

61 \@onlypreamble\document

The setting of \@empty is just a flag. This command may be defined in a class or
package file. If it is still \@empty at \begin{document} it will be defined to be
\frenchspacing or \nonfrenchspacing, depending on which of those appears to
be in effect at that point.

62 \let\normalsfcodes\Q@empty

Set \@fileswfalse which suppresses the places where ITEX makes \immediate
writes. The \makeindex and \makeglossary are disabled. \protected@urite
is redefined not to write to the file specified, but rather to write a blank line to
the log file. This ensures that a (whatsit) node is still created, and so spacing
is not affected by the \nofiles command; to ensure this more generally, the
\if@nobreak test is needed.

63 \def\nofiles{’,

64 \@fileswfalse

65 \typeout{No auxiliary output files. ~J}%

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11 63

\protected@urite

\includeonly

\include

\@include

66 \long\def\protected@urite##1##2##3),

67 {\write\m@ne{}\if@nobreak\ifvmode\nobreak\fi\fil}j,
68 \let\makeindex\relax

69 \let\makeglossary\relax}

70 \@Qonlypreamble\nofiles

This takes three arguments: an output stream, some initialization code, and some
text to write. It then writes this, with appropriate handling of \protect and
\thepage.

71 \long\def \protectedQurite#1#2#3{J,

72 \begingroup

73 \let\thepage\relax

74 #27,

75 \let\protect\@unexpandable@protect
76 \edef\reserved@a{\write#1{#3}1}/

77 \reserved@a

78 \endgroup

79 \if@nobreak\ifvmode\nobreak\fi\fi
80 }

81 \let\@auxout=\@mainaux

82 \def\includeonly#1{%

83 \@partswtrue

84 \edef\@partlist{\zap@space#1l \@emptyl}}
85 \@Qonlypreamble\includeonly

In the definition of \include, \def\reserved@b changed to \edef\reserved®@b
to be consistent with the \edef in \includeonly. (Suggested by Rainer Schopf
& Frank Mittelbach. Change made 20 Jul 88.)

Changed definition of \include to allow space at end of file name — otherwise,
typing \include{foo } would cause EXTEX to overwrite foo.tex. Change made
24 May 89, suggested by Rainer Schopf and Frank Mittelbach

Made \include check for being used inside an \include’d file, as this will not
work and cause surprising results.

86 \def\include#1{\relax

87 \ifnum\Qauxout=\@partaux

88 \@latex@error{\string\include\space cannot be nested}\@eha
89 \else \@include#1 \fi}

90 \def\@include#1 {Y

91 \clearpage

92 \if@filesw

93 \immediate\write\@mainaux{\string\@input{#1.aux}}/
94 \fi

95 \Q@tempswatrue

96 \if@partsw

97 \@tempswafalse

98 \edef\reserved@b{#1}%

99 \@for\reserved@a:=\@partlist\do

100 {\ifx\reserved@a\reserved@b\Q@tempswatrue\fil}y,
101 \fi

102 \if@tempswa

103 \let\@auxout\@partaux

104 \if@filesw

105 \immediate\openout\@partaux #1.aux
106 \immediate\write\@partaux{\relax}}
107 \fi

108 \@input@{#1.tex}%

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11 64

\@writeckpt

\@wckptelt

\@setckpt

\@charlb
\@charrb

\IfFileExists

\@iffileonpath

109 \clearpage

110 \@writeckpt{#1}%

111 \if@filesw

112 \immediate\closeout\@partaux
113 \fi

114 \else

If the file is not included, reset \deadcycles, so that a long list of non-included
files does not generate an ‘Output loop’ error.

115 \deadcycles\z@
116 \@nameuse{cp@#11}/,
117 \fi

118 \let\@auxout\@mainaux}

119 \def\@writeckpt#1{}
120 \if@filesw

121 \immediate\write\@partaux{\string\@setckpt{#1}\@charlbl}y,
122 {\let\@elt\@uckptelt \cl@ockptl}

123 \immediate\write\@partaux{\@charrb}y

124 \fi}

125 \def\Quckptelt#1{},
126 \immediate\write\@partaux{/
127 \string\setcounter{#1}{\the\@nameuse{c@#1}}}}

RmS 93/08/31: introduced \@setckpt
128 \def\@setckpt#1{\global\@namedef{cp@#1}}

The following defines \@charlb and \@charrb to be { and }, respectively with
\catcode 11.

129 {\catcode‘[=1 \catcode‘]=2

130 \catcode‘{=11 \catcode‘}=11

131 \gdef\@charlb[{]

132 \gdef\@charrb[}]

133 1% Ybrace matching

18.1 Safe Input Macros

134 \long\def \IfFileExists#1#2#3{/
135 \openin\@inputcheck#1 %
136 \ifeof\@inputcheck

137 \ifx\input@path\@undefined

138 \def\reserved@a{#3}/,

139 \else

140 \def\reserved@a{\@iffileonpath{#1}{#2}{#3}1}/
141 \fi

142 \else

143 \closein\@inputcheck

144 \edef\@filef@und{#1 1}/

145 \def\reserved@a{#2}/,

146 \fi

147 \reserved@a}

If the file is not found by \openin, and \input@path is defined, look in all the
directories specified in \input@path.

148 \long\def\@iffileonpath#1{%

149 \let\reserved@a\@secondoftwo

150 \expandafter\@tfor\expandafter\reserved@b\expandafter

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11 65

\InputIfFileExists

\input

\@iinput

\@input

\@input®@

\@nissingfileerror

151 :\expandafter=\input@path\do{’

152 \openin\@inputcheck\reserved@b#1
153 \ifeof\@inputcheck\else

154 \edef\@filef@und{\reserved@b#1 }}
155 \let\reserved@a\@firstoftwoy

156 \closein\@inputcheck

157 \@break@tfor

158 \£i}V

159 \reserved@a}

Now define \InputIfFileExists to input #1 if it seems to exist. Immediately
prior to the input, #2 is executed. If the file #1 does not exist, execute ‘#3’.

160 \long\def \InputIfFileExists#1#2{J,

161 \IfFileExists{#1}}

162 {#2\@addtofilelist{#1}\@@input \@filef@und}}

Input a file: if the argument is given in braces use safe input macros, otherwise
use TEX’s primitive \input command (which is called \@@input in KTEX).
163 \def\input{\@ifnextchar\bgroup\@iinput\@@input}

Define \@iinput (i.e., \input) in terms of \InputIfIfileExists.

164 \def\@iinput#1{%
165 \InputIfFileExists{#1}{}%
166 {\filename@parse{#1}/,

167 \edef\reserved@a{\noexpand\@missingfileerror
168 {\filename@area\filename@basel}},
169 {\ifx\filename@ext\relax tex\else\filename@ext\fi}}}

170 \reserved@al}}

Define \@input in terms of \IfIfileExists. So this is a ‘safe input’ command,
but the files input are not listed by \1listfiles.

We don’t want .aux, .toc files etc be listed by \listfiles. However, some-
thing like .bbl probably should be listed and thus should be implemented not by
\@input.

171 \def\@input#1{%
172 \IfFileExists{#1}{\@@input\@filef@und}{\typeout{No file #1.}}}

Version of \@input that does add the file to \@filelist.
173 \def\@input@#1{\InputIfFileExists{#1}{}{\typeout{No file #1.}}}

This ‘error’ command avoids TEX’s primitive missing file loop.
Missing file error. Prompt for a new filename, offering a default extension.
174 (autoload) \def\@missingfileerror{\@autoerr\@missingfileerror}
175 (/2ekernel | autoload)
176 (x2ekernel | autoerr)
177 \gdef\@missingfileerror#1#2{J,

178 \typeout{"~J! LaTeX Error: File ‘#1.#2’ not found."~J""J%

179 Type X to quit or <RETURN> to proceed,”"J%

180 or enter new name. (Default extension: #2)~"J}),

181 \message{Enter file name: }J,

182 {\endlinechar\m@ne

183 \global\read\m@ne to\@gtempal,

184 \ifx\@gtempa\@empty

185 \else

186 \def\reserved@a{x}\ifx\reserved@a\@gtempa\batchmode\Q@C@end\fi
187 \def\reserved@a{X}\ifx\reserved@a\@gtempa\batchmode\@Qend\fi
188 \filename@parse\Qgtempa

189 \edef\filename@ext{%

190 \ifx\filename@ext\relax#2\else\filename@ext\£fi}%

191 \edef\reserved@a{’

192 \noexpand\InputIfFileExists

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11 66

\@obsoletefile

\efilelist

\@addtofilelist

\listfiles

193 {\filename@area\filename@base.\filename@ext}/,

194 {3

195 {\noexpand\@missingfileerror

196 {\filename@area\filename@base}{\filename@ext}}1}%
197 \reserved@a

198 \fi}

199 (/2ekernel | autoerr)
200 (*2ekernel | autoload)

For compatibility with IXTEX 2.09 document styles, we distribute files called
article.sty, book.sty, report.sty, slides.sty and letter.sty. These use
the command \@obsoletefile, which produces a warning message.

201 \def\Q@obsoletefile#1#2{J
202 \@latex@warning@no@line{inputting ‘#1’ instead of obsolete ‘#2’}}
203 \@onlypreamble\@obsoletefile

18.2 Listing files

A list of files input so far. The initial value of \@gobble eats the comma before
the first file name.

204 \let\@filelist\@gobble

Add to the list of files input so far. This ‘real’ definition is only used for ‘cfg’
files during initex. An initial definition of \@gobble has already been set.

205 %\def\@addtofilelist#1{\xdef\@filelist{\@filelist,#1}}

A preamble command to cause \end{document} to list files input from the main
file.

206 \def\listfiles{%
207 \let\listfiles\relax
208 \def\@listfiles##1##2##3##4##OHH#CHH#THH#SH#O\QO{),

209 \def\reserved@d{\\1}%

210 \@tfor\reservedQc: =##1##2##3##4##E##EH#TH#S\do{Y

211 \ifx\reserved@c\reserved@d

212 \edef\filename@area{ \filename®areal},

213 \fi}}%

214 \def\@dofilelist{%

215 \typeout{""J *File Listx}},

216 \@for\@currname:=\@filelist\do{%

217 \filename@parse\@currname

218 \edef\reserved@a{},

219 \filename@base.Y

220 \ifx\filename@ext\relax tex\else\filename@ext\fil}%
221 \expandafter\let\expandafter\reserved@b

222 \csname ver@\reserved®@a\endcsname
223 \expandafter\expandafter\expandafter\@listfiles\expandafter
224 \filename@area\filename@base\\\\\\\\\\\\\\\\\\\o@
225 \typeout{%

226 \filename®@area\reserved@a

227 \ifx\reserved@b\relax\else\@spaces\reserved@\fi}}},
228 \typeout{ *kkxkkkkxk*x~"J}}}

The \@filelist will be de-activated if \1listfiles does not appear in the
preamble. \begin{document} contains code equivalent to the following:

\AtBeginDocument{/
\ifx\@listfiles\@undefined
\let\@filelist\relax
\let\@addtofilelist\@gobble
\fi}

229 \Q@onlypreamble\listfiles

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11 67

\@dofilelist

230 \let\@dofilelist\relax

231 (/2ekernel | autoload)

File k: 1tfiles.dtx Date: 1997/10/06 Version v1.11

68

File 1
ltoutenc.dtx

19 Font encodings

This section of the kernel contains commands for declaring encoding-specific com-
mands, such as accents. It also contains the code for some of the encoding files,
including omlenc.def, omsenc.def, tienc.def and otlenc.def files, which de-
fine the OLM, OMS, T1 and OT1 encodings, and the fontenc package for selecting
encodings.

The fontenc package has options for encodings, of which the last option is the
default encoding. For example, to use the 0T2, 0T3 and T1 encodings, with T1 as
the default, you say:

\usepackage [0T2,0T3,T1]{fontenc}

The standard kernel set-up loads font encoding files and selects an encoding as
follows.

\input {omlenc.def}
\input {tlenc.def}
\input {otlenc.def}
\input {omsenc.def}
\fontencoding{0T1}

Note that the files in the standard inputenc package depend on this behaviour of
the kernel.
The syntax for declaring encoding-specific commands is:

\DeclareTextCommand{(command)}{{encoding)}
[(number)] [{default)1{{commands)}

This command is like \newcommand, except that it defines a command which is
specific to one encoding. The resulting command is always robust, even if its
definition is fragile. For example, the definition of \1 in the 0T1 encoding is:

\DeclareTextCommand{\1}{0T1}{{\@xxxii 1}}
\DeclareTextCommand takes the same optional arguments as \newcommand.

\ProvideTextCommand{(command)}{{encoding)}
[(number)] [{default)1{{commands)?}

This acts like \DeclareTextCommand, but does nothing if the command is already
defined.

\DeclareTextSymbol{{command)}{{encoding)}{(slot)}

This command defines a text symbol, with a particular slot in that encoding. The
commands:

\DeclareTextSymbol{\ss}{0T1}{25}
\DeclareTextCommand{\ss}{0T1}{\char25 }

have the same effect, but the \DeclareTextSymbol is faster.
\DeclareTextAccent{{command)}{(encoding)}{(slot)}
This command declares a text accent. The commands:

\DeclareTextAccent{\"}{0T1}{127}
\DeclareTextCommand{\"}{0T1}{\add@accent {127}}

have the same effect.

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 69

\DeclareTextComposite{(command)}

{(encoding) H (argument)}{(slot)}

This command declares a composite letter, for example in the T1 encoding \’{a}
is slot 225, which is declared by:

\DeclareTextComposite{\’}{T1}{a}{225}

The command will normally have been declared with \DeclareTextAccent, or as
a one-argument \DeclareTextCommand.

\DeclareTextComposite is the most common example of using the more gen-
eral declaration \DeclareTextCompositeCommand, which can define a composite
to be an arbitrary piece of text.

\DeclareTextCompositeCommand{(command)}
{({encoding)}{{argument)}{(text)}

For example, in the OT1 encoding A has a hand-crafted defintion this is declared
as follows

\DeclareTextCompositeCommand{\r}{0T1}{A}
{\leavevmode\setbox\z@\hbox{!}\dimen@\ht\z@\advance\dimen®@-1ex%
\rlap{\raise.67\dimen@\hbox{\char23}}A}

The command will normally have been declared with \DeclareTextAccent, or as
a one-argument \DeclareTextCommand.

The commands defined using the above declarations can be used in two ways.
Normally they are used by just calling the command in the appropriate encoding,
for example \ss. However, sometimes you may wish to use a command in an
encoding where it is not defined. If the command has no arguments, then you can
use it in another encoding by calling \UseTextSymbol:

\UseTextSymbol{({encoding)}H (command)}
For example, \UseTextSymbol{0T1}{\ss} has the same effect as:
{\fontencoding{0T1}\selectfont\ss}

If the command has one argument then you can use it in another encoding by
calling \UseTextAccent:

\UseTextAccent{(encoding) }H (command)}{(text)}

For example, if the current encoding is 0T2 then \UseTextAccent{0T1}{\’}{a}
has the same effect as:

{\fontencoding{0T1}\selectfont\’{\fontencoding{0T2}\selectfont al}}

You can also declare a default definition for a text command, which will be used
if the current encoding has no appropriate definition. Such use will also set the
definition for this command in the current encoding to equal this default definition;
this makes subsequent uses of the command much faster.

\DeclareTextCommandDefault{({command)}{{definition)}

For example, the default definition of the command \textonequarter (which

produces the fraction i) could be built using math mode:
\DeclareTextCommandDefault{\textonequarter}{\ensuremath {\frac14}}

There is a matching \Provide command which will not override an existing default
definition:

\ProvideTextCommandDefault{({command)}{(definition)}

The most common use for these commands is to use symbols from other encodings,
so there are some optimizations provided:

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 70

\DeclareTextSymbolDefault{(command)}{encoding)}
\DeclareTextAccentDefault{(command)}{encoding)}

are short for:

\DeclareTextCommandDefault{({command)}
{\UseTextSymbol{{encoding)}{{command)}}
\DeclareTextCommandDefault [1]{({command)}
{\UseTextAccent{(encoding) }H (command)}{#1}}

For example, to make 0T1 the default encoding for \ss and \’ you say:

\DeclareTextSymbolDefault{\ss}{0T1}
\DeclareTextAccentDefault{\’}{0T1}

Note that you can use these commands on any zero- or one-argument commands
declared with \DeclareText* or \ProvideText*, not just those defined using
\DeclareTextSymbol or \DeclareTextAccent.

19.1 Removing encoding-specific commands

In some cases encoding definitions are given to provide some limited support since
nothing better is available, for example, the definition for \textdollar in OT1 is
a hack since $ and £ actually share the same slot in this encoding. Thus if such
a glyph becomes available in a different encoding (e.g., TS1) one would like to get
rid of the flacky one and make the default definition point to the new encoding.
In such a case defining

\DeclareTextSymbol{\textdollar}{TS1}{36}
\DeclareTextSymbolDefault{\textdollar}{TS1}

is not enough since if typesetting in 0T1 IXTEX will still find the encoding specific-
definition for 0T1 and therefore ignore the new default. Therefore to ensure that
in this case the TS1 version is used we have to remove the 0T1 declaration:

\UndeclareTextCommand{\textdollar}{0T1}

Since the $ sign is a proper glyph in the T1 encoding there is no point removing
its definition and forcing I¥TEX to pick up the TS1 version if typesetting in this
encoding. However, assume you want to use the variant dollar sign, i.e., $ for your
dollars. In that case you have to get rid of the T1 declaration as well, e.g., the
following would do that for you:

\UndeclareTextCommand{\textdollar}{0T1}

\UndeclareTextCommand{\textdollar} {T1}

\DeclareTextCommandDefault{\textdollar}
{\UseTextSymbol{TS1}\textdollaroldstyle}

19.2 The order of declarations

If an encoding-specific command is defined for more than one encoding, then it
will execute fastest in the encoding in which it was defined last since its top-level
definition will be set up to execute in that encoding without any overhead.

For this reason the file fonttext.1ltx currently first loads the definitions for the
T1 encoding and then those for the 0T1 encoding so that typesetting in 0T1 is opti-
mized since that is (still) the default. However, when T1 is explicitly requested (via
\usepackage[T1] {fontenc}) the top-level definitions are automatically changed
to favour T1 since its declarations are reloaded in the process.

For the same reason default declarations should never come last since they
are implemented as a special encoding themselves (with the name ?). Specifying
them last would simply mean to make those encoding-specific commands equally
inefficient in all encodings. Therefore the textcomp package, for example, first
sets up all defaults to point to TS1 and then declares the commands in the TS1
encoding.

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 71

\DeclareTextCommand
\ProvideTextCommand
\DeclareTextSymbol
\@dec@text@cmd
\chardef@text@cmd
\@changed@cmd
\@changed@x
\TextSymbolUnavailable
\@inmathwarn

19.3 Docstrip modules

This .dtx file is be used to generate several related files containing font encoding
definitions. The mutually exclusive docstrip options are listed here.

T1 generates tlenc.def for the Cork encoding.

TS1 generates tslenc.def for the Text Companion encoding.

TSisty generates textcomp.sty, package that sets up use of the Text
Companion encoding.

0T1 generates otlenc.def for Knuth’s CM encoding.

OMS generates omsenc.def for Knuth’s math symbol encoding.

OML generates omlenc.def for Knuth’s math letters encoding.

0T4 generates ot4enc.def for the Polish extension to the OT1 encod-

ing, created by B. Jackowski and M. Ry¢ko for use with the Polish
version of Computer Modern and Computer Concrete.

package generates fontenc.sty for selecting encodings.

2ekernel for the kernel commands.

autoload for the ‘autoload’ kernel commands.

autoerr for the autoerr.sty error message autoload file.

19.4 Definitions for the kernel
19.4.1 Declaration commands

This section contains definitions for commands such as accents which depend on
the current encoding. These commands will usually be kept in .def files, for
example otlenc.def contains the definitions for the 0T1 encoding.

1 (x2ekernel | autoload)
2 \message{font encodings,}

Far too many macros in one block here!
If you say:
\DeclareTextCommand{\foo}{T1}...
then \foo is defined to be \T1-cmd \foo \T1\foo, where \T1\foo is one control

sequence, not two! We then call \newcommand to define \T1\foo.

3 \def\DeclareTextCommand{%
4 \@dec@text@cmd\newcommand}

5 \def\ProvideTextCommand{Y
6 \@dec@text@cmd\providecommand}

7 \def\@decOtext@cmd#1#2#3{7
8 \expandafter\def\expandafter#2y,

9 \expandafter{/,

10 \csname#3-cmd\expandafter\endcsname
11 \expandafter#2,

12 \csname#3\string#2\endcsname

13 Yh

14 \let\@ifdefinable\@rc@ifdefinable
15 \expandafter#1\csname#3\string#2\endcsname}

This command was introduced to fix a major bug in \@dec@text@cmd without
changing that command itself. This was thought to be necessary because it is
defined in more than one package. (Perhaps the more serious bug is to put complex
low-level commands like this in packages?)

The problem it solves is that whereas both \newcommand and \providecommand
(used just above) both handle the resetting of \@ifdefinable (following its dis-
abling in \@dec@text@cmd), the primitive \chardef neither needs the disabling,
nor does the resetting.

16 \def\chardef@text@cmd{’

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 72

17
18
19

\let\@ifdefinable\@@ifdefinable
\chardef

20 \def\DeclareTextSymbol#1#2#3{/

21
22

\@dec@text@cmd\chardef@text@cmd#1{#2}#3\relax

The declarations are only available before \begin{document}.

23 \@onlypreamble\DeclareTextCommand

24 \@onlypreamble\DeclareTextSymbol

The sneaky bit in all this is what \Ti-cmd \foo \T1\foo does. There are five
possibilities, depending on the current values of \protect, \cf@encoding and
\ifmmode:

If \protect is \@typeset@protect and \cf@encoding is T1, then we execute
\T1\foo. This should be the normal behaviour, and is optimized for speed.

If \protect is \@typeset@protect, \cf@encoding is (say) O0T1, and
\0T1\foo is defined, then we execute \OT1\foo.

If \protect is \@typeset@protect, \cf@encoding is (say) 0T1, we’re in
text mode, and \0T1\foo is undefined, then we define \OT1\foo to be the
default value of \foo, and execute \OT1\foo.

If \protect is \@typeset@protect, \cf@encoding is (say) 0T1, we’re in
math mode, and \OT1\foo is undefined, then we execute the default value of
\foo. (This is necessary so that things like X_\copyright work properly.)

If \protect is not \@typeset@protect then we execute \noexpand\foo.
For example, if we are writing to a file, then this results in \foo being
written. If we are in a \mark, then \foo will be put in the mark—since \foo
is robust, it will then survive all the things which may happen to it whilst
it’s a \mark.

So after all that, we will either execute the appropriate definition of \foo for the
current encoding, or we will execute \noexpand\foo.

The default value of \foo is \?\foo if it is defined, and an error message
otherwise.

When the encoding is changed from T1 to 0T1, \Tl-cmd is defined to be

\@changed@cmd and \OT1-cmd is defined to be \@current@cmd. This means that
the test for what the current encoding is can be performed quickly.

25 \def\@current@cmd#1{%

26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44

\ifx\protect\Q@typesetOprotect
\@inmathwarn#1,

\else
\noexpand#1\expandafter\@gobble

\fi}

\def\Qchanged@cmd#1#2{7%

\ifx\protect\@typeset@protect
\@inmathwarn#1
\expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
\expandafter\ifx\csname 7\string#1\endcsname\relax
\expandafter\def\csname 7\string#1\endcsname{’,
\TextSymbolUnavailable#1
Y
\fi
\global\expandafter\let
\csname\cf@encoding \string#1l\expandafter\endcsname
\csname ?\string#1\endcsname
\fi
\csname\cf@encoding\string#1%

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 73

\DeclareTextCommandDefault

\ProvideTextCommandDefault

\DeclareTextAccent

\add@accent

45 \expandafter\endcsname

46 \else
47 \noexpand#1,
48 \fi}

49 (/2ekernel | autoload)

50 (x2ekernel | autoerr)

51 \gdef\TextSymbolUnavailable#1{}

52 \@latex@error{’

53 Command \protect#1 unavailable in encoding \cf@encoding

54 }\@eha}

55 (/2ekernel | autoerr)

56 (autoload)\gdef\TextSymbolUnavailable{\Qautoerr\TextSymbolUnavailable}
57 (*2ekernel | autoload)

The command \@inmathwarn produces a warning message if we are currently in
math mode. Note that since this command is used inside text commands, it can’t
call \relax before the \ifmmode. This means that it is possible for the warning
to fail to be issued at the beginning of a row of an halign whose template enters
math mode. This is probably a bad feature, but there’s not much that can be
done about it, since adding a \relax would break ligatures and kerning between
text symbols.

A more efficient solution would be to make \@inmathwarn and \@inmatherr
equal to \@empty and \relax by default, and to have \everymath reset them to
their usual definitions. This is left for future investigation (for example it may
break some third party code).

58 \def\@inmathwarn#1{%
59 \ifmmode

60 \@latex@warning{Command \protect#1l invalid in math model}},
61 \fi}

These define commands with encoding 7.

Note that \DeclareTextCommandDefault can only be used in the preamble,
but that the \Provide version is allowed in inputenc .def files, so is allowed
anywhere.

62 \def\DeclareTextCommandDefault#1{%
63 \DeclareTextCommand#17}

64 \def\ProvideTextCommandDefault#1{%
65 \ProvideTextCommand#17}

66 \@onlypreamble\DeclareTextCommandDefault
67 %\Q@onlypreamble\ProvideTextCommandDefault

They require \?-cmd to be initialized as \@changed@cmd.

68 \expandafter\let\csname?-cmd\endcsname\@changed@cmd

This is just a disguise for defining a TEX \accent command.

69 \def\DeclareTextAccent#1#2#3{/,
70 \DeclareTextCommand#1{#2}{\add@accent{#3}}}

71 \@onlypreamble\DeclareTextAccent

To save space this code is shared between all text accents that are set using the
\accent primitive. The argument is pre-set in a box so that any font loading
that is needed is already done within the box. This is needed because font-loading
involves grouping and that would prevent the accent mechanism from working so
that the accent would not be positioned over the argument. Declarations that
change the font should be allowed (only low-level ones are at present) inside the
argument of an accent command, but not size changes, as they involve \setbox
operations which also inhibit the mechanism of the \accent primitive.

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 74

\hmode@bgroup

\DeclareTextCompositeCommand
\DeclareTextComposite
\@text@composite
\@text@composite®@x
\@strip@args

Note that the whole process is within a group. For a detailed discussion of this
reimplementation and its deficiencies, see pr/3160.

72 \def\add@accent#1#2{\hmode@bgroup

Turn off the group in \UseTextSymbol in case this is used inside the argument of
\add@accent.

73 \let\hmode@start@before@group\@firstofone
74 \setbox\@tempboxa\hbox{#27,

When presetting the argument in a box we record its \spacefactor for later use
after the accent got typeset. This way something like \ ‘A gets the spacefactor of
A (ie., 999) rather than the default value of 1000.

75 \global\mathchardef\accent@spacefactor\spacefactorl}y,
76 \accent#1 #2\egroup\spacefactor\accent@spacefactor}

Default definition for \accent@spacefactor prevents a horrible death of the above
macro inside an unprotected \edef.

77 \let\accent@spacefactor\relax

78 \def\hmode@bgroup{\leavevmode\bgroup}

Another amusing game to play with \expandafter, \csname, and \string. When
you say \DeclareTextCompositeCommand{\foo}{T1}{a}{bar}, we look to see if
the expansion of \Ti\foo begins with \@text@composite, and if it doesn’t, we
redefine \T1\foo to be:

#1 -> \O@text@composite \T1\foo #1\@empty \@text@composite {...3}

where . .. is the previous definition of \T1\foo. Finally, we define \\T1\foo-a to
expand to bar.

79 \def\DeclareTextCompositeCommand#1#2#3#4{%

80 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname
81 \expandafter\expandafter\expandafter\ifx

82 \expandafter\Q@car\reserved@a\relax\relax\@nil \@text@composite \else
83 \edef\reserved@b##1{}

84 \def\expandafter\noexpand

85 \csname#2\string#1\endcsname####1{/

86 \noexpand\Q@textQ@composite

87 \expandafter\noexpand\csname#2\string#1i\endcsname
88 ####1\noexpand\@empty\noexpand\Q@text@composite

89 {##1}33%

90 \expandafter\reserved@b\expandafter{\reserved@a{##13}}%

91 \fi

92 \expandafter\def\csname\expandafter\string\csname

93 #2\endcsname\string#1-\string#3\endcsname{#4}}

94 \Qonlypreamble\DeclareTextCompositeCommand
This all works because:

\@text@composite \T1\foo A\@empty \@text@composite {...}

expands to \\T1\foo-A if \\T1\foo-A has been defined, and {. ..} otherwise.
Note that \@text@composite grabs the first token of the argument and puts
just that in the csname. This is so that \’{\textit{e}} will work—it checks
whether \\T1\’-\textit is defined (which presumably it isn’t) and so expands
to {\accent 1 \textit{e}}.
This trick won’t always work, for example \’{{\itshape e}} will expand to
(with spaces added for clarity):

\csname \string \T1\’ - \string {\itshape e} \@empty \endcsname

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 75

\UseTextAccent

\UseTextSymbol
\Quse@text@encoding

which will die pretty horribly. Unfortunately there’s not much can be done about
this if we’re going to use \csname lookups as a fast way of accessing composites.

This has an unfortunate ‘misfeature’ though, which is that in the T1 encoding,
\’{aa} produces 4. This is not the expected behaviour, and should perhaps be
fixed if the fix doesn’t affect performance too badly.

Finally, it’s worth noting that the \@empty is used in \@text@composite so
that accents will work even when the argument is empty. If you say \’{} then
this looks up \\T1\’-\@empty, which ought to be \relax, and so all is well. If we
didn’t include the \@empty, then \’{} would expand to:

\csname \string \T1\’ - \string \endcsname

so the \endcsname would be \string’ed and the whole of the rest of the document
would be put inside the \csname. This would not be good.

95 \def\@textQ@composite#1#2#3\0@text@composite{’,

96 \expandafter\Q@textQ@composite@x

97 \csname\string#1-\string#2\endcsname}

Originally the \@text@composite@x macro had two arguments and if #1 was
not \relax it was executed, otherwise #2 was executed. All this happened within
the \ifx code so that neither #1 nor #2 could have picked up any additional
arguments form the input stream. This has now being changed using the typical
\@firstoftwo / \@secondoftwo coding. This way the final expansion will happen
without any \else or \fi intervening in the case that we need to get a further
token from the input stream.

98 \def\@text@composite@x#1{%
99 \ifx#1\relax

100 \expandafter\@secondoftwo
101 \else

102 \expandafter\@firstoftwo
103 \fi

104 #1}

The command \DeclareTextComposite uses \DeclareTextCompositeCommand to
declare a command which expands out to a single glyph.

105 \catcode\z@=11\relax
106 \def\DeclareTextComposite#1#2#3#4{/,

107 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}1}/
108 \bgroup

109 \lccode\z@#4,

110 \lowercase{%

111 \egroup

112 \reserved@a ~~@}}

113 \catcode\z@=15\relax

114 \@onlypreamble\DeclareTextComposite

These fragile commands access glyphs from different encodings. They use grotty
low-level calls to the font selection scheme for speed, and in order to make sure
that \UseTextSymbol doesn’t do anything which you’re not allowed to do between
an \accent and its glyph.

For a detailed discussion of this reimplementation and its deficiencies, see
pr/3160.
115 \def\UseTextAccent#1#2#3{/,
116 \hmode@start@before@group
ur - {4

Turn off the group in \UseTextSymbol in case this is used inside the arguments
of \UseTextAccent.

118 \let\hmode@start@before@group\@firstofone
119 \let\@curr@enc\cf@encoding
120 \Q@use@text@encoding{#1}/,

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 76

\hmode@start@before@group

\DeclareTextSymbolDefault
\DeclareTextAccentDefault

\UndeclareTextCommand

121 #2{\Quse@text@encoding\Q@curr@enc#3}J,

122 }}

123 \def\UseTextSymbol#1#2{7

124 \hmode@start@before@group

125 Tk

126 \def\Q@uwrong@font@char{\MessageBreak
127 for \noexpand\symbol‘\string#2’}/
128 \@use@text@encoding{#1}/,

129 #2J,

130 Yh

131 }

132 \def\Quse@text@encoding#1{}

133 \edef\f@encoding{#11}/,

134 \xdef\font@name{’,

135 \csname\curr@fontshape/\f@size\endcsnamel}’
136 \pickup@font

137 \font@name

138 \@@enc@update}

The \hmode@start@before@group starts hmode and should be immediately fol-
lowed by an explicit {...}. Its purpose is to ensure that hmode is started before
this group is opened. Inside \add@accent and \UseTextAccent it is redefined to
remove this group so that it doesn’t conflict with the \accent primitive.

For a detailed discussion see pr/3160.

139 \let\hmode@start@before@group\leavevmode

Some syntactic sugar. Again, these should probably be optimized for speed.

140 \def\DeclareTextSymbolDefault#1#2{/,
141 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}}

142 \def\DeclareTextAccentDefault#1#2{/
143 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}}

144 \@onlypreamble\DeclareTextSymbolDefault
145 \@onlypreamble\DeclareTextAccentDefault

This command safely removes and encoding specific declaration for a given encod-
ing. It is helpful if one intends to use the default definition always and therefore
wants to get rid of a declaration for some specific encoding.

146 \def\UndeclareTextCommand#1#2{%

If there is no declaration for the current encoding do nothing. (This makes a hash
table entry but without eTEX we can’t do anything about that).

147 \expandafter\ifx\csname#2\string#1\endcsname\relax
148 \else

Else: throw away that declaration.

149 \global\expandafter\let\csname#2\string#1\endcsname
150 \@undefined

But this is unfortunately not enough, we have to take a look at the top-level
definition of the encoding specific command which for a command \foo would
look similar to \T1-cmd \foo \T1\foo (three tokens).

Of course, instead of T1 one could see a different encoding name; which one
depends the encoding for which \foo was declared last.

Now assume we have just removed the declaration for \foo in T1 and the
top-level of \foo expands to the above. Then we better change that pretty fast
otherwise we do get an “undefined csname error” when we try to typeset \foo
within T1 instead of getting the default definition for \foo. And what is the best
way to change that top-level definition? Well, the only “encoding” we know for
sure will still be around is the default encoding denoted by ?.

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 7

\patterns

\@@patterns
\hyphenation
\@@hyphenation

\a

Thus in case the last token of the top-level expansion is now undefined we
change the declaration to look like \7-cmd \foo \?\foo which is done by the
following (readable?) code:

151 \expandafter\expandafter\expandafter

152 \ifx\expandafter\@thirdofthree#1\Qundefined

153 \expandafter\gdef\expandafter#i\expandafter

154 {\csname 7-cmd\expandafter\endcsname\expandafter
155 #1\csname?\string#1\endcsname}y,

156 \fi

157 \fi

158 }

159 \@onlypreamble\UndeclareTextCommand

19.4.2 Hyphenation

We redefine \patterns and \hyphenation to allow the use of commands declared
with \DeclareText* to be used inside them.

160 %\let\@@patterns\patterns

161 %\let\@@hyphenation\hyphenation
162 %\def\patterns{/

163 % \bgroup

164 % \let\protect\Qempty
165 % \let\@typeset@protect\Q@empty
166 % \let\@changed@x\@changed@x@mouth

167 % \afterassignment\egroup
168 % \@@patterns

169 %}

170 %\def\hyphenation{y

171 % \bgroup

172 % \let\protect\@empty
173 % \let\@typeset@protect\@empty
174 % \let\@changed@x\@changed@xOmouth

175 % \afterassignment\egroup
176 % \@@hyphenation
177 %}

19.4.3 Miscellania

The \a command is used to access the accent commands even when they have
been redefined (for example by the tabbing environment). Its internal name is
\@tabacckludge.

The \string within the \csname guards against something like * being active
at the point of use.
178 \def\@tabacckludge#1{\expandafter\@changed@cmd
179 \csname\string#1\endcsname\relax}
180 \let\a=\Q@tabacckludge

19.4.4 Default encodings

We define the default encodings for most commands to be either OT1, OML or
OMS. These defaults are in the kernel and therefore fonts with these encodings
must be available unless these defaults are redefined elsewhere. Recall that the
standard kernel loads the encoding files for these encodings, and also that for the
T1 encoding.

The naming conventions in the kernel are not what we would use if we were
starting from scratch... Those defined by DEK (like \ae and \ss) or by the
TEX Users Group Technical Working Group on multi-lingual typesetting (like \th
and \ng) have short names. Those which were added to the kernel in 1993 and
early 1994 are named after their Adobe glyph names (like \guillemotleft and

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 78

\quotedblbase). Unfortunately, this naming scheme won’t work for all glyphs,
since some names (like \space) are already used, and some (like \endash) are
very likely to be defined by users. So we’re now using the naming scheme of \text
followed by the Adobe name, (like \textendash and \textsterling). Except
that some glyphs don’t have Adobe names, so we're using the names used by
fontinst for those (like \textcompwordmark). Sigh.

Some accents from OT1:

181 \DeclareTextAccentDefault{\"}{0T1}
182 \DeclareTextAccentDefault{\’}{0T1}
183 \DeclareTextAccentDefault{\.}{0T1}
184 \DeclareTextAccentDefault{\=}{0T1}
185 \DeclareTextAccentDefault{\H}{0T1}
186 \DeclareTextAccentDefault{\~}{0T1}
187 \DeclareTextAccentDefault{\‘}{0T1}
188 \DeclareTextAccentDefault{\b}{0T1}
189 \DeclareTextAccentDefault{\c}{0T1}
190 \DeclareTextAccentDefault{\d}{0T1}
191 \DeclareTextAccentDefault{\r}{0T1}
192 \DeclareTextAccentDefault{\u}{0T1}
193 \DeclareTextAccentDefault{\v}{0T1}
194 \DeclareTextAccentDefault{\~“}{0T1}

Some symbols from OT1:

195 %\DeclareTextSymbolDefault{\AA}{0T1}
196 \DeclareTextSymbolDefault{\AE}{0T1}
197 \DeclareTextSymbolDefault{\L}{0T1}
198 \DeclareTextSymbolDefault{\OE}{0T1}
199 \DeclareTextSymbolDefault{\0}{0T1}
200 %\DeclareTextSymbolDefault{\aa}{0T1}
201 \DeclareTextSymbolDefault{\ae}{0T1}
202 \DeclareTextSymbolDefault{\i}{0T1}
203 \DeclareTextSymbolDefault{\j}{0T1}

204 \DeclareTextSymbolDefault{\ij}{0T1}
205 \DeclareTextSymbolDefault{\IJ}{0T1}

206 \DeclareTextSymbolDefault{\1}{0T1}

207 \DeclareTextSymbolDefault{\oe}{0T1}

208 \DeclareTextSymbolDefault{\o}{0T1}

209 \DeclareTextSymbolDefault{\ss}{0T1}

210 \DeclareTextSymbolDefault{\textdollar}{0T1}

211 \DeclareTextSymbolDefault{\textemdash}{0T1}

212 \DeclareTextSymbolDefault{\textendash}{0T1}

213 \DeclareTextSymbolDefault{\textexclamdown}{0T1}
214 % \DeclareTextSymbolDefault{\texthyphenchar}{0T1}
215 %\DeclareTextSymbolDefault{\texthyphen}{0T1}

216 \DeclareTextSymbolDefault{\textquestiondown}{0T1}
217 \DeclareTextSymbolDefault{\textquotedblleft}{0T1}
218 \DeclareTextSymbolDefault{\textquotedblright}{0T1}
219 \DeclareTextSymbolDefault{\textquoteleft}{0T1}
220 \DeclareTextSymbolDefault{\textquoteright}{0T1}
221 \DeclareTextSymbolDefault{\textsterling}{0T1}

Some symbols from OMS:

222 \DeclareTextSymbolDefault{\textasteriskcentered}{0MS}
223 \DeclareTextSymbolDefault{\textbackslash}{0OMS}

224 \DeclareTextSymbolDefault{\textbar}{0MS}

225 \DeclareTextSymbolDefault{\textbardbl}{0OMS}

226 \DeclareTextSymbolDefault{\textbraceleft}{0OMS}

227 \DeclareTextSymbolDefault{\textbraceright}{0OMS}

228 \DeclareTextSymbolDefault{\textbullet}{0OMS}

229 \DeclareTextSymbolDefault{\textdaggerdbl}{0OMS}

230 \DeclareTextSymbolDefault{\textdagger}{OMS}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 79

231 \DeclareTextSymbolDefault{\textparagraph}{0OMS}

232 \DeclareTextSymbolDefault{\textperiodcentered}{0OMS}
233 \DeclareTextSymbolDefault{\textsection}{0OMS}

234 \DeclareTextAccentDefault{\textcircled}{0OMS}

Some symbols from OML:
235 \DeclareTextSymbolDefault{\textless}{OML}

236 \DeclareTextSymbolDefault{\textgreater}{0OML}
237 \DeclareTextAccentDefault{\t}{OML}

Some defaults we can fake.
The interface for defining \copyright changed, it used to use \expandafter
to add braces at the appropriate points.
238 \DeclareTextCommandDefault{\textcopyright}{\textcircled{c}}
239 % \expandafter\def\expandafter
240 % \copyright\expandafter{\expandafter{\copyright}}

241 \DeclareTextCommandDefault{\textasciicircum}{\"{}}

242 \DeclareTextCommandDefault{\textasciitilde}{\"{}}

243 \DeclareTextCommandDefault{\textcompwordmark}{\leavevmode\kern\z@}
244 \DeclareTextCommandDefault{\textunderscore}{’

245 \leavevmode \kern.O6em\vbox{\hrule\@width.3em}}

246 \DeclareTextCommandDefault{\textvisiblespace}{/
247 \mbox{\kern.06em\vrule \G@height.3ex1}/

248 \vbox{\hrule \@width.3em}},

249 \hbox{\vrule \Gheight.3ex}}

Using \fontdimen3 in the next definition is some sort of a kludge (since it
is the interword stretch) but it makes the ellipsis come out right in mono-spaced
fonts too (since there it is zero).

250 \DeclareTextCommandDefault{\textellipsis}{/

251 .\kern\fontdimen3\font
252 .\kern\fontdimen3\font
253 .\kern\fontdimen3\font}

254 %\DeclareTextCommandDefault{\textregistered}{\textcircled{\scshape r}}
255 \DeclareTextCommandDefault{\textregistered}{\textcircled{’

256 \check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont R}}
257 \DeclareTextCommandDefault{\texttrademark}{TM}

258 \DeclareTextCommandDefault{\SS}{SS}

259 \DeclareTextCommandDefault{\textordfeminine}{al}
260 \DeclareTextCommandDefault{\textordmasculine}{o}

19.4.5 Math material

Some commands can be used in both text and math mode:

261 \DeclareRobustCommand{\$}{\ifmmode\mathdollar\else\textdollar\fi}

262 \DeclareRobustCommand{\{}{\ifmmode\lbrace\else\textbraceleft\fi}

263 \DeclareRobustCommand{\}}{\ifmmode\rbrace\else\textbraceright\fi}

264 \DeclareRobustCommand{\P}{\ifmmode\mathparagraph\else\textparagraph\fi}
265 \DeclareRobustCommand{\S}{\ifmmode\mathsection\else\textsection\fi}

266 \DeclareRobustCommand{\dag}{\ifmmode{\dagger}\else\textdagger\fi}

267 \DeclareRobustCommand{\ddag}{\ifmmode{\ddagger}\else\textdaggerdbl\fi}

For historical reasons \copyright needs {} around the definition in maths.

268 \DeclareRobustCommand{_}{/

269 \ifmmode\nfss@text{\textunderscore}\else\textunderscore\fi}
270 \DeclareRobustCommand{\copyright}{%

271 \ifmmode{\nfss@text{\textcopyright}}\else\textcopyright\fi}
272 \DeclareRobustCommand{\pounds}{’

273 \ifmmode\mathsterling\else\textsterling\fi}

274 \DeclareRobustCommand{\dots}{%
275 \ifmmode\mathellipsis\else\textellipsis\fi}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 80

276 \let\1ldots\dots
277 (/2ekernel | autoload)

19.5 Definitions for the OT1 encoding

The definitions for the ‘TEX text’ (OT1) encoding.
Declare the encoding.

278 (xOT1)
279 \DeclareFontEncoding{0T1}{}{}

Declare the accents.

280 \DeclareTextAccent{\"}{0T1}{127}
281 \DeclareTextAccent{\’}{0T1}{19}
282 \DeclareTextAccent{\.}{0T1}{95}
283 \DeclareTextAccent{\=}{0T1}{22}
284 \DeclareTextAccent{\"}{0T1}{94}
285 \DeclareTextAccent{\ ‘}{0T1}{18}
286 \DeclareTextAccent{\~"}{0T1}{126}
287 \DeclareTextAccent{\H}{0T1}{125}
288 \DeclareTextAccent{\u}{0T1}{21}
289 \DeclareTextAccent{\v}{0T1}{20}
290 \DeclareTextAccent{\r}{0T1}{23}

Some accents have to be built by hand: Note that \ooalign and \o@lign must
be inside a group. In these definitions we no longer use the helper function
\she@ft from plain.tex since that now has two incompatible definitions.

291 \DeclareTextCommand{\b}{0T1}[1]

292 {\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\1tx@she@ft{-3exl}/,

293 \vbox to.2ex{\hbox{\char22}\vss}\hidewidth}\egroup}

294 \DeclareTextCommand{\c}{0T1}[1]

295 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z@=1ex\accent24 #1J,

296 \else{\ooalign{\unhbox\z@\crcr\hidewidth\char24\hidewidth}}\fi}

297 \DeclareTextCommand{\d}{0T1}[1]

298 {\hmode@bgroup

299 \o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-1ex}.\hidewidth}\egroup}

Declare the text symbols.

300 \DeclareTextSymbol{\AE}{0T1}{29}

301 \DeclareTextSymbol{\OE}{0T1}{30}

302 \DeclareTextSymbol{\0}{0T1}{31}

303 \DeclareTextSymbol{\ae}{0T1}{26}

304 \DeclareTextSymbol{\i}{0T1}{16}

305 \DeclareTextSymbol{\j}{0T1}{17}

306 \DeclareTextSymbol{\oe}{0T1}{27}

307 \DeclareTextSymbol{\o}{0T1}{28}

308 \DeclareTextSymbol{\ss}{0T1}{25}

309 \DeclareTextSymbol{\textemdash}{0T1}{124}
310 \DeclareTextSymbol{\textendash}{0T1}{123}

Using the ligatures helps with OT1 fonts that have \textexclamdown and
\textquestiondown in unusual positions.

311 %\DeclareTextSymbol{\textexclamdown}{0T1}{60}
312 %\DeclareTextSymbol{\textquestiondown}{0T1}{62}
313 \DeclareTextCommand{\textexclamdown}{OT1}{! ‘}
314 \DeclareTextCommand{\textquestiondown}{0OT1}{?‘}
315 %\DeclareTextSymbol{\texthyphenchar}{0T1}{‘\-}
316 %\DeclareTextSymbol{\texthyphen}{0T1}{‘\-}

317 \DeclareTextSymbol{\textquotedblleft}{0T1}{92}
318 \DeclareTextSymbol{\textquotedblright}{0T1}{‘\"}
319 \DeclareTextSymbol{\textquoteleft}{OT1}{‘\‘}

320 \DeclareTextSymbol{\textquoteright}{0T1}{‘\’}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 81

Some symbols which are faked from others:

321 % \DeclareTextCommand{\aa}{0T1}

322 %, {{\accent23al}}

323 \DeclareTextCommand{\L}{0T1}

324 {\leavevmode\setbox\z@\hbox{L}\hb@xt@\wd\z@{\hss\@xxxii L}}

325 \DeclareTextCommand{\1}{0T1}

326 {\hmode@bgroup\@xxxii 1l\egroup}

327 % \DeclareTextCommand{\AA}{OT1}

328 % {\leavevmode\setbox\z@\hbox{h}\dimen@\ht\z@\advance\dimen@-1ex},

329 % \rlap{\raise.67\dimen@\hbox{\char23}}A}

In the OT1 encoding A has a hand-crafted definition, so we have here the first
recorded explicit use of \DeclareTextCompositeCommand.

330 \DeclareTextCompositeCommand{\r}{0T1}{A}

331 {\leavevmode\setbox\z@\hbox{!}\dimen@\ht\z@\advance\dimen@-1lex,

332 \rlap{\raise.67\dimen@\hbox{\char23}}A}

The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not
in the 0T1 encoded fonts. Therefor we fake it for the 0T1 encoding.

333 \DeclareTextCommand{\ij}{0OT1}{%

334 \nobreak\hskip\z@skip i\kern-0.02em j\nobreak\hskip\z@skip}

335 \DeclareTextCommand{\IJ}{0T1}{%
336 \nobreak\hskip\z@skip I\kern-0.02em J\nobreak\hskip\z@skip}

In the OT1 encoding, £ and $ share a slot.

337 \DeclareTextCommand{\textdollar}{0T1}{\hmode@bgroup
338 \ifdim \fontdimen\@ne\font >\z@

339 \slshape
340 \else

341 \upshape
342 \fi

343 \char‘\$\egroup}

344 \DeclareTextCommand{\textsterling}{0T1}{\hmode@bgroup
345 \ifdim \fontdimen\@ne\font >\z@

346 \itshape

347 \else

348 \fontshape{ui}\selectfont
349 \fi

350 \char ‘\$\egroup}

Here we are adding some more composite commands to the 0T1 encoding.
This makes the use of certain accents with i compatible with their use with the
T1 encoding; this enables them to become true IXTEX internal representations.
However, it will make these accents work a little less fast since a check will always
be made for the existence of a composite.

351 \DeclareTextComposite{\.}{OT1}Hi}{‘\i}

352 \DeclareTextComposite{\.}}HOT1FH\i}{\i}

353 \DeclareTextCompositeCommand{\ ‘}{0T1}{i}{\@tabacckludge‘\i}
354 \DeclareTextCompositeCommand{\’}{0T1}{i}{\@tabacckludge’\i}
355 \DeclareTextCompositeCommand{\~"}{OT1}{i}{\"\i}

356 \DeclareTextCompositeCommand{\"}{OT1}{i}{\"\i}

357 (/OT1)

19.6 Definitions for the T1 encoding

The definitions for the ‘Extended TEX text’ (T1) encoding.
Declare the encoding.

358 (xT1)
359 \DeclareFontEncoding{T1}{}{}

Declare the accents.
360 \DeclareTextAccent{\‘}{T1}{0}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 82

361 \DeclareTextAccent{\’}{T1}{1}
362 \DeclareTextAccent{\"}{T1}{2}
363 \DeclareTextAccent{\"}{T1}{3}
364 \DeclareTextAccent{\"}{T1}{4}
365 \DeclareTextAccent{\H}{T1}{5}
366 \DeclareTextAccent{\r}{T1}{6}
367 \DeclareTextAccent{\v}{T1}{7}
368 \DeclareTextAccent{\u}{T1}{8%}
369 \DeclareTextAccent{\=}{T1}{9}
370 \DeclareTextAccent{\.}{T1}{10}

Some accents have to be built by hand. Note that \ooalign and \o@lign must
be inside a group. In these definitions we no longer use the helper function
\sh@ft from plain.tex since that now has two incompatible definitions.

371 \DeclareTextCommand{\b}{T1}[1]

372 {\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-3exl}

373 \vbox to.2ex{\hbox{\char9}\vss}\hidewidth}\egroup}

374 \DeclareTextCommand{\c}{T1}[1]

375 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z0@=1lex\accent1l #17

376 \else{\ooalign{\unhbox\z@\crcr

377 \hidewidth\chari1i\hidewidth}}\fi}

378 \DeclareTextCommand{\d}{T1}[1]

379 {\hmode@bgroup

380 \o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-1ex}.\hidewidth}\egroup}
381 \DeclareTextCommand{\k}{T1}[1]

382 {\hmode@bgroup\ooalign{\null#i\crcr\hidewidth\char12}\egroup}

383 \DeclareTextCommand{\textogonekcentered}{T1}[1]

384 {\hmode@bgroup\ooalign{\null#i\crcr\hidewidth\chari2\hidewidth}\egroup}

Some symbols are constructed.
Slot 24 contains a small circle intended for construction of these two glyphs.

385 \DeclareTextCommand{\textperthousand}{T1}

386 {\%\char 24 } % space or ‘relax as delimiter?
387 \DeclareTextCommand{\textpertenthousand}{T1}

388 {\%\char 24\char 24 } 7 space or ‘relax as delimiter?

Declare the text symbols.

389 %\DeclareTextSymbol{\AA}{T1}{197}

390 \DeclareTextSymbol{\AE}{T1}{198}

391 \DeclareTextSymbol{\DH}{T1}{208}

392 \DeclareTextSymbol{\DJ}{T1}{208}

393 \DeclareTextSymbol{\L}{T1}{138}

394 \DeclareTextSymbol{\NG}{T1}{141}

395 \DeclareTextSymbol{\OE}{T1}{215}

396 \DeclareTextSymbol{\0}{T1}{216}

397 \DeclareTextSymbol{\SS}{T1}{223}

398 \DeclareTextSymbol{\TH}{T1}{222}

399 %\DeclareTextSymbol{\aa}{T1}{229}

400 \DeclareTextSymbol{\ae}{T1}{230}

401 \DeclareTextSymbol{\dh}{T1}{240}

402 \DeclareTextSymbol{\dj}{T1}{158}

403 \DeclareTextSymbol{\guillemotleft}{T1}{19}
404 \DeclareTextSymbol{\guillemotright}{T1}{20}
405 \DeclareTextSymbol{\guilsinglleft}{T1}{14}
406 \DeclareTextSymbol{\guilsinglright}{T1}{15}
407 \DeclareTextSymbol{\i}{T1}{25}

408 \DeclareTextSymbol{\j}{T1}{26}

409 \DeclareTextSymbol{\ij}{T1}{188}

410 \DeclareTextSymbol{\IJ}{T1}{156}

411 \DeclareTextSymbol{\1}{T1}{170}

412 \DeclareTextSymbol{\ng}{T1}{173}

413 \DeclareTextSymbol{\oe}{T1}{247}

414 \DeclareTextSymbol{\o}{T1}{248}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 83

415 \DeclareTextSymbol{\quotedblbase}{T1}{18}

416 \DeclareTextSymbol{\quotesinglbase}{T1}{13}
417 \DeclareTextSymbol{\ss}{T1}{255}

418 \DeclareTextSymbol{\textasciicircum}{T1}{‘\"}
419 \DeclareTextSymbol{\textasciitilde}{T1}{‘\"}
420 \DeclareTextSymbol{\textbackslash}{T1}{‘\\}
421 \DeclareTextSymbol{\textbar }FH{T1}{‘\ |}

422 \DeclareTextSymbol{\textbraceleft}{T1}{ ‘\{}
423 \DeclareTextSymbol{\textbraceright }{T1}{‘\}}
424 \DeclareTextSymbol{\textcompwordmark}{T1}{23}
425 \DeclareTextSymbol{\textdollar}{T1}{‘\$}

426 \DeclareTextSymbol{\textemdash}{T1}{22}

427 \DeclareTextSymbol{\textendash}{T1}{21}

428 \DeclareTextSymbol{\textexclamdown}{T1}{189}
429 \DeclareTextSymbol{\textgreater{T1}{‘\>}

430 %\DeclareTextSymbol{\texthyphenchar}{T1}{127}
431 %\DeclareTextSymbol{\texthyphen}{T1}{‘\-}

432 \DeclareTextSymbol{\textless}{T1}{‘\<}

433 \DeclareTextSymbol{\textquestiondown}{T1}{190}
434 \DeclareTextSymbol{\textquotedblleft}{T1}{163}
435 \DeclareTextSymbol{\textquotedblright}{T1}{17}
436 \DeclareTextSymbol{\textquotedbl}{T1}{\"}
437 \DeclareTextSymbol{\textquoteleft}{T1}{‘\‘}
438 \DeclareTextSymbol{\textquoteright }{T1}{‘\’}
439 \DeclareTextSymbol{\textsection}{T1}{159}

440 \DeclareTextSymbol{\textsterling}{T1}{191}
441 \DeclareTextSymbol{\textunderscore}{T1}{95}
442 \DeclareTextSymbol{\textvisiblespace}{T1}{32}
443 \DeclareTextSymbol{\th}{T1}{254}

Declare the composites.

444 \DeclareTextComposite{\ . H{T1}{i}{“\i}
445 \DeclareTextComposite{\. FH{T1}{\i}{‘\i}

780 = 128

446 \DeclareTextComposite{\u}{T1}{A}{128}
447 \DeclareTextComposite{\k}{T1}{A}{129}
448 \DeclareTextComposite{\’}{T1}{C}{130}
449 \DeclareTextComposite{\v}{T1}{C}{131}
450 \DeclareTextComposite{\v}{T1}{D}{132}
451 \DeclareTextComposite{\v}{T1}{E}{133}
452 \DeclareTextComposite{\k}{T1}{E}{134}
453 \DeclareTextComposite{\u}{T1}{G}{135}

788 = 136

454 \DeclareTextComposite{\’{T1}{L}{136}
455 \DeclareTextComposite{\v}{T1}{L}{1372}
456 \DeclareTextComposite{\’ }{T1}{N}{139}
457 \DeclareTextComposite{\v}{T1}{N}{140}
458 \DeclareTextComposite{\H}{T1}{0}{142}
459 \DeclareTextComposite{\’}{T1}{R}{143}

790 = 144

460 \DeclareTextComposite{\v}{T1}{R}{144}
461 \DeclareTextComposite{\’ }{T1}{S}{1453}
462 \DeclareTextComposite{\v}{T1}{S}{146}
463 \DeclareTextComposite{\c}HT1}{S}{147}
464 \DeclareTextComposite{\v}{T1}{T}{1483}
465 \DeclareTextComposite{\cH{T1}{T}{149}
466 \DeclareTextComposite{\H}{T1}{U}{150}
467 \DeclareTextComposite{\r}{T1}{U}{151}

798 = 152
468 \DeclareTextComposite{\"}HT1}{Y}{152}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h

84

469 \DeclareTextComposite{\’ }{T1}{Z}{153}
470 \DeclareTextComposite{\v}{T1}{Z}{154}
471 \DeclareTextComposite{\.}{T1}{Z}{155}
472 \DeclareTextComposite{\. H{T1}{I}{157}

7A0 = 160

473 \DeclareTextComposite{\u}{T1}{a}{160}
474 \DeclareTextComposite{\k}{T1}{a}{161}
475 \DeclareTextComposite{\’ }{T1}{c}{162}
476 \DeclareTextComposite{\v}{T1}{c}{163}
477 \DeclareTextComposite{\v}{T1}{d}{164}
478 \DeclareTextComposite{\v}{T1}{e}{165}
479 \DeclareTextComposite{\k}{T1}{e}{166}
480 \DeclareTextComposite{\u}{T1}{g}{167}

A8 = 168

481 \DeclareTextComposite{\’}{T1}{1}{168}
482 \DeclareTextComposite{\v}{T1}{1}{169}
483 \DeclareTextComposite{\’ }H{T1} {n}{171}
484 \DeclareTextComposite{\v}{T1}{n}{172}
485 \DeclareTextComposite{\H}{T1}{o}{174}
486 \DeclareTextComposite{\’ H{T1}{r}{175}

"B0 = 176

487 \DeclareTextComposite{\v}{T1{r}{1763}
488 \DeclareTextComposite{\’ H{T1}{s}{177}
489 \DeclareTextComposite{\v}{T1}{s}{178}
490 \DeclareTextComposite{\c}HT1}{s}{179}
491 \DeclareTextComposite{\v}{T1}{t}{180}
492 \DeclareTextComposite{\cH{T1}{t}{181}
493 \DeclareTextComposite{\H}T1}{u}{182}
494 \DeclareTextComposite{\r}{T1}{u}{183}

"B8 = 184

495 \DeclareTextComposite{\"}{T1}{y}{184}
496 \DeclareTextComposite{\’}{T1}{z}{1853}
497 \DeclareTextComposite{\v}{T1}{z}{186}
498 \DeclareTextComposite{\.}}HT1}{z}{187}

7C0O = 192

499 \DeclareTextComposite{\ ‘F{T1}{A}{192}
500 \DeclareTextComposite{\’}{T1}{A}{193}
501 \DeclareTextComposite{\"}{T1}{A}{194}
502 \DeclareTextComposite{\ " }{T1}{A}{195}
503 \DeclareTextComposite{\"}{T1}{A}{196}
504 \DeclareTextComposite{\r}{T1}{A}{1973}
505 \DeclareTextComposite{\cH{T1}{C}{199}

7C8 = 200

506 \DeclareTextComposite{\ ‘}{T1}{E}{200}
507 \DeclareTextComposite{\’}{T1}{E}{201}
508 \DeclareTextComposite{\"}HT1HE}{202}
509 \DeclareTextComposite{\"}HT1}{E}{203}
510 \DeclareTextComposite{\ ‘F{T1}{I}{204}
511 \DeclareTextComposite{\’ }H{T1}{I}{205}
512 \DeclareTextComposite{\"}{T1}{I}{2063}
513 \DeclareTextComposite{\"}{T1}{I1}{207}

D0 = 208

514 \DeclareTextComposite{\"}{T1}{N}{209}
515 \DeclareTextComposite{\ ‘}{T1}{0}{210}
516 \DeclareTextComposite{\’ }H{T1}{0}{211}
517 \DeclareTextComposite{\"}{T1}{0}{212}
518 \DeclareTextComposite{\~}{T1}{0}{213}
519 \DeclareTextComposite{\"}HT1}{0}{214}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h

85

"D8 = 216

520 \DeclareTextComposite{\ ‘H{T1}{U}{217}
521 \DeclareTextComposite{\’ }{T1}{U}{2183}
522 \DeclareTextComposite{\ " }{T1}{U}{219}
523 \DeclareTextComposite{\"}HT1}{U}{220}
524 \DeclareTextComposite{\’ }{T1}{Y}{221}

"E0Q = 224

525 \DeclareTextComposite{\ ‘}{T1}{a}{224}
526 \DeclareTextComposite{\’}{T1}{a}{2253}
527 \DeclareTextComposite{\"}{T1}{a}{226}
528 \DeclareTextComposite{\"}HT1}{a}{227}
529 \DeclareTextComposite{\"}{T1}{a}{228}
530 \DeclareTextComposite{\r}{T1}{a}{229}
531 \DeclareTextComposite{\c}HT1}{c}{231}

"E8 = 232

532 \DeclareTextComposite{\ ‘}{T1}{e}{232}
533 \DeclareTextComposite{\’}{T1}{e}{233}
534 \DeclareTextComposite{\"}{T1}{e}{234}
535 \DeclareTextComposite{\"}{T1}{e}{235}
536 \DeclareTextComposite{\ ‘}{T1}{i}{236}
537 \DeclareTextComposite{\ ‘}{T1}{\1}{236}
538 \DeclareTextComposite{\’}{T1}{i}{237}
539 \DeclareTextComposite{\’ }H{T1}{\1}{237}
540 \DeclareTextComposite{\"}{T1}{i}{2383}
541 \DeclareTextComposite{\"}{T1}{\i}{238}
542 \DeclareTextComposite{\"}HT1}{i}{239}
543 \DeclareTextComposite{\"}{T1}{\1}{239}
"FO = 240

544 \DeclareTextComposite{\"}T1}{n}{241}
545 \DeclareTextComposite{\ ‘}{T1}{o}{242}
546 \DeclareTextComposite{\’}{T1}{0}{243}
547 \DeclareTextComposite{\"}{T1}{o}{244}
548 \DeclareTextComposite{\"}{T1}{o}{2453}
549 \DeclareTextComposite{\"}{T1}{0}{246}

"F8 = 248

550 \DeclareTextComposite{\ ‘}{T1}{u}{249}
551 \DeclareTextComposite{\’}{T1}{u}{250}
552 \DeclareTextComposite{\"}{T1}{u}{251}
553 \DeclareTextComposite{\"}H{T1}{u}{252}
554 \DeclareTextComposite{\’{T1}{y}{253}

555 \DeclareTextCompositeCommand{\k}{T1}{o}{\textogonekcentered{o}}
556 \DeclareTextCompositeCommand{\k}{T1}{0}{\textogonekcentered{0}}

557 (/T1)

19.7 Definitions for the OMS encoding

The definitions for the ‘TEX math symbol’ (OMS) encoding. Even though this is
meant to be a math font, it includes some of the standard ITEX text symbols.
Declare the encoding.

558 (xOMS)
559 \DeclareFontEncoding{OMS}{}{}

Declare the symbols.

560 % \changes{v1.99}{2004/02/02}{Added \cs{textbigcirclel}}

561 % Note that slot 13 has in places been named |\Orb|: please root
562 % out and destroy this impolity wherever you find it!

563 % \begin{macrocode}

564 \DeclareTextSymbol{\textasteriskcentered}{0MS}{3} 7 "03

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 86

565 \DeclareTextSymbol{\textbackslash}{0OMS}{110} % "6E

566 \DeclareTextSymbol{\textbar}{0OMS}{106} % "6A
567 \DeclareTextSymbol{\textbardbl}{0MS}{107} % "6B
568 \DeclareTextSymbol{\textbraceleft}{0MS}{102} % "66
569 \DeclareTextSymbol{\textbraceright}{0MS}{103} % "67
570 \DeclareTextSymbol{\textbullet}{0OMS}{15} % "OF
571 \DeclareTextSymbol{\textdaggerdbl}{0MS}{122} % "TA
572 \DeclareTextSymbol{\textdagger}{0MS}{121} % "79
573 \DeclareTextSymbol{\textparagraph}{0MS}{123} % "7B
574 \DeclareTextSymbol{\textperiodcentered}{OMS}{1} % "01
575 \DeclareTextSymbol{\textsection}{0MS}{120} % "78
576 \DeclareTextSymbol{\textbigcircle}{0MS}{13} % "OD

577 \DeclareTextCommand{\textcircled}{0MS} [1]{\hmode@bgroup
578 \ooalign{¥%

579 \hfil \raise .07ex\hbox {\upshape#1}\hfil \crcr
580 \char 13 7% "OD

581 %

582 \egroupl}

583 (/OMS)

19.8 Definitions for the OML encoding

The definitions for the ‘TEX math italic’ (OML) encoding. Even though this is
meant to be a math font, it includes some of the standard ITEX text symbols.
Declare the encoding.

584 (xOML)
585 \DeclareFontEncoding{OML}{}{}

Declare the symbols.
586 \DeclareTextSymbol{\textless}{OML}{‘\<}
587 \DeclareTextSymbol{\textgreater{OML}{ ‘\>}

588 \DeclareTextAccent{\t}{OML}{127} % "7F
589 (/OML)

19.9 Definitions for the OT4 encoding

These definitions are for the Polish extension to the ‘TEX text’ (OT1) encoding.

This encoding was created by B. Jackowski and M. Ryc¢ko for use with the Polish

version of Computer Modern and Computer Concrete. In positions 0-127 it is

identical to OT1 but it contains some additional characters in the upper half. The

TEX support was developed by Mariusz Olko.

The PL fonts that use it are available as follows:

Metafont sources ftp://ftp.gust.org.pl/TeX/language/polish/pl-mf.zip;
Font files ftp://ftp.gust.org.pl/TeX/language/polish/pl-tfm.zip.
Declare the encoding.

590 (xOT4)
591 \DeclareFontEncoding{0T4}{}{}
592 \DeclareFontSubstitution{0T4}{cmr}{m}{n}

Declare the accents.

593 \DeclareTextAccent{\"}{0T4}{127}
594 \DeclareTextAccent{\’}{0T4}{19}
595 \DeclareTextAccent{\.}{0T4}{95}
596 \DeclareTextAccent{\=}{0T4}{22}
597 \DeclareTextAccent{\"}{0T4}{94}
598 \DeclareTextAccent{\ ‘}{0T4}{18}
599 \DeclareTextAccent{\~}{0T4}{126}
600 \DeclareTextAccent{\H}{0T4}{125}
601 \DeclareTextAccent{\u}{0T4}{21}
602 \DeclareTextAccent{\v}{0T4}{20}
603 \DeclareTextAccent{\r}{0T4}{23}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 87

The ogonek accent is available only under a e A & E. But we have to provide some
definition for \k. Some other accents have to be built by hand as in OT1:

604 \DeclareTextCommand{\k}{0T4} [1]1{%
605 \TextSymbolUnavailable{\k{#1}}#1}

In these definitions we no longer use the helper function \sh@ft from plain.tex
since that now has two incompatible definitions.

606 \DeclareTextCommand{\b}{0T4} [1]

607 {\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\1tx@she@ft{-3exl}/,

608 \vbox to.2ex{\hbox{\char22}\vss}\hidewidth}\egroup}

609 \DeclareTextCommand{\c}{0T4} [1]

610 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z0=1ex\accent24 #1%

611 \else{\ooalign{\unhbox\z@\crcr\hidewidth\char24\hidewidth}}\fi}

612 \DeclareTextCommand{\d}{0T4} [1]

613 {\hmode@bgroup

614 \o@lign{\relax#1\crcr\hidewidth\1tx@sh@ft{-1ex}.\hidewidth}\egroup}

Declare the text symbols.

615 \DeclareTextSymbol{\AE}{0T4}{29}

616 \DeclareTextSymbol{\OE}{0T4}{30}

617 \DeclareTextSymbol{\0}{0T4}{31}

618 \DeclareTextSymbol{\L}{0T4}{138}

619 \DeclareTextSymbol{\ae}{0T4}{26}

620 \DeclareTextSymbol{\guillemotleft}{0T4}{174}
621 \DeclareTextSymbol{\guillemotright}{0T4}{175}
622 \DeclareTextSymbol{\i}{0T4}{16}

623 \DeclareTextSymbol{\j}{0T4}{17}

624 \DeclareTextSymbol{\1}{0T4}{170}

625 \DeclareTextSymbol{\o}{0T4}{28}

626 \DeclareTextSymbol{\oe}{0T4}{27}

627 \DeclareTextSymbol{\quotedblbase}{0T4}{255}
628 \DeclareTextSymbol{\ss}{0T4}{25}

629 \DeclareTextSymbol{\textemdash}{0T4}{124}

630 \DeclareTextSymbol{\textendash}{0T4}{123}

631 \DeclareTextSymbol{\textexclamdown}{0T4}{60}
632 %\DeclareTextSymbol{\texthyphenchar}{0T4}{‘\-}
633 %\DeclareTextSymbol{\texthyphen}{0T4}{ ‘\-}

634 \DeclareTextSymbol{\textquestiondown}{0T4}{62}
635 \DeclareTextSymbol{\textquotedblleft}{0T4}{92}
636 \DeclareTextSymbol{\textquotedblright}{0T4}{‘\"}
637 \DeclareTextSymbol{\textquoteleft}{0T4}{‘\‘}
638 \DeclareTextSymbol{\textquoteright}{0T4}{‘\’}

Definition for A as in OT1:

639 \DeclareTextCompositeCommand{\r}{0T4}{A}

640 {\leavevmode\setbox\z@\hbox{!}\dimen@\ht\z@\advance\dimen@-1ex%
641 \rlap{\raise.67\dimen@\hbox{\char23}}A}

In the OT4 encoding, £ and $ share a slot.

642 \DeclareTextCommand{\textdollar}{0T4}{\hmode@bgroup
643 \ifdim \fontdimen\@ne\font >\z@

644 \slshape
645 \else

646 \upshape
647 \fi

648 \char ‘\$\egroup}
649 \DeclareTextCommand{\textsterling}{0T4}{\hmode@bgroup
650 \ifdim \fontdimen\@ne\font >\z@

651 \itshape

652 \else

653 \fontshape{ui}\selectfont
654 \fi

655 \char‘\$\egroup}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 88

Declare the composites.

656 \DeclareTextComposite{\k}{0T4}{A}{129}
657 \DeclareTextComposite{\’}{0T4}{C}{130}
658 \DeclareTextComposite{\k}{0T4}{E}{134}
659 \DeclareTextComposite{\’}{0T4}{N}{139}
660 \DeclareTextComposite{\’}{0T4}{S}{145}
661 \DeclareTextComposite{\’}{0T4}{2}{153}
662 \DeclareTextComposite{\.}{0T4}{Z}{155}
663 \DeclareTextComposite{\k}{0T4}{a}{161}
664 \DeclareTextComposite{\’}{0T4}{c}{162}
665 \DeclareTextComposite{\k}{0T4}{e}{166}
666 \DeclareTextComposite{\’}{0T4}{n}{171}
667 \DeclareTextComposite{\’}{0T4}{s}{177}
668 \DeclareTextComposite{\’}{0T4}{z}{185}
669 \DeclareTextComposite{\.}{0T4}{z}{187}
670 \DeclareTextComposite{\’}{0T4}{0}{211}
671 \DeclareTextComposite{\’}{0T4}{0}{243}
672 (/OT4)

19.10 Definitions for the TS1 encoding

673 (xTS1)
674 \DeclareFontEncoding{TS1}{}{}
675 \DeclareFontSubstitution{TS1}{cmr}{m}{n}

Some accents have to be built by hand. Note that \ooalign and \o@lign must
be inside a group.

676 \DeclareTextCommand{\capitalcedilla}{TS1}[1]

677 {\hmode@bgroup

678 \ooalign{\null#1i\crcr\hidewidth\charii\hidewidth}\egroup}

679 \DeclareTextCommand{\capitalogonek}{TS1}[1]

680 {\hmode@bgroup

681 \ooalign{\null#1\crcr\hidewidth\chari2\hidewidth}\egroup}

Accents for capital letters.
These commands can be used by the end user either directly or through defi-
nitions of the type
\DeclareTextCompositeCommand{\’}{T1}{X}{\capitalacute X}

None of the latter definitions are provided by default, since they are probably
rarely used.
"700=0
682 \DeclareTextAccent{\capitalgrave}{TS1}{0}
683 \DeclareTextAccent{\capitalacute}{TS1}{1}
684 \DeclareTextAccent{\capitalcircumflex}{TS1}{2}
685 \DeclareTextAccent{\capitaltilde}{TS1}{3}
686 \DeclareTextAccent{\capitaldieresis}{TS1}{4}
687 \DeclareTextAccent{\capitalhungarumlaut}{TS1}{5}
688 \DeclareTextAccent{\capitalring}{TS1}{6}
689 \DeclareTextAccent{\capitalcaron}{TS1}{7}

708 = 8
690 \DeclareTextAccent{\capitalbreve}{TS1}{8}

691 \DeclareTextAccent{\capitalmacron}{TS1}{9}
692 \DeclareTextAccent{\capitaldotaccent}{TS1}{10}

Tie accents.

The tie accent was borrowed from the cmmi font. The tc fonts now provide
four tie accents, the first two are done in the classical way with assymetric glyphs
hanging out of their boxes; the new ties are centered in their boxes like all other
accents. They need a name: please tell us if you know what to call them.

»

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 89

693 \DeclareTextAccent{\t}{TS1}{26}
694 \DeclareTextAccent{\capitaltie}{TS1}{27}
695 \DeclareTextAccent{\newtie}{TS1}{28%}
696 \DeclareTextAccent{\capitalnewtie}{TS1}{29}
Compund word marks.
The text companion fonts contain two compound word marks of different
heights, one has cap_height, the other asc_height.
697 \DeclareTextSymbol{\textcapitalcompwordmark}{TS1}{23}
698 \DeclareTextSymbol{\textascendercompwordmark}{TS1}{31}

The text companion symbols.
699 \DeclareTextSymbol{\textquotestraightbase}{TS1}{13}
710 = 16
700 \DeclareTextSymbol{\textquotestraightdblbase}{TS1}{18}
701 \DeclareTextSymbol{\texttwelveudash}{TS1}{21}
702 \DeclareTextSymbol{\textthreequartersemdash}{TS1}{22}
718 =24
703 \DeclareTextSymbol{\textleftarrow}{TS1}{24}
704 \DeclareTextSymbol{\textrightarrow}{TS1}{25}
720 = 32
705 \DeclareTextSymbol{\textblank}{TS1}{32}
706 \DeclareTextSymbol{\textdollar}{TS1}{36}
707 \DeclareTextSymbol{\textquotesingle}{TS1}{39}
728 = 40
708 \DeclareTextSymbol{\textasteriskcentered}{TS1}{42}
Note that 054 is a comma and ’056 is a full stop: these make numbers using
oldstyle digits easier to input.
709 \DeclareTextSymbol{\textdblhyphen}{TS1}{45}
710 \DeclareTextSymbol{\textfractionsolidus}{TS1}{47}
Oldstyle digits.
730 = 48
711 \DeclareTextSymbol{\textzerooldstyle}{TS1}{48}
712 \DeclareTextSymbol{\textoneoldstyle}{TS1}{49}
713 \DeclareTextSymbol{\texttwooldstyle}{TS1}{50}
714 \DeclareTextSymbol{\textthreeoldstyle}{TS1}{51}
715 \DeclareTextSymbol{\textfouroldstyle}{TS1}{52}
716 \DeclareTextSymbol{\textfiveoldstyle}{TS1}{53}
717 \DeclareTextSymbol{\textsixoldstyle}{TS1}{54}
718 \DeclareTextSymbol{\textsevenoldstyle}{TS1}{55}
738 = 56
719 \DeclareTextSymbol{\texteightoldstyle}{TS1}{56}
720 \DeclareTextSymbol{\textnineoldstyle}{TS1}{57}
More text companion symbols.

721 \DeclareTextSymbol{\textlangle}{TS1}{60}
722 \DeclareTextSymbol{\textminus}{TS1}{61}
723 \DeclareTextSymbol{\textrangle}{TS1}{62}

748 = T2
724 \DeclareTextSymbol{\textmho}{TS1}{77}

The big circle is here to define the command \textcircled. Formerly it was
taken from the cmsy font.

725 \DeclareTextSymbol{\textbigcircle}{TS1}{79}
726 \DeclareTextCommand{\textcircled}{TS1}[1]{\hmode@bgroup
727 \ooalign{%

728 \hfil \raise .07ex\hbox {\upshape#1}\hfil \crcr
729 \char 79 % 2117 = "“4F
730 Y4

731 \egroup}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 90

More text companion symbols.
750 = 80
732 \DeclareTextSymbol{\textohm}{TS1}{87}
”H8 = 88
733 \DeclareTextSymbol{\textlbrackdbl}{TS1}{91}
734 \DeclareTextSymbol{\textrbrackdbl}{TS1}{93}

735 \DeclareTextSymbol{\textuparrow}{TS1}{94}
736 \DeclareTextSymbol{\textdownarrow}{TS1}{95}

760 = 96
737 \DeclareTextSymbol{\textasciigrave}{TS1}{963}
738 \DeclareTextSymbol{\textborn}{TS1}{98%}

739 \DeclareTextSymbol{\textdivorced}{TS1}{99}
740 \DeclareTextSymbol{\textdied}{TS1}{100}

768 = 104

741 \DeclareTextSymbol{\textleaf }{TS1}{108}
742 \DeclareTextSymbol{\textmarried}{TS1}{109}
743 \DeclareTextSymbol{\textmusicalnote}{TS1}{110}

778 =120
744 \DeclareTextSymbol{\texttildelow}{TS1}{126}

This glyph, \textdblhyphenchar is hanging, like the hyphenchar of the ec
fonts.

745 \DeclareTextSymbol{\textdblhyphenchar}{TS1}{127}

780 = 128

746 \DeclareTextSymbol{\textasciibreve}{TS1}{128}
747 \DeclareTextSymbol{\textasciicaron}{TS1}{129}

This next glyph is not the same as \textquotedbl.

748 \DeclareTextSymbol{\textacutedbl}{TS1}{130}
749 \DeclareTextSymbol{\textgravedbl}{TS1}{131}
750 \DeclareTextSymbol{\textdagger}{TS1}{132}

751 \DeclareTextSymbol{\textdaggerdbl}{TS1}{133}
752 \DeclareTextSymbol{\textbardbl}{TS1}{134}

753 \DeclareTextSymbol{\textperthousand}{TS1}{135}

788 = 136

754 \DeclareTextSymbol{\textbullet}{TS1}{136}

755 \DeclareTextSymbol{\textcelsius}{TS1}{137}

756 \DeclareTextSymbol{\textdollaroldstyle}{TS1}{138}
757 \DeclareTextSymbol{\textcentoldstyle}{TS1}{139}
758 \DeclareTextSymbol{\textflorin}{TS1}{140}

759 \DeclareTextSymbol{\textcolonmonetary}t{TS1}{141}
760 \DeclareTextSymbol{\textwon}{TS1}{142}

761 \DeclareTextSymbol{\textnaira}{TS1}{143}

790 = 144

762 \DeclareTextSymbol{\textguarani}{TS1}{144}

763 \DeclareTextSymbol{\textpeso}{TS1}{145}

764 \DeclareTextSymbol{\textlira}{TS1}{1463}

765 \DeclareTextSymbol{\textrecipe}{TS1}{147}

766 \DeclareTextSymbol{\textinterrobang}{TS1}{148}

767 \DeclareTextSymbol{\textinterrobangdown}{TS1}{149}
768 \DeclareTextSymbol{\textdong}{TS1}{150}

769 \DeclareTextSymbol{\texttrademark}{TS1}{151}

798 = 152

770 \DeclareTextSymbol{\textpertenthousand}{TS1}{152}
771 \DeclareTextSymbol{\textpilcrow}{TS1}{153}

772 \DeclareTextSymbol{\textbaht}{TS1}{154}

773 \DeclareTextSymbol{\textnumero}{TS1}{155}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 91

This next name may change. For the following sign we know only a german name,
which is abziiglich. The meaning is something like “commercial minus”. An ASCII
ersatz is ./. (dot slash dot). The temporary English name is \textdiscount.

774 \DeclareTextSymbol{\textdiscount}{TS1}{156}
775 \DeclareTextSymbol{\textestimated}{TS1}{157}
776 \DeclareTextSymbol{\textopenbullet}{TS1}{158}
777 \DeclareTextSymbol{\textservicemark}{TS1}{159}

7A0 = 160

778 \DeclareTextSymbol{\textlquill}{TS1}{160%}
779 \DeclareTextSymbol{\textrquill}{TS1}{161}
780 \DeclareTextSymbol{\textcent}{TS1}{162}

781 \DeclareTextSymbol{\textsterling}{TS1}{163}
782 \DeclareTextSymbol{\textcurrency}{TS1}{164}
783 \DeclareTextSymbol{\textyen}{TS1}{165}

784 \DeclareTextSymbol{\textbrokenbar}{TS1}{166}
785 \DeclareTextSymbol{\textsection}{TS1}{167}

A8 = 168

786 \DeclareTextSymbol{\textasciidieresis}{TS1}{168}
787 \DeclareTextSymbol{\textcopyright}{TS1}{169}

788 \DeclareTextSymbol{\textordfeminine}{TS1}{170}
789 \DeclareTextSymbol{\textcopyleft}{TS1}{171}

790 \DeclareTextSymbol{\textlnot}{TS1}{172}

The meaning of the circled-P is “sound recording copyright”.

791 \DeclareTextSymbol{\textcircledP}{TS1}{173}
792 \DeclareTextSymbol{\textregistered}{TS1}{174}
793 \DeclareTextSymbol{\textasciimacron}{TS1}{175}

"B0 = 176

794 \DeclareTextSymbol{\textdegree}{TS1}{176}

795 \DeclareTextSymbol{\textpm}{TS1}{177}

796 \DeclareTextSymbol{\texttwosuperior}{TS1}{178}

797 \DeclareTextSymbol{\textthreesuperior}{TS1}{179}
798 \DeclareTextSymbol{\textasciiacute}{TS1}{180}

799 \DeclareTextSymbol{\textmu}{TS1}{181} % micro sign
800 \DeclareTextSymbol{\textparagraph}{TS1}{182}

801 \DeclareTextSymbol{\textperiodcentered}{TS1}{183}

"B8 = 184

802 \DeclareTextSymbol{\textreferencemark}{TS1}{184}
803 \DeclareTextSymbol{\textonesuperior}{TS1}{185}
804 \DeclareTextSymbol{\textordmasculine}{TS1}{1863}
805 \DeclareTextSymbol{\textsurd}{TS1}{187}

806 \DeclareTextSymbol{\textonequarter}{TS1}{188}
807 \DeclareTextSymbol{\textonehalf}{TS1}{189}

808 \DeclareTextSymbol{\textthreequarters}{TS1}{190}
809 \DeclareTextSymbol{\texteuro}{TS1}{191}

"E0 = 208

810 \DeclareTextSymbol{\texttimes}{TS1}{214}

"FO = 240

811 \DeclareTextSymbol{\textdiv}{TS1}{246}
812 (/TS1)

20 Package files

This file now also contains some packages that provide access to the more spe-
cialised encodings.

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 92

20.1 The fontenc package

This package allows authors to specify which encodings they will use. For each
encoding F0O, the package looks to see if the encoding FOO has already been de-
clared. If it has not, the file fooenc.def is loaded. The default encoding is set to
be F0OO.

In addition the package at the moment contains extra code to extend the
\@uclclist (list of upper/lower case pairs) for encodings that involve cyrillic
characters. THIS IS A TEMPORARY SOLUTION and will not stay this way
forever (or so we hope) but right now we are missing a proper interface for this
and didn’t wanted to rush it.

813 (xpackage)

Here we define a macro that extends the \Quclclist if needed and aferwards
turns itself in a noop.

814 \def\update@uclc@with@cyrillic{}

815 \expandafter\def\expandafter\Quclclist\expandafter

816 {\Quclclist

817 \cyra\CYRA\cyrabhch\CYRABHCH\cyrabhchdsc\CYRABHCHDSC\cyrabhdze
818 \CYRABHDZE\cyrabhha\CYRABHHA\cyrae\CYRAE\cyrb\CYRB\cyrbyus

819 \CYRBYUS\cyrc\CYRC\cyrch\CYRCH\cyrchldsc\CYRCHLDSC\cyrchrdsc
820 \CYRCHRDSC\cyrchvcrs\CYRCHVCRS\cyrd\CYRD\cyrdelta\CYRDELTA

821 \cyrdje\CYRDJE\cyrdze\CYRDZE\cyrdzhe\CYRDZHE\cyre\CYRE\cyreps
822 \CYREPS\cyrerev\CYREREV\cyrery\CYRERY\cyrf\CYRF\cyrfita

823 \CYRFITA\cyrg\CYRG\cyrgdsc\CYRGDSC\cyrgdschcrs\CYRGDSCHCRS

824 \cyrghcrs\CYRGHCRS\cyrghk\CYRGHK\cyrgup\CYRGUP\cyrh\CYRH

825 \cyrhdsc\CYRHDSC\cyrhhcrs\CYRHHCRS\cyrhhk\CYRHHK\cyrhrdsn

826 \CYRHRDSN\cyri\CYRI\cyrie\CYRIE\cyrii\CYRII\cyrishrt\CYRISHRT
827 \cyrishrtdsc\CYRISHRTDSC\cyrizh\CYRIZH\cyrje\CYRJE\cyrk\CYRK
828 \cyrkbeak\CYRKBEAK\cyrkdsc\CYRKDSC\cyrkhcrs\CYRKHCRS\cyrkhk
829 \CYRKHK\cyrkvcrs\CYRKVCRS\cyrl\CYRL\cyrldsc\CYRLDSC\cyrlhk

830 \CYRLHK\cyrlje\CYRLJE\cyrm\CYRM\cyrmdsc\CYRMDSC\cyrmhk\CYRMHK
831 \cyrn\CYRN\cyrndsc\CYRNDSC\cyrng\CYRNG\cyrnhk\CYRNHK\cyrnje
832 \CYRNJE\cyrnlhk\CYRNLHK\cyro\CYRO\cyrot1d\CYROTLD\cyrp\CYRP
833 \cyrphk\CYRPHK\cyrq\CYRQ\cyrr\CYRR\cyrrdsc\CYRRDSC\cyrrhk

834 \CYRRHK\cyrrtick\CYRRTICK\cyrs\CYRS\cyrsacrs\CYRSACRS

835 \cyrschwa\CYRSCHWA\cyrsdsc\CYRSDSC\cyrsemisftsn\CYRSEMISFTSN
836 \cyrsftsn\CYRSFTSN\cyrsh\CYRSH\cyrshch\CYRSHCH\cyrshha\CYRSHHA
837 \cyrt\CYRT\cyrtdsc\CYRTDSC\cyrtetse\CYRTETSE\cyrtshe\CYRTSHE
838 \cyru\CYRU\cyrushrt\CYRUSHRT\cyrv\CYRV\cyrw\CYRW\cyry\CYRY

839 \cyrya\CYRYA\cyryat\CYRYAT\cyryhcrs\CYRYHCRS\cyryi\CYRYI\cyryo
840 \CYRYO\cyryu\CYRYU\cyrz\CYRZ\cyrzdsc\CYRZDSC\cyrzh\CYRZH

841 \cyrzhdsc\CYRZHDSC}/,

842 \let\update@uclc@with@cyrillic\relax

843 }

Here we process each option:

844 \DeclareOption*{%

845 \let\encodingdefault\CurrentOption

846 \edef\reserved@f{%

847 \lowercase{\def\noexpand\reserved@f {\CurrentOption enc.def}}}/,
848 \reserved@f

849 \InputIfFileExists\reserved@f

850 {}{\PackageError{fontencl}y,

851 {Encoding file ‘\reserved@f’ not found.%

852 \MessageBreak

853 You might have misspelt the name of the encoding}y
854 {Necessary code for this encoding was not

855 loaded.\MessageBreak

856 Thus calling the encoding later on will

857 produce further error messages.l}}’

858 \let\reserved@f\relax

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 93

In case the current encoding is one of a list of known cyrillic ones we extend
the \@uclclist:
859 \expandafter\in®@\expandafter{\CurrentOption}’
860 {T2A,T2B,T2C,X2,LCY,0T2}%
861 \ifin@

But only if it hasn’t already been extended. This might happen if there are
several calls to fontenc loading one of the above encodings. If we don’t do this check
the \@uclclist gets unnecessarily big, slowing down the processing at runtime.

862 \expandafter\in@\expandafter\cyra\expandafter
863 {\@uclclist}}

864 \ifin@

865 \else

866 \update@uclc@with@cyrillic

867 \fi

868 \fi

869 ¥

870 \ProcessOptions*
871 \fontencoding\encodingdefault\selectfont

To save some space we get rid of the macro extending the \@uclclist (might
have happened already).

872 \let\updateQuclc@with@cyrillic\relax

Finally we pretend that the fontenc package wasn’t read in. This allows for
using it several times, e.g., in a class file and in the preamble (at the cost of not
getting any version info). That kind of hackery shows that using a general purpose
package just for loading an encoding is not the right kind of interface for setting
up encodings — it will get replaced at some point in the future.

873 \global\expandafter\let\csname ver@fontenc.sty\endcsname\relax
874 \global\expandafter\let\csname opt@fontenc.sty\endcsname\relax
875 \global\let\Q@if1@ter@@\Q@iflQter

876 \def\@iflQter#1#2#3#4#5{\global\let\Q@ifl@ter\Qifl@teroe}

877 (/package)

20.2 The textcomp package

This one is for the TS1 encoding which contains text symbols for use with the
T1-encoded text fonts. It therefore first inputs the file TS1enc.def and then sets
(or resets) the defaults for the symbols it contains. The result of this is that when
one of these symbols is accessed and the current encoding does not provide it, the
symbol will be supplied by a silent, local change to this encoding.

878 (*TSlsty)

Since many PostScript fonts only implement a subset of TS1 many commands
only produce black blobs of ink. To resolve the resulting problems a number of
options have been introduced and some code has been developed to distinguish
sub-encodings.

The sub-encodings have a numerical id and are defined as follows for TS1:

#5 those TS1 symbols that are also in the ISO-Adobe character set; without
textcurrency, which is often misused for the Euro. Older Typel fonts from
the non-TEX world provide only this subset.

#4 = #5 + \texteuro. Most newer fonts provide this.

3 = #4 4+ \textomega. Can also be described as TS1N(ISO-AdobeUMacRoman).
g
(Except for the missing ”currency”.)

#2 = #3 + \textestimated + \textcurrency. Can also be described as TS1N
Adobe-Western-2. This may be relevant for OpenType fonts, which usually
show the Adobe-Western-2 character set.

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 94

\DeclareEncodingSubset

#1 = TS1 without \textcircled and \t. These two glyphs are often not imple-
mented and if their kernel defaults are changed commands like \copyright
unnecessarily fail.

#0 = full TS1

And here a summary to go in the transcript file:

879 \PackageInfo{textcomp}{Sub-encoding information:\MessageBreak
880 \space\space 5 = only ISO-Adobe without \string\textcurrency\MessageBreak

881 \space\space 4 = 5 + \string\texteuro\MessageBreak

882 \space\space 3 = 4 + \string\textohm\MessageBreak

883 \space\space 2 = 3 + \noexpand\textestimated+ \string\textcurrency\MessageBreak
884 \space\space 1 = TS1 - \noexpand\textcircled- \string\t\MessageBreak

885 \space\space 0 = TS1 (full)\MessageBreak

886 Font families with sub-encoding setting implement\MessageBreak

887 only a restricted character set as indicated.\MessageBreak

888 Family ’?’ is the default used for unknown fonts.\MessageBreak

889 See the documentation for details\@gobble}

An encoding subset to which a font family belongs is declared by \DeclareEncodingSubset
that take the major encoding as the first argument (e.g., TS1), the family name
as the second argument (e.g., cmr), and the subset encoding id as a third, (e.g., 0
for cmr).

The default encoding subset to use when nothing is known about the current
font family is named 7.
890 \def\DeclareEncodingSubset#1#2#3{%
891 \@ifundefined{#1:#2}Y
892 {\PackageInfo{textcomp}{Setting #2 sub-encoding to #1/#3}}%
893 {\PackageInfo{textcomp}{Changing #2 sub-encoding to #1/#3}}/,
894 \@namedef{#1: #2}{#3}}
895 \@onlypreamble\DeclareEncodingSubset

The options for the package are the following:

safe for unknown font families enables only symbols that are also in the ISO-
Adobe character set; without ”currency”, which is often misused for the
Euro. Older Typel fonts from the non-TeX world provide only this subset.

euro enables the “safe” symbols plus the \texteuro command. Most newer fonts
provide this.

full enables all TS1 commands; useful only with fonts like EC or CM bright.

almostfull same as “full”, except that \textcircled and \t are not redefined
from their defaults to avoid that commands like \copyright suddenly no
longer work.

force ignore all subset encoding definitions stored in the package itself or in the
configuration file and always use the default subset as specifed by one of the
other options (seldom useful, only dangerous).

\iftc@forced Switch used to implement the force option

896 \newif\iftc@forced \tc@forcedfalse

This is implemented by defining the default subset:
897 \DeclareOption{full}{\DeclareEncodingSubset{TS1}{?}{0}}
898 \DeclareOption{almostfull}{\DeclareEncodingSubset{TS1}{7}{1}}
899 \DeclareOption{euro}{\DeclareEncodingSubset{TS1}{7}{4}}
900 \DeclareOption{safe}{\DeclareEncodingSubset{TS1}{?}{5}}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 95

The default is “almostfull” which means that old documents will work except that

\textcircled and \t will use the kernel defaults (with the advantage that this

also works if the current font (as often the case) doesn’t implement these glyphs.
The “force” option simply sets the switch to true.

901 \DeclareOption{force}{\tc@forcedtrue}

The suggestions to user is to use the “safe” option always unless that balks in
which case they could switch to “almostfull” but then better check their output
manually.

902 \def\tcQ@errorwarn{\PackageError}
903 \DeclareOption{warn}{\gdef\tc@errorwarn#1#2#3{\PackageWarning{#1}{#2}}}

904 \ExecuteOptions{almostfull}
905 \ProcessOptions\relax

\CheckEncodingSubset The command \CheckEncodingSubset will check if the current font family has
the right encoding subset to typeset a certain command. It takes five arguments
as follows: first argument is either \UseTextSymbol, \UseTextAccent depending
on whether or not the symbol is a text symbol or a text accent.

The second argument is the encoding from which this symbol should be fetched.

The third argument is either a fake accessor command or an error message.
the code in that argument (if ever executed) receives two arguments: #2 and #5
of \CheckEncodingSubset.

Argument four is the subset encoding id to test against: if this value is higher
than the subset id of the current font family then we typeset the symbol, i.e.,
execute #1{#2}#5 otherwise it runs #3#5, e.g., to produce an error message or
fake the glyph somehow.

Argument five is the symbol or accent command that is being checked.

For usage examples see definitions below.

906 \iftc@forced
If the “force” option was given we always use the default for testing against.
907 \def\CheckEncodingSubset#1#2#3#4#5{/,

908 \ifnum #4>%

909 O\csname #2:7\endcsname
910 \relax

911 \expandafter\@firstoftwo

912 \else

913 \expandafter\@secondoftwo
914 \fi

915 {#1{#2}}{#3}%

916 #5,

917 }

In normal circumstances the test is a bit more complicated: first check if there
exists a macro \(arg2): (current-family) and if so use that value to test against,
otherwise use the default to test against.

918 \else

919 \def\CheckEncodingSubset#1#2#3#4#5{/,

920 \ifnum #4>Y

921 \expandafter\ifx\csname #2:\f@family\endcsname\relax
922 O\csname #2:7\endcsname

923 \else

924 \csname #2:\f@family\endcsname

925 \fi

926 \relax
927 \expandafter\@firstoftwo

928 \else

929 \expandafter\@secondoftwo
930 \fi

931 {#1{#2}}{#3}}

932 #5Y

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 96

933 }

934 \fi
tc@subst
935 \def\tc@subst#1{%
936 \tc@errorwarn{textcomp}’ 7% should be latex error if general
937 {Symbol \string#1 not provided by\MessageBreak
938 font family \f@family\space
939 in TS1 encoding.\MessageBreak Default family used instead}\@eha
940 \bgroup\fontfamily\textcompsubstdefault\selectfont#1\egroup
941 }

\textcompsubstdefault

942 \def\textcompsubstdefault{cmr}

\tc@error \tc@error is going to be used in arg #3 of \CheckEncodingSubset when a symbol
is not available in a certain font family. It gets pass the encoding it normally lives
in (arg one) and the name of the symbol or accent that has a problem.

943 % error commands take argument:

944 % #1 symbol to be used

945 \def\tcQerror#1{J,

946 \PackageError{textcomp}’ % should be latex error if general

947 {Accent \string#l not provided by\MessageBreak
948 font family \f@family\space

949 in TS1 encoding}\@eha

950 }

\tc@fake@euro \tc@fake@euro is an example of a “fake” definition to use in arg #3 of
\CheckEncodingSubset when a symbol is not available in a certain font family.

“ 2

Here we produce an Euro symbol by combining a “C” with a “=".
951 \def\tc@fakeQeuro#1{/,

952 \leavevmode

953 \PackageInfo{textcomp}{Faking \noexpand#lifor font family

954 \f@family\MessageBreak in TS1 encodingl}’,

955 \valign{##\cr

956 \vfil\hbox to 0.07em{\dimen@\f@size\p@

957 \math@fontsfalse

958 \fontsize{.7\dimen@}\z@\selectfont=\hss}\vfil\cry
959 \hbox{C}\crcr

960 }%

961 }

\tc@check@symbol These are two abbreviations that we use below to check symbols and accents in
\tc@check@accent 1o1. Only there to save some space, e.g., we can then write

\DeclareTextCommandDefault{\textcurrency}{\tc@check@symbol3\textcurrency}

to ensure that \textcurrency is only typeset if the current font has a TS1 subset
id of less than 3. Otherwise \tc@error is called telling the user that for this font
family \textcurreny is not available.

962 \def\tc@check@symbol{\CheckEncodingSubset\UseTextSymbol{TS1}\tcOsubst}
963 \def\tc@check@accent{\CheckEncodingSubset\UseTextAccent{TS1}\tc@error}

We start with the commands that are “safe” and which can be unconditionally
set up, first the accents. ..

964 \DeclareTextAccentDefault{\capitalcedilla}{TS1}
965 \DeclareTextAccentDefault{\capitalogonek}{TS1}

966 \DeclareTextAccentDefault{\capitalgrave}{TS1}

967 \DeclareTextAccentDefault{\capitalacute}{TS1}

968 \DeclareTextAccentDefault{\capitalcircumflex}{TS1}
969 \DeclareTextAccentDefault{\capitaltilde}{TS1}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 97

970 \DeclareTextAccentDefault{\capitaldieresis}{TS1}

971 \DeclareTextAccentDefault{\capitalhungarumlaut}{TS1}
972 \DeclareTextAccentDefault{\capitalring}{TS1}

973 \DeclareTextAccentDefault{\capitalcaron}{TS1}

974 \DeclareTextAccentDefault{\capitalbreve}{TS1}

975 \DeclareTextAccentDefault{\capitalmacron}{TS1}

976 \DeclareTextAccentDefault{\capitaldotaccent}{TS1}

...and then the other glyphs.

977 \DeclareTextSymbolDefault{\textcapitalcompwordmark}{TS1}
978 \DeclareTextSymbolDefault{\textascendercompwordmark}{TS1}
979 \DeclareTextSymbolDefault{\textquotestraightbase}{TS1}
980 \DeclareTextSymbolDefault{\textquotestraightdblbase}{TS1}
981 \DeclareTextSymbolDefault{\texttwelveudash}{TS1}

982 \DeclareTextSymbolDefault{\textthreequartersemdash}{TS1}
983 \DeclareTextSymbolDefault{\textdollar}{TS1}

984 \DeclareTextSymbolDefault{\textquotesingle}{TS1}

985 \DeclareTextSymbolDefault{\textasteriskcentered}{TS1}
986 \DeclareTextSymbolDefault{\textfractionsolidus}{TS1}
987 \DeclareTextSymbolDefault{\textminus}{TS1}

988 \DeclareTextSymbolDefault{\textlbrackdbl}{TS1}

989 \DeclareTextSymbolDefault{\textrbrackdbl}{TS1}

990 \DeclareTextSymbolDefault{\textasciigrave}{TS1}

991 \DeclareTextSymbolDefault{\texttildelow}{TS1}

992 \DeclareTextSymbolDefault{\textasciibreve}{TS1}

993 \DeclareTextSymbolDefault{\textasciicaron}{TS1}

994 \DeclareTextSymbolDefault{\textgravedbl}{TS1}

995 \DeclareTextSymbolDefault{\textacutedbl}{TS1}

996 \DeclareTextSymbolDefault{\textdagger}{TS1}

997 \DeclareTextSymbolDefault{\textdaggerdbl}{TS1}

998 \DeclareTextSymbolDefault{\textbardbl}{TS1}

999 \DeclareTextSymbolDefault{\textperthousand}{TS1}

1000 \DeclareTextSymbolDefault{\textbullet}{TS1}

1001 \DeclareTextSymbolDefault{\textcelsius}{TS1}

1002 \DeclareTextSymbolDefault{\textflorin}{TS1}

1003 \DeclareTextSymbolDefault{\texttrademark}{TS1}

1004 \DeclareTextSymbolDefault{\textcent}{TS1}

1005 \DeclareTextSymbolDefault{\textsterling}{TS1}

1006 \DeclareTextSymbolDefault{\textyen}{TS1}

1007 \DeclareTextSymbolDefault{\textbrokenbar}{TS1}

1008 \DeclareTextSymbolDefault{\textsection}{TS1}

1009 \DeclareTextSymbolDefault{\textasciidieresis}{TS1}
1010 \DeclareTextSymbolDefault{\textcopyright}{TS1}

1011 \DeclareTextSymbolDefault{\textordfeminine}{TS1}

1012 \DeclareTextSymbolDefault{\textlnot}{TS1}

1013 \DeclareTextSymbolDefault{\textregistered}{TS1}

1014 \DeclareTextSymbolDefault{\textasciimacron}{TS1}

1015 \DeclareTextSymbolDefault{\textdegree}{TS1}

1016 \DeclareTextSymbolDefault{\textpm}{TS1}

1017 \DeclareTextSymbolDefault{\texttwosuperior}{TS1}

1018 \DeclareTextSymbolDefault{\textthreesuperior}{TS1}
1019 \DeclareTextSymbolDefault{\textasciiacute}{TS1}

1020 \DeclareTextSymbolDefault{\textmu}{TS1}

1021 \DeclareTextSymbolDefault{\textparagraph}{TS1}

1022 \DeclareTextSymbolDefault{\textperiodcentered}{TS1}
1023 \DeclareTextSymbolDefault{\textonesuperior}{TS1}

1024 \DeclareTextSymbolDefault{\textordmasculine}{TS1}
1025 \DeclareTextSymbolDefault{\textonequarter}{TS1}

1026 \DeclareTextSymbolDefault{\textonehalf}{TS1}

1027 \DeclareTextSymbolDefault{\textthreequarters}{TS1}
1028 \DeclareTextSymbolDefault{\texttimes}{TS1}

1029 \DeclareTextSymbolDefault{\textdiv}{TS1}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h

98

The \texteuro is only available for subsets with id 4 or less. Otherwise we
fake the glyph using \tc@fake@euro

1030 \DeclareTextCommandDefault{\texteuro}
1031 {\CheckEncodingSubset\UseTextSymbol{TS1}\tc@fake@euro5\texteuro}

The \textohm is only available for subsets with id 3 or less. Otherwise we
produce an error.

1032 \DeclareTextCommandDefault{\textohm}{\tc@check@symbol4\textohm}

The \textestimated and \textcurrency are only provided for fonts with subset
encoding with id 2 or less.

1033 \DeclareTextCommandDefault{\textestimated}{\tc@check@symbol3\textestimated}
1034 \DeclareTextCommandDefault{\textcurrency}{\tc@check@symbol3\textcurrency}

Nearly all of the remaining glyphs are provided only with fonts with id 1 or 0, i.e.,
are essentially complete.

1035 \DeclareTextCommandDefault{\capitaltie}{\tc@check@accent2\capitaltie}

1036 \DeclareTextCommandDefault{\newtie}{\tc@check@accent2\newtie}

1037 \DeclareTextCommandDefault{\capitalnewtie}{\tc@check@accent2\capitalnewtie}

1038 \DeclareTextCommandDefault{\textleftarrow}{\tc@check@symbol2\textleftarrow}

1039 \DeclareTextCommandDefault{\textrightarrow}{\tc@check@symbol2\textrightarrow}

1040 \DeclareTextCommandDefault{\textblank}{\tc@check@symbol2\textblank}

1041 \DeclareTextCommandDefault{\textdblhyphen}{\tc@check@symbol2\textdblhyphen}

1042 \DeclareTextCommandDefault{\textzerooldstyle}{\tc@check@symbol2\textzerooldstyle}
1043 \DeclareTextCommandDefault{\textoneoldstyle}{\tc@check@symbol2\textoneoldstyle}
1044 \DeclareTextCommandDefault{\texttwooldstyle}{\tc@check@symbol2\texttwooldstyle}
1045 \DeclareTextCommandDefault{\textthreeoldstyle}{\tc@check@symbol2\textthreeoldstyle}
1046 \DeclareTextCommandDefault{\textfouroldstyle}{\tc@check@symbol2\textfouroldstyle}
1047 \DeclareTextCommandDefault{\textfiveoldstyle}{\tc@check@symbol2\textfiveoldstyle}
1048 \DeclareTextCommandDefault{\textsixoldstyle}{\tc@check@symbol2\textsixoldstyle}
1049 \DeclareTextCommandDefault{\textsevenoldstyle}{\tc@check@symbol2\textsevenoldstyle}
1050 \DeclareTextCommandDefault{\texteightoldstyle}{\tc@check@symbol2\texteightoldstyle}
1051 \DeclareTextCommandDefault{\textnineoldstyle}{\tc@check@symbol2\textnineoldstyle}
1052 \DeclareTextCommandDefault{\textlangle}{\tc@check@symbol2\textlangle}

1053 \DeclareTextCommandDefault{\textrangle}{\tc@check@symbol2\textrangle}

1054 \DeclareTextCommandDefault{\textmho}{\tc@check@symbol2\textmho}

1055 \DeclareTextCommandDefault{\textbigcircle}{\tc@check@symbol2\textbigcircle}

1056 \DeclareTextCommandDefault{\textuparrow}{\tc@check@symbol2\textuparrow}

1057 \DeclareTextCommandDefault{\textdownarrow}{\tc@check@symbol2\textdownarrow}

1058 \DeclareTextCommandDefault{\textborn}{\tc@check@symbol2\textborn}

1059 \DeclareTextCommandDefault{\textdivorced}{\tc@check@symbol2\textdivorced}

1060 \DeclareTextCommandDefault{\textdied}{\tc@check@symbol2\textdied}

1061 \DeclareTextCommandDefault{\textleaf}{\tc@check@symbol2\textleaf}

1062 \DeclareTextCommandDefault{\textmarried}{\tc@check@symbol2\textmarried}

1063 \DeclareTextCommandDefault{\textmusicalnote}{\tc@check@symbol2\textmusicalnote}
1064 \DeclareTextCommandDefault{\textdblhyphenchar}{\tc@check@symbol2\textdblhyphenchar}
1065 \DeclareTextCommandDefault{\textdollaroldstyle}{\tc@check@symbol2\textdollaroldstyle}
1066 \DeclareTextCommandDefault{\textcentoldstyle}{\tc@check@symbol2\textcentoldstyle}
1067 \DeclareTextCommandDefault{\textcolonmonetary}{\tc@check@symbol2\textcolonmonetary}
1068 \DeclareTextCommandDefault{\textwon}{\tcO@check@symbol2\textwon}

1069 \DeclareTextCommandDefault{\textnaira}{\tc@check@symbol2\textnaira}

1070 \DeclareTextCommandDefault{\textguarani}{\tc@check@symbol2\textguarani}

1071 \DeclareTextCommandDefault{\textpeso}{\tc@check@symbol2\textpeso}

1072 \DeclareTextCommandDefault{\textlira}{\tc@check@symbol2\textlira}

1073 \DeclareTextCommandDefault{\textrecipe}{\tc@check@symbol2\textrecipe}

1074 \DeclareTextCommandDefault{\textinterrobang}{\tc@check@symbol2\textinterrobang}
1075 \DeclareTextCommandDefault{\textinterrobangdown}{\tc@check@symbol2\textinterrobangdown}
1076 \DeclareTextCommandDefault{\textdong}{\tc@check@symbol2\textdong}

1077 \DeclareTextCommandDefault{\textpertenthousand}{\tc@check@symbol2\textpertenthousand}
1078 \DeclareTextCommandDefault{\textpilcrow}{\tc@check@symbol2\textpilcrow}

1079 \DeclareTextCommandDefault{\textbaht}{\tc@check@symbol2\textbaht}

1080 \DeclareTextCommandDefault{\textnumero}{\tc@check@symbol2\textnumero}

1081 \DeclareTextCommandDefault{\textdiscount}{\tc@check@symbol2\textdiscount}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 99

1082 \DeclareTextCommandDefault{\textopenbullet}{\tc@check@symbol2\textopenbullet}

1083 \DeclareTextCommandDefault{\textservicemark}{\tc@check@symbol2\textservicemark}
1084 \DeclareTextCommandDefault{\textlquill}{\tc@check@symbol2\textlquill}

1085 \DeclareTextCommandDefault{\textrquill}{\tc@check@symbol2\textrquill}

1086 \DeclareTextCommandDefault{\textcopyleft}{\tcO@check@symbol2\textcopyleft}

1087 \DeclareTextCommandDefault{\textcircledP}{\tc@check@symbol2\textcircledP}

1088 \DeclareTextCommandDefault{\textreferencemark}{\tc@check@symbol2\textreferencemark}
1089 \DeclareTextCommandDefault{\textsurd}{\tc@check@symbol2\textsurd}

The \textcircled and \t are handled specially, unless the current font has a
subset id of 0 (i.e. full TS1) we pick the symbols up from the the math font encod-
ings, i.e., the third argument to \CheckEncodingSubset uses \UseTextAccent to
get them from there.
1090 \DeclareTextCommandDefault{\textcircled}
1091 {\CheckEncodingSubset\UseTextAccent{TS1}{\UseTextAccent{O0MS}}1\textcircled}
1092 \DeclareTextCommandDefault{\t}
1093 {\CheckEncodingSubset\UseTextAccent{TS1}{\UseTextAccent{OML}}1\t}

Finally input the encoding-specific definitions for TS1 thus making the top-
level definitions optimised for this encoding (and not for the default encoding, see
section 19.2).

1094 \input{tslenc.def}

Now having the new glyphs available we also want to make sure that they are
used. For most cases this will automatically happen but for some glyphs there are
inferior definitions already known to ITEX which will prevent the usage of the
TS1 versions (see section 19.1 above). So we better get rid of them:

1095 \UndeclareTextCommand{\textsterling}{0T1}
1096 \UndeclareTextCommand{\textdollar} {0T1}

Similar declarations should probably be made for other encodings like 0T4 if they
are in use.

1097 %\UndeclareTextCommand{\textsterling}{0T4}
1098 %\UndeclareTextCommand{\textdollar} {0T4}

From the T1 encoding there are two candidates for removal: %o and %00 since
these are both constructed from % followed by a tiny ‘o’ rather than being a single
glyph. The problem with this approach is that in PostScript fonts this small zero
is usually not available resulting in %us rather than %o while the real glyph (at least
for \textperthousand) is available in the PostScript version of TS1. So for the
moment we compromise by removing the T1 declaration for \textperthousand
but keeping the one for \textpertenthousand. This will have the effect that
with Computer Modern fonts everything will come out (although %o and %00 are
not taken from the same physical font) and with PostScript fonts %o will come
out correctly while %c0 will most likely look like Y= — which is probably an
improvement over just getting a single ‘a’ to indicate a completely missing glyph,
which would happen if we also ‘undeclared’ \textpertenthousand.

1099 \UndeclareTextCommand{\textperthousand}{T1}

1100 %\UndeclareTextCommand{\textpertenthousand}{T1}

20.2.1 Supporting oldstyle digits

1101 \DeclareRobustCommand\oldstylenums [1]{/%

1102 \begingroup

1103 \ifmmode

1104 \mathgroup\symletters #1%

1105 \else

1106 \CheckEncodingSubset\Quse@text@encoding{TS1}/,

1107 {\PackageWarning{textcompl}/

1108 {0ldstyle digits unavailable for
1109 family \f@family.\MessageBreak
1110 Lining digits used instead}l}/
1111 \twe{#1}%

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 100

1112 \fi
1113 \endgroup
1114 }

20.2.2 Subset encoding defaults

For many font families commonly used in the TEX world we provide the subset
encoding data here. Users can add additional font families in the file textcomp.cfg
if they own other fonts.

However, if the option “forced” was given then all subset encoding specifica-
tions are ignored, so there is no point in setting any of them up:

1115 \iftc@forced \else
Computer modern based fonts (e.g., CM, CM-Bright, Concrete):

1116 \DeclareEncodingSubset{TS1}{cmr} {0}
1117 \DeclareEncodingSubset{TS1}{cmss} {0}
1118 \DeclareEncodingSubset{TS1}{cmtt} {0}
1119 \DeclareEncodingSubset{TS1}{cmvtt} {0}
1120 \DeclareEncodingSubset{TS1}{cmbr} {0}
1121 \DeclareEncodingSubset{TS1}{cmt1} {0}

1122 \DeclareEncodingSubset{TS1}{ccr} {0}
PSNFSS fonts:
1123 \DeclareEncodingSubset{TS1}{ptm} {4}
1124 \DeclareEncodingSubset{TS1}{pcr} {4}
1125 \DeclareEncodingSubset{TS1}{phv} {4}
1126 \DeclareEncodingSubset{TS1}{ppl} {3}
1127 \DeclareEncodingSubset{TS1}{pag} {4}
1128 \DeclareEncodingSubset{TS1}{pbk} {4}
1129 \DeclareEncodingSubset{TS1}{pnc} {4}
1130 \DeclareEncodingSubset{TS1}{pzc} {4}
1131 \DeclareEncodingSubset{TS1}{bch} {4}
1132 \DeclareEncodingSubset{TS1}{put} {5}
Other CTAN fonts (probably not complete):
1133 \DeclareEncodingSubset{TS1}{uag} {5}
1134 \DeclareEncodingSubset{TS1}{ugq} {5}
1135 \DeclareEncodingSubset{TS1}{ul8} {4}
1136 \DeclareEncodingSubset{TS1}{ul9} {4} 7% (LuxiSans, one day)

1137 \DeclareEncodingSubset{TS1}{augie} {5}
1138 \DeclareEncodingSubset{TS1}{dayrom} {3}
1139 \DeclareEncodingSubset{TS1}{dayroms} {3}
1140 \DeclareEncodingSubset{TS1}{pxr} {0}
1141 \DeclareEncodingSubset{TS1}{pxss} {0}
1142 \DeclareEncodingSubset{TS1}{pxtt} {0}
1143 \DeclareEncodingSubset{TS1}{txr} {0}
1144 \DeclareEncodingSubset{TS1}{txss} {0}
1145 \DeclareEncodingSubset{TS1}{txtt} {0}

Fourier-GUTenberg:

1146 \DeclareEncodingSubset{TS1}{futs} {4}
1147 \DeclareEncodingSubset{TS1}{futx} {4}
1148 \DeclareEncodingSubset{TS1}{futj} {4}

Y&Y’s Lucida Bright

1149 \DeclareEncodingSubset{TS1}{hlh} {3}

1150 \DeclareEncodingSubset{TS1}{hls} {3}

1151 \DeclareEncodingSubset{TS1}{hlst} {3}
The remaining settings for Lucida are conservative: the following fonts contain the
\textohm character but not the \texteuro, i.e., belong to neither subset 4 nor
subset 3. If you want to use the \textohm with these fonts copy these definition
to textcomp.cfg and change the subset to 3. However in that case make sure
that you do not use the \texteuro.

1152 \DeclareEncodingSubset{TS1}{hlct} {5}

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h 101

1153 \DeclareEncodingSubset{TS1}{hlx}

1154 \DeclareEncodingSubset{TS1}{hlce}
1155 \DeclareEncodingSubset{TS1}{hlcn}
1156 \DeclareEncodingSubset{TS1}{hlcw}
1157 \DeclareEncodingSubset{TS1}{hlcf}

Other commercial families. ..

1158 \DeclareEncodingSubset{TS1}{pplx}
1159 \DeclareEncodingSubset{TS1}{pplj}
1160 \DeclareEncodingSubset{TS1}{ptmx}
1161 \DeclareEncodingSubset{TS1}{ptmj}

{5}
{5}
{5}
{5}
{5}

{3}
{3}
{4}
{4}

If the file textcomp.cfg exists it will be loaded at this point. This allows to

define further subset encodings for font families not covered by default.

1162 \InputIfFileExists{textcomp.cfg}

1163 {\PackageInfo{textcomp}{Local configuration file used}}{}

1164 \fi
1165 (/TS1sty)

File I: 1toutenc.dtx Date: 2005/11/08 Version v1.99h

102

\newcounter
\setcounter
\addtocounter
\stepcounter
\refstepcounter

\value

\arabic
\roman
\Roman

\alph
\Alph
\fnsymbol

File m

Itcounts.dtx

21 Counters and Lengths

Commands for defining and using counters. This file defines:

To define a new counter.

To set the value of counters.

Increase the counter #1 by the number #2.

Increase a counter by one.

Increase a counter by one, also setting the value used by \label.

For accessing the value of the counter as a TEX number (as opposed to
\the(counter) which expands to the printed representation of (countery))

\arabic{(counter)}: 1, 2, 3, ...

\roman{(counter)}: i, ii, iii, ...

\Roman{(counter)}: T, IT, 111, . ..

\alph{{counter)}: a, b, c, ...

\Alph{{counter)}: A, B, C, ...

\fnsymbol{{countery}: *, 1, I, ...

1 (x2ekernel)

21.1 Environment Counter Macros

An environment foo has an associated counter defined by the following control
sequences:
\c@foo Contains the counter’s numerical value. It is defined by
\newcount\foocounter.
\thefoo Macro that expands to the printed value of \foocounter.
For example, if sections are numbered within chapters, and
section headings look like
Section II-3. The Nature of Counters
then \thesection might be defined by:
\def\thesection
{\@Roman{\c@chapter}-\@arabic{\c@section}}
\p@foo Macro that expands to a printed ‘reference prefix’ of counter
foo. Any \ref to a value created by counter foo will produce
the expansion of \p@foo\thefoo when the \label command
is executed. See file 1txref .dtx for an extension of this mech-
anism.
\cl@foo List of counters to be reset when foo stepped. Has format
\@elt{countera}\@elt{counterb}\@elt{counterc}.
NOTE:
\thefoo and \p@foo must be defined in such a way that \edef\bar{\thefoo} or
\edef\bar{\p@foo} defines \bar so that it will evaluate to the counter value at
the time of the \edef, even after \foocounter and any other counters have been
changed. This will happen if you use the standard commands \@arabic, \@Roman,
etc.
The following commands are used to define and modify counters.
\refstepcounter{{foo)}
Same as \stepcounter, but it also defines \@currentreference so that a subse-
quent \label{(bar)} command causes \ref{(bar)} to generate the current value
of counter (foo).
\@definecounter{(foo)}
Initializes counter {(foo)} (with empty reset list), defines \p@foo and \thefoo to
be null. Also adds (foo) to \cl@@ckpt — the reset list of a dummy counter @ckpt
used for taking checkpoints for the \include system.

File m: 1tcounts.dtx Date: 1998/05/16 Version v1.1g 103

\setcounter

\addtocounter

\newcounter

\value

\@newctr

\stepcounter

\@stpelt

\cl@@ckpt

\@definecounter

\@addtoreset

\@addtoreset{{foo)}{(bar)} : Adds counter (foo) to the list of counters
\cl@bar to be reset when counter (bar) is stepped.

\setcounter{(foo)}{(val)} : Globally sets \foocounter equal to (val).

2 \def\setcounter#1#2{%

3 \@ifundefined{c@#1}%,

4 {\@nocounterr{#1}}Y

5 {\global\csname c@#1\endcsname#2\relax}}

\addtocounter{(foo)}{(val)} Globally increments \foocounter by (val).

6 \def\addtocounter#1#2{/,

7 \@ifundefined{c@#1}},

8 {\@nocounterr{#1}}/

9 {\global\advance\csname c@#1\endcsname #2\relax}}

\newcounter{(newctr)} [{oldctr)] Defines (newctr) to be a counter, which is
reset when counter (oldctr) is stepped. If (newctr) already defined produces
‘c@newctr already defined’ error.

10 \def\newcounter#1{%

11 \expandafter\@ifdefinable \csname cO@#1\endcsname

12 {\@definecounter{#1}}/,

13 \@ifnextchar [{\@newctr{#1}}{}}

\value{(ctr)} produces the value of counter (ctr), for use with a \setcounter or
\addtocounter command.

14 \def\value#1{\csname c@#1\endcsname}

15 \def\@newctr#1 [#2]{)
16 \@ifundefined{c@#2}{\@nocounterr{#2}}{\@addtoreset{#1}{#2}}}

\stepcounterfoo Globally increments counter \c@FO0 and resets all subsidiary
counters.

17 \def\stepcounter#1{J,

18 \addtocounter{#1}\@ne

19 \begingroup

20 \let\@elt\@stpelt

21 \csname cl@#1\endcsname

22 \endgroup}

23 \def\@stpelt#1{\global\csname c@#1\endcsname \z@}

24 \def\cl@eckpt{\@elt{page}}

25 \def\@definecounter#1{\expandafter\newcount\csname c@#1\endcsname
26 \setcounter{#1}\z@

27 \global\expandafter\let\csname cl@#1\endcsname\@empty
28 \@addtoreset{#1}{@ckptl}/

29 \global\expandafter\let\csname p@#1\endcsname\@empty
30 \expandafter

31 \gdef\csname the#l\expandafter\endcsname\expandafter
32 {\expandafter\@arabic\csname c@#1\endcsnamel}}

33 \def\Qaddtoreset#1#2{\expandafter\Q@cons\csname cl@#2\endcsname {{#1}}}

File m: 1tcounts.dtx Date: 1998/05/16 Version v1.1g 104

\arabic

\roman

\Roman

\alph

\Alph

\fnsymbol

\@arabic

\@roman

\@Roman

\@slowromancap

\@alph

\@Alph

\@fnsymbol

Numbering commands for definitions of \theCOUNTER and \list arguments.
All commands can now be used in text and math mode.

Representation of{counter) as arabic numerals. Changed 29 Apr 86 to make it
print the obvious thing it COUNTER not positive.

34 \def\arabic#1{\expandafter\Q@arabic\csname c@#1\endcsname}

Representation of (counter) as lower-case Roman numerals.

35 \def\roman#1{\expandafter\@roman\csname c@#1\endcsname}

Representation of (counter) as upper-case Roman numerals.

36 \def\Roman#1{\expandafter\@Roman\csname c@#1\endcsname}

Representation of (counter) as a lower-case letter: 1 = a, 2 = b, etc.
37 \def\alph#1{\expandafter\Q@alph\csname c@#1\endcsname}

Representation of (counter) as an upper-case letter: 1 = A, 2 = B, etc.
38 \def\Alph#1{\expandafter\@Alph\csname c@#1\endcsname}

Representation of (COUNTER) as a footnote symbol: 1 = %, 2 = 1, etc.
39 \def\fnsymbol#1{\expandafter\@fnsymbol\csname c@#1\endcsname}

\@arabic\FOOcounter Representation of \FOOcounter as arabic numerals.

40 \def\Qarabic#1{\number #1} %’ changed 29 Apr 86

\@roman\FOOcounter Representation of \FOOcounter as lower-case Roman nu-
merals.

41 \def\@roman#i{\romannumeral #1}

\@Roman\FOOcounter Representation of \FOOcounter as upper-case Roman nu-
merals.

42 \def\@Roman#1{\expandafter\@slowromancap\romannumeral #1@}

Fully expandable macro to change a roman number to uppercase.
43 \def\@slowromancap#1{\ifx @#1J, then terminate

44 \else

45 \if i#1I\else\if v#1V\else\if x#1X\else\if 1#1L\else\if

46 c#1C\else\if d#1D\else \if m#i1M\else#1\fi\fi\fi\fi\fi\fi\fi
47 \expandafter\@slowromancap

48 \fi

49 }

\@alph\FOOcounter Representation of \FOOcounter as a lower-case letter: 1 =
a, 2 = b, etc.

50 \def\@alph#1{%

51 \ifcase#1\or a\or b\or c\or d\or e\or flor g\or h\or ilor j\or

52 k\or 1\or m\or n\or o\or p\or g\or r\or s\or t\or ulor v\or w\or x\or
53 y\or z\else\@ctrerr\fi}

\@Alph\FOOcounter Representation of \FOOcounter as an upper-case letter: 1 =
A, 2 = B, etc.

54 \def\@Alph#1{Y,

55 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or

56 K\or L\or M\or N\or O0\or P\or Q\or R\or S\or T\or U\or Vlor W\or X\or
57 Y\or Z\else\@ctrerr\fi}

Typesetting old fashioned footnote symbols. This can be done both in text or

math mode now.

58 \def\@fnsymbol#1{\ensuremath{\ifcase#1\or *\or \dagger\or \ddagger\or
59 \mathsection\or \mathparagraph\or \|\or **\or \dagger\dagger
60 \or \ddagger\ddagger \else\@ctrerr\fil}}

61 (/2ekernel)

File m: 1tcounts.dtx Date: 1998/05/16 Version v1.1g 105

File n
Itlength.dtx

22 Lengths
\newlength Declare #1 to be a new length command.
\setlength Set the length command, #1, to the value #2.
\addtolength Increase the value of the length command, #1, by the value #2.
\settowidth Set the length, #1 to the width of a box containing #2.
\settoheight Set the length, #1 to the height of a box containing #2.
\settodepth Set the length, #1 to the depth of a box containing #2.
1 (x2ekernel)
2 \message{lengths,}
\newlength
3 \def\newlength#1{\@ifdefinable#1{\newskip#1}}
\setlength

4 \def\setlength#1#2{#1#2\relax}

\addtolength \relax added 24 Mar 86
5 \def\addtolength#1#2{\advance#1 #2\relax}

\settoheight The obvious analogs of \settowidth.
\settodepth ¢ \def\@settodim#1#2#3{\setbox\@tempboxa\hbox{{#3}}#2#1\@tempboxa
\settowidth

Clear the memory afterwards (which might be a lot).
\@settodim

7 \setbox\@tempboxa\box\voidb@x}
8 \def\settoheight{\@settodim\ht}
9 \def\settodepth {\@settodim\dp}
10 \def\settowidth {\@settodim\wd}

\@settopoint This macro takes the contents of the skip register that is supplied as its argument
and removes the fractional part to make it a whole number of points. This can be
used in class files to avoid values like 345.4666666pt when calulating a dimension.

11 \def\@settopoint#1{\divide#1\p@\multiply#1\p@}
12 (/2ekernel)

File n: 1tlength.dtx Date: 1995/08/11 Version v1.1b 106

\@nomath

\no@alphabet@error

File o
Itfssbas.dtx

This file contains the main implementation of the ‘low level’ font selection com-
mands. See other parts of the ITEX distribution, or The EATEX Companion for
higher level documentation of the ITEX ‘New’ Font Selection Scheme.

Warning: The macro documentation is still basically the documenta-
tion from the first NFSS release and therefore in some cases probably
not completely accurate.

23 Autoloading parts of NFSS

This code is set up in a way that some parts of it can be kept separate and will
only be loaded if needed.

If we are producing an autoload version of I'TEX 2¢ then all those parts with
defl or def2 docstrip guards will be placed into the autoloadable files autofssl.sty
and autofss2.sty.

The ‘2ekernel’ code ensures that a \usepackage{autofssi} is essentially ig-
nored if a ‘full’ format is being used that has picture mode already in the format.

Note the autofss2 loading is currently disabled.

1 (2ekernel)\expandafter\let\csname ver@autofssl.sty\endcsname\fmtversion

The autoload file autofss2 is a specialty because it contains code which will
be completely local, ie loaded every time again.

24 Preliminary macros
We define a number of macros that will be used later.

\@nomath is used by most macros that will have no effect in math mode. It issues
a warning message.

2 (x2ekernel | autoload)

3 \def\@nomath#1{\relax\ifmmode

4 \@font@warning{Command \noexpand#linvalid in math mode}\fi}

5 (/2ekernel | autoload)

The macro \no@alphabet@error is called whenever the user requests a math
alphabet that is not available in the current wversion. In math mode an error
message is produced otherwise the command keeps silent. The argument is the
name of the control sequence that identifies the math alphabet. The \relax at the
beginning is necessary to prevent TEX from scanning too far in certain situations.

6 (x2ekernel | defl)
7 \gdef\no@alphabet@error#i{\relax \ifmmode

8 \@latex@error{Math\space alphabet\space identifier\space

9 \noexpand#1lis\space undefined\space in\space math\space

10 version\space ‘\math@version’},

11 {Your\space requested\space math\space alphabet\space

12 is\space undefined\space in\space the\space current\space

13 math\space version.”~JCheck\space the\space spelling\space
14 or\space use\space the\space \noexpand\SetMathAlphabet\space
15 command. }

16 \fi}

17 (/2ekernel | defl)
18 (*autoload)
19 \gdef\no@alphabet@error{\relax \ifmmode

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 107

20 \expandafter\try@sizes\expandafter\no@alphabet@error \fi}
21 (/autoload)

\new@mathgroup We also give a new name to \newfam and \fam to avoid verbal confusion (see the
\mathgroup introduction).”

22 (x2ekernel | autoload)

23 \def\new@mathgroup{\alloc@8\mathgroup\chardef\sixt@0n}
24 \let\mathgroup\fam

25 \let\newfam\new@mathgroup

26 \@onlypreamble\new@mathgroup

25 DMacros for setting up the tables

\DeclareFontShape The macro \DeclareFontShape takes 6 arguments:
27 \def\DeclareFontShape{\begingroup
First we restore the catcodes of all characters used in the syntax.
28 \nfss@catcodes

We use \expandafter \endgroup to restore catcode in case something goes wrong
with the argument parsing (suggested by Tim Van Zandt)

\DeclareFontShape

29 \expandafter\endgroup
30 \DeclareFontShape@}
31 \def\DeclareFontShape@#1#2#3#4#5#6{/,

32 \expandafter\ifx\csname #1+#2\endcsname\relax

33 \@latex@error{Font family ‘#1+#2’ unknown}\@eha

34 \else

35 \expandafter

36 \xdef\csname#1/#2/#3/#4\endcsname{\expandafter\noexpand
37 \csname #5\endcsnamel,
38 \def\reserved@a{#6}%

39 \global

40 \expandafter\let\csname#5\expandafter\endcsname

41 \ifx\reserved@a\Qempty

42 \@empty

43 \else

44 \reserved@a

45 \fi

46 \fi

47}

\DeclareFixedFont Define a direct font switch that avoids all overhead.

48 \def\DeclareFixedFont#1#2#3#4#5#6{
49 \begingroup

50 \math@fontsfalse

51 \every@math@size{}V,

52 \fontsize{#6}\z@

53 \usefont{#2}{#3}{#4}{#5}%

54 \global\expandafter\let\expandafter#i\the\font
55 \endgroup

56}

57 (/2ekernel | autoload)

\do@subst@correction

58 (*2ekernel | autoload)
59 \def\do@subst@correction{
60 \xdef\subst@correction{’

2For the same reason it seems advisable to \let\fam and \newfam equal to \relax, but this
is commented out to retain compatibility to existing style files.

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 108

\DeclareFontFamily

\cdp@list

\cdp@elt

\DeclareFontEncoding

61 \font@name

62 \global\expandafter\font

63 \csname \curr@fontshape/\f@size\endcsname
64 \noexpand\fontname\font

65 \relax}},

Calling \subst@correction after the current group means calling it after we have
loaded the substitution font which is done inside a group.

66 \aftergroup\subst@correction
67 ¥

68 \def\DeclareFontFamily#1#2#3{/

If we want fast checking for the encoding scheme we can just check for \T@. . being
defined.

69 % \Qtempswafalse

70 % \def\reserved@b{#1},

71 % \def\cdpQelt##1##2##3##4{\def\reservedQc{##11}}

72 % \ifx\reserved@b\reserved@c \@tempswatrue\fil}j,
73 % \cdp@list

74 % \if@tempswa

75 \@ifundefined{TO#1}%

76 v
7 \@latex@error{Encoding scheme ‘#1’ unknown}\@eha
78 Y
79 v

Now we have to define the macro \(#1)+(#2) to contain #3. But since most of
the time #3 will be empty we use \let in a tricky way rather than a simple \def
since this will save internal memory. We store the argument #3 in a temporary
macro \reserved@a.

80 \def\reserved@a{#3}/

We compare \reserved®@a with \@empty If these two are the same we \1let the ‘ex-
tra’ macro equal to \@empty which is not the same a doing a \1let to \reserved@a
— the latter would blow one extra memory location rather then reusing the one
from \@empty.

81 \global

82 \expandafter\let\csname #1+#2\expandafter\endcsname
83 \ifx \reserved@a\Q@empty

84 \Q@empty

85 \else \reserved@a

86 \fi

87 Y

88 }

We initialize the code page list to be empty.

89 \let\cdp@list\Qempty
90 \@onlypreamble\cdp@list

91 \let\cdp@elt\relax
92 \@onlypreamble\cdp@elt

93 \def\DeclareFontEncoding{’

First we start with ignoring all blanks and newlines since every surplus space in
the second or third argument will come out in a weird place in the document.

94 \begingroup

95 \nfss@catcodes

96 \expandafter\endgroup

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 109

\LastDeclaredEncoding

\DeclareFontSubstitution

97 \DeclareFontEncoding@}
98 \@Qonlypreamble\DeclareFontEncoding

99 \def\DeclareFontEncoding@#1#2#3{Y
100 \expandafter
101 \ifx\csname T@#1\endcsname\relax

102 \def\cdp@elt{\noexpand\cdpelt},

103 \xdef\cdp@list{\cdp@list\cdp@elt{#1}/,

104 {\default@family}{\default@series},
105 {\default@shape}}/

To support encoding dependent commands (like accents) we initialise the com-
mand \(encoding)-cmd to be \@changed@cmd. (See ltoutenc.dtx for details.)

106 \expandafter\let\csname#1-cmd\endcsname\@changed@cmd
107 \else

108 \@font@info{Redeclaring font encoding #11}/

109 \fi

110 \global\@namedef{TO#1}{#2}%
111 \global\@namedef{M@#1}{\default@M#31}7,
Keep a record of the last encoding being declared:

112 \xdef\LastDeclaredEncoding{#1}
113}
114 \@onlypreamble\DeclareFontEncoding@

The last encoding being declared by \DeclareFontEncoding.
115 \def\LastDeclaredEncoding{}

116 \def\DeclareFontSubstitution#1#2#3#4{J
117 \expandafter
118 \ifx\csname T@#1\endcsname\relax

119 \@latex@error{Encoding scheme ‘#1’ unknown}\@eha
120 \else
121 \begingroup

We loop through the \cdp@list and rebuild it anew in \toks@ thereby replacing
the defaults for the encoding in question with the new defaults. It is important
to store the encoding to test against expanded in \reserved@a since it might just
be \LastDeclaredEncoding that is passed as #1.

122 \edef\reserved@a{#1}J

123 \toks@{}/

124 \def\cdp@elt##1##2##3##4{),
125 \def\reserved@b{##1}J,

126 \ifx\reserved@a\reserved@b

Here we use the new defaults but we use ##1 (i.e., the encoding name already
stored previously) since we know that it is expanded.

127 \addto@hook\toks@{\cdp@elt{##1}{#2}{#3}{#4}}7

128 \else

If \reserved®@a and \reserved@b differ then we simply copy from the old list to
the new.

129 \addto@hook\toks@{\cdp@elt{##1}{##2} {##3}{##4}}
130 \fi}%

131 \cdp@list

132 \xdef\cdp@list{\the\toks@}/,

133 \endgroup

134 \global

135 \@namedef{De#1}{%

136 \def\default@family{#2}%

137 \def\default@series{#3}/,

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 110

\DeclareFontEncodingDefaults

\default@T
\default@M

\DeclarePreloadSizes

138 \def\default@shape{#4}/

139 Yh

140 \fi

141 %

142 \@onlypreamble\DeclareFontSubstitution

143 \def\DeclareFontEncodingDefaults#1#2{%
144 \ifx\relax#1\else

145 \ifx\default@T\@empty\else

146 \@font@info{Overwriting encoding scheme text defaults}/
147 \fi

148 \gdef\default@T{#1}%

149 \fi

150 \ifx\relax#2\else

151 \ifx\default@M\@empty\else

152 \@font@info{Overwriting encoding scheme math defaults}/,
153 \fi

154 \gdef\default@M{#2}}

155 \fi

156 }

157 \@onlypreamble\DeclareFontEncodingDefaults

158 \let\default@T\Qempty
159 \let\default@M\Qempty

160 \def\DeclarePreloadSizes#1#2#3#4#5{Y,

161 \@ifundefined{TO#1}}

162 {\@latex@error{Encoding scheme ‘#1’ unknownl}\@ehal/,

163 {%

Don’t know at the moment what this group here does!

164 \begingroup

We define a macro \reserved@f? that grabs the next size and loads the corre-
sponding font. This is done by delimiting \reserved@f’s only argument by the
token , (comma).

165 \def\reserved@f##1,{J

The end of the list will be detected when there are no more elements, i.e. when
\reserved@f’s argument is empty. The trick used here is explained in Appendix D
of the TEXbook: if the argument is empty the \if will select the first clause and
\let \reserved@f equal to \relax. (We use the > character here since it cannot
appear in font file names.)

166 \if>##1>%
167 \let\reserved@f\relax
168 \else

Otherwise, we define \font@name appropriately and call \pickup@font to do the
work. Note that the requested \curr@fontshape combination must have been
defined, or you will get an error. The definition of \font@name is carried out
globally to be consistent with the rest of the code in this file.

169 \xdef\font@name{\csname#1/#2/#3/#4/##1\endcsnamel},
170 \pickup@font

Now we forget the name of the font just loaded. More precisely, we set the cor-
responding control sequence to \relax. This means that later on, when the font
is first used, the macro \define@newfont is called again to execute the ‘extra’
macro for this font.

3We cannot use \@tempa since it is needed in \pickup@font.

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 111

\ifmath@fonts

\DeclareMathSizes

\DeclareMathSizes*

\@eclareMathSizes

\fontencoding

\f@encoding

171 \global\expandafter\let\font@name\relax
172 \fi

Finally we call \reserved@f again to process the next size. If \reserved@f was
\let equal to \relax this will end the macro.
173 \reserved@f}y,

We finish with reinserting the list of sizes after the \reserved@f macro and ap-
pending an empty element so that the end of the list is recognized properly.

174 \reserved@f#5, ,%
175 \endgroup

176 o

177 }

178 \@onlypreamble\DeclarePreloadSizes

We need a switch to decide if we have to switch math fonts. For this purpose
we provide \ifmath@fonts that can be set to true or false by the \S@. .. macros
depending on if math fonts are provided for this size or not. The default is of
course to switch all fonts.

179 \newif\ifmath@fonts \math@fontstrue

\DeclareMathSizes takes the text size, math text size, math script size, and math
scriptscript size as arguments and defines the right \S@... macro.

180 \def\DeclareMathSizes{%

181 \@ifstar{\@eclareMathSizes\math@fontsfalsel}’

182 {\@eclareMathSizes{}}}

183 \@onlypreamble\DeclareMathSizes

184 \def\@DeclareMathSizes#1#2#3#4#5{/,

185 \@defaultunits\dimen@#2pt\relax\@nnil

186 \if$#38%

187 \expandafter \let

188 \csname SQ@\strip@pt\dimen@\endcsname

189 \math@fontsfalse

190 \else

191 \expandafter \gdef

192 \csname S@\strip@pt\dimen@\endcsname

193 {\gdef\tf0size{#3}\gdef\sfOsize{#41}}

194 \gdef\ssf@size{#51}/

195 #1%

196 Yh

197 \fi}

198 \@onlypreamble\@eclareMathSizes

26 Selecting a new font

26.1 Macros for the user

As we said in the introduction a font is described by four parameters. We first
define macros to specify the wanted family, series, or shape. These are simply
recorded in internal macros \f@family, \f@series, and \f@shape, resp. We use
\edef’s so that the arguments can also be macros.

199 \DeclareRobustCommand\fontencoding[1]{%

200 \expandafter\ifx\csname T@#1\endcsname\relax

201 \@latex@error{Encoding scheme ‘#1’ unknown}\@eha

202 \else

203 \edef\f@encoding{#11}

204 \ifx\cf@encoding\f@encoding

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 112

\@@enc@update

\enc@update

\fontfamily
\fe@family
\fontseries
\f@series
\fontshape
\f@shape

\linespread

If the new encoding is the same as the old encoding we have nothing to do. How-
ever, in case we had a sequence of several encoding changes without a \selectfont
inbetween we can save processing by making sure that \enc@update is \relax.

205 \let\enc@update\relax
206 \else

If current and new encoding differ we define the macro \enc@update to contain
all updates necessary at \selectfont time.

207 \let\enc@update\@@enc@update
208 \fi

209 \fi

210 }

211 \def\@@enc@update{%

When \@@enc@update is executed \f@encoding holds the encoding name for the
new encoding and \cf@encoding the name of the last active encoding.

We start by setting the init command for encoding dependent macros to
\@changed@cmd.

212 \expandafter

213 \let

214 \csname\cf@encoding -cmd\endcsname
215 \@changed@cmd

Then we turn the one for the new encoding to \@current@cmd (see 1toutenc.dtx
for further explanations).

216 \expandafter

217 \let

218 \csname\f@encoding-cmd\endcsname
219 \@current@cmd

We execute the default settings \default@T, followed by the one for the new
encoding.

220 \default@T

221 \csname T@\f@encoding\endcsname

Finally we change the default substitution values, disable \enc@update and make
\f@encoding officially the current encoding.

222 \csname D@\f@encoding\endcsname

223 \let\enc@update\relax

224 \let\cf@encoding\f@encoding

225 }

The default action in \selectfont is to do nothing.

226 \let\enc@update\relax

227 \DeclareRobustCommand\fontfamily[1]{\edef\f@family{#1}}

228 \DeclareRobustCommand\fontseries[1]{\edef\f@series{#1}}

229 \DeclareRobustCommand\fontshape [1]{\edef\f@shape{#1}}

Some handy abbreviation if you want to get some particular font in the current
size. If also the size should change one has to issue a \fontsize comand first.
230 \def\usefont#1#2#3#4{\fontencoding{#1}\fontfamily{#2}/

231 \fontseries{#3}\fontshape{#4}\selectfont

232 \ignorespaces}

The comand \linespread changes the current \baselinestretch by calling
\set@fontsize. The values for \f@size and \f@baselineskip will be left un-
changed.

233 \DeclareRobustCommand\linespread[1]

234 {\set@fontsize{#1}\f@size\f@baselineskip}

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 113

\fontsize

\f@linespread

\cf@encoding

\@defaultunits

\strip@pt
\rem@pt

\mathversion

\math@version

We also define a macro that allows to specify a size. In this case, however, we also
need the value of \baselineskip. As the first argument to \set@fontsize we
pass the current value of \baselinestretch. This will either match the internal
value (in which case nothing changes, or it will be an updated value due to a
user change of that macro using \renewcommand. If we would pass the internal
\f@linespread such a change would be efectively overwritten by a size change.
235 \DeclareRobustCommand\fontsize [2]

236 {\set@fontsize\baselinestretch{#1}{#2}}

This macro holds the current internal value for \baselinestretch.

237 \let\f@family\Q@empty

238 \let\f@series\Qempty

239 \let\f@shape\Q@empty

240 \let\f@size\Qempty

241 \let\f@baselineskip\Q@empty
242 \let\f@linespread\Q@empty

243 \let\f@encoding\Q@empty
244 \let\cf@encoding\@empty

The function \@defaultunits when wrapped around a dimen or skip assignment
supplies default units. Usage:

\@defaultunits\dimen@=#1pt\relax\@nnil

Note: the \relax is *important®. Other units can be substituted for the ‘pt’
if desired.

We use \remove@to®@nnil as an auxiliary macros for \@defaultunits. It just
has to gobble the supplied default unit ‘pt’ or whatever, if it wasn’t used in the
assignment.

245 \def\@defaultunits{\afterassignment\remove@to@nnil}

This macro strips the characters pt produced by using \the on a dimen register.
246 \begingroup

247 \catcode ‘P=12

248 \catcode ‘T=12

249 \lowercase{

250 \def\x{\def\rem@pt##1.##2PT{##1\ifnum##2>\z0Q. ##2\fi}}}

251 \expandafter\endgroup\x

252 \def\strip@pt{\expandafter\rem@pt\the}

\mathversion takes the math version name as argument, defines \math@version
appropriately and switches to the font selected forcing a call to \glb@settings if
the version is known to the system.

253 \DeclareRobustCommand\mathversion[1]

254 {\@nomath\mathversion

255 \expandafter\ifx\csname mv@#1\endcsname\relax

256 \@latex@error{Math version ‘#1’ is not defined}\@eha\else
257 \edef\math@version{#11}J

We need to force a math font setup both now and at the point where we return
to the previous math version. Forcing a math font setup can simply be done by
setting \glb@currsize to an invalid value since this will trigger the setup when
the formula starts.

258 \gdef\glb@currsize{}/

When the scope of the current \mathversion ends we need to restore the old
setup. However this time we need to force it directly at least if we are inside
math, otherwise we could wait. Another way to enhance this code here is todo the
setting only if the version really has changed after all. This might be interesting
in case of amstext and boldsymbol.

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 114

\frozen@everymath

\frozen@everydisplay

\everymath

\everydisplay

\frozen@everymath

\frozen@everydisplay

\curr@math@size

\pickup@font

\split@name

259 \aftergroup\glb@settings
260 \fi}

If TEX would support a hook just before the end of a formula (opposite of
\everymath so to speak) the implementation of the algorithm would be much
simpler because in that case we would set up the correct math fonts at this point
without having to worry about incorrect settings due to nesting. The same would
be true if in BTEX the use of $ (as the primitive TEX command) would be impos-
sible and instead only a higher-level interface would be available. Note that this
does not mean that a $ couldn’t be the short-hand for starting and stopping that
higher-level interface, it only means that the direct TEX function must be hidden.

Anyway, since we don’t have this and won’t have it in IXTEX 2¢ we need to
implement it in a somewhat slower way.

We test for the current math font setup on entry of a formula, i.e., on the hooks
\everymath and \everydisplay. But since these hooks may contain user data
we provide ourselves with an internal version of these hooks which stays frozen.

New internal names for \everymath and \everydisplay.

261 \let\frozen@everymath\everymath

262 \let\frozen@everydisplay\everydisplay

Now we provide now user hooks that will be called in the frozen internals.
263 \newtoks\everymath

264 \newtoks\everydisplay

Now we define the behaviour of the frozen hooks: first check the math setup then
call the user hook.

265 \frozen@everymath = {\check@mathfonts
266 \the\everymath}
Ditto for the display hook.

267 \frozen@everydisplay = {\check@mathfonts
268 \the\everydisplay}

This holds locally the current math size.

269 \let\curr@math@size\Q@empty

26.2 Macros for loading fonts

The macro \pickup@font which is used in \selectfont is very simple: if the font
name is undefined (i.e. not known yet) it calls \define@newfont to load it.

270 \def\pickup@font{Y

271 \expandafter \ifx \fontOname \relax

272 \define@newfont

273 \fi}

\pickup@font assumes that \font@name is set but it is sometimes called when

\f@family, \f@series, \f@shape, or \f@size may have the wrong settings (see,
e.g., the definition of \getanddefine@fonts). Therefore we need a macro to ex-
tract font family, series, shape, and size from the font name. To this end we
define \split@name which takes the font name as a list of characters of \catcode
12 (without the backslash at the beginning) delimited by the special control se-
quence \@nil. This is not very complicated: we first ensure that / has the right
\catcode

274 {\catcode‘\/=12

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 115

\curr@fontshape

\define@newfont

and define \split@name so that it will define our private \f@encoding, \f@family,
\f@series, \f@shape, and \f@size macros.

275 \gdef\split@name#1/#2/#3/#4/#5\C@nil{\def\f@encoding{#1}/,

276 \def\fefamily{#2}%
277 \def\f@series{#3}%
278 \def\f@shape{#4}J
279 \def\f@size{#5}}}
Abbreviation which may get removed again for speed.

280 \def\curr@fontshape{\f@encoding/\f@family/\f@series/\f@shape}
281 (/2ekernel | autoload)

Now we can tackle the problem of defining a new font.

282 (*2ekernel | def2 | autoload)
283 \def\define@newfont{’,
We have already mentioned that the token list that \split@name will get as ar-
gument must not start with a backslash. To reach this goal we will set the
\escapechar to —1 so that the \string primitive will not generate an escape
character. To keep this change local we open a group. We use \begingroup
for this purpose since \define@newfont might be called in math mode, and an
empty \bgroup...\egroup would add an empty Ord atom to the math list and
thus affect the spacing.

Also locally redefine \typeout so that ‘No file ...fd"” Warnings become Font
Info message just sent to the log file.
284 \begingroup
285 \let\typeout\@font@info
286 \escapechar\m@ne
Then we extract encoding scheme, family, series, shape, and size from the font
name. Note the four \expandafter’s so that \font@name is expanded first, then
\string, and finally \split@name.
287 \expandafter\expandafter\expandafter
288 \split@name\expandafter\string\fontOname\@nil
If the \curr@fontshape combination is not available, (i.e. undefined) we call the
macro \wrong@fontshape to take care of this case. Otherwise \extract@font
will load the external font for us.

289 % \expandafter\ifx

290 % \csname\curr@fontshape\endcsname \relax
291 \try@load@fontshape % try always

292 % \fi

293 \expandafter\ifx

294 \csname\curr@fontshape\endcsname \relax
295 \wrong@fontshape\else

To allow substitution we call the curr@fontshape macro which usually will expand
to \relax but may hold code for substitution (see \subst@fontshape definition).

296 % \csname\curr@fontshape\endcsname
297 \extract@font\fi

We are nearly finished and must only restore the \escapechar by closing the
group.

298 \endgroup}

299 (/2ekernel | def2 | autoload)

As autofss2.sty only makes local definitions it is re-loaded for each font, to
save some string memory in the kernel, and to speed up the loading of some
packages which may load fonts The code is actually pre-loaded into the ker-
nel and removed at \begin{document}. The \ifx test below ensures that if
\usepackage{autofss2} apears in the preamble, then the code is not removed at
this time. Can not use \AtBeginDocument here as it is not defined yet! Listing
all the commands like this is not ideal as any changes to the autofss2.sty need

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 116

to be reflected here, but this seems the most memory efficient mechanism as it
avoids the use of an extra csname to store the list.
This is currently disabled, so the ‘autofss2’ code remains in the kernel, and
autofss2.sty is not generated in the current public release.
300 (*autoloadxxx)
301 \expandafter\def\expandafter\@begindocumenthook\expandafter{y
302 \expandafter\ifx\csname verQautofss2.sty\endcsname\relax
303 \gdef\defineO@newfont{%

304 \begingroup

305 \makeatletter\nfss@catcodes
306 \catcode ‘\#6\relax

307 \@@input autofss2.sty\relax\define®@newfont
308 \endgroup}%

309 \begingroup

310 \def\do##1{\global\let##1\Oundefined}%
311 \do\extract@sizefn

312 \do\try@simple@size

313 \do\set@simple@size®args

314 \do\extract@rangefontinfo

315 \do\is@range

316 \do\check@range

317 \do\check@single

318 \do\set@size@funct@args

319 \do\set@size@funct@args@

320 \do\try@size@range

321 \do\empty@sfcnt

322 \do\gen@sfcnt

323 \do\genb@sfcnt

324 \do\sub@sfcnt

325 \do\subf@sfcnt

326 \do\fixed@sfcnt

327 \endgroup

328 \fi}

329 (/autoloadxxx)

330 (*2ekernel | autoload)
331 \def\try@load@fontshape{%
332 \expandafter

333 \ifx\csname \f@encoding+\f@family\endcsname\relax
334 \@font@info{Try loading font information for
335 \f@encoding+\f@family}J

We predefine this combination to be \@empty which means that next time we
don’t try again unnecessary in case we don’t find a .fd file. If the file contains a
\DeclareFontFamily command than this setting will be overwritten.

336 \global\expandafter\let

337 \csname\f@encoding+\f@family\endcsname\@empty

Set the catcodes used in the syntax, but do it only once (this will be restored at
the end of the font loading group).

338 \nfss@catcodes
339 \let\nfss@catcodes\relax

For increased portability make the external filename monocase, but look for
the (old style) mixed case filename if the first attempt fails.

On any monocase system this means that the file is looked for twice which
takes up time and string space, but at least for this release Check for both names
to give people time to re-install their private fd files with lowercase names.

340 \edef\reserved@a{,

341 \lowercase{%

342 \noexpand\InputIfFileExists{\f@encoding\f@family.fd}}}/
343 \reserved@a\relax

344 {\@input@{\f@encoding\f@family.fd}}/

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 117

\nfss@catcodes

\DeclareErrorFont

345 \fi}

This macro should contain the standard \catcode assignments to all characters
which are used in the commands found in an .f£d file and which might have special
\catcodes in the middle of a document. If necessary, this list can be extended in
a package file using a suitable number of \expandafter, i.e.,

\expandafter\def\expandafter\nfss@catcodes
\expandafter{\nfss@catcodes <additional settings>}

Note, that this macro might get executed several times since it is also called by
\DeclareFontShape, thus it probably should not be misused as a general purpose
hook.

346 \def\nfss@catcodes{%

We start by making @ a letter and ignoring all blanks and newlines.

347 \makeatletter
348 \catcode‘\ 9%
349 \catcode‘\~"I9%
350 \catcode‘\"~"M9Y%

Then we set up \, {, }, # and % in case an .fdq file is loaded during a verbatim
environment.

351 \catcode ‘\\\z@
352 \catcode‘\{\@ne
353 \catcode ‘\}\twe@
354 \catcode ‘ \#6Y,
355 \catcode‘\"7%
356 \catcode‘\%14

The we make sure that the important syntax parts have the right \catcode.

357 \@makeother\<
358 \@makeother\>,
359 \@makeother*,
360 \@makeother\.%
361 \@makeother\-%
362 \@makeother\/Y
363 \@makeother\ [%
364 \@makeother\1Y%
365 \@makeother\ ‘Y
366 \@makeother\’%
367 \@makeother\"%
368 }

Declare the last resort shape! We assume that in this fontshape there is a 10pt
font but it doesn’t really matter. We only loose one macro name if the assumption
is false. But at least the font should be there!

369 \def\DeclareErrorFont#1#2#3#4#5{/,

370 \xdef\error@fontshape{’

371 \noexpand\expandafter\noexpand\split@name\noexpand\string
372 \expandafter\noexpand\csname#1/#2/#3/#4/#5\endcsname

373 \noexpand\@nill}y

Initialize all those internal variables which may or may not have values in the
first seconds of NFSS’ bootstraping process. Later on such values will be updated
when an encoding is selected, etc.

We definitely don’t want to set \f@encoding; we can set all the others since
if they are left “blank” any selection would grap “error default values” as well.
However, this probably should go also.

374 % \gdef\f@encoding{#11}/,

375 \gdef\default@family{#2}/
376 \gdef\default@series{#3}%
377 \gdef\default@shape{#41}/

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 118

\wrong@fontshape

378 \global\let\f@family\default@family

379 \global\let\f@series\default@series
380 \global\let\f@shape\default@shape
381 \gdef\fOsize{#5}%

382 \gdef\f@baselineskip{#5pt}/

383 }

384 \@onlypreamble\DeclareErrorFont

Before we come to the macro \extract@font we have to take care of unknown
\curr@fontshape combinations. The general strategy is to issue a warning and
to try a default shape, then a default series, and finally a default family. If this
last one also fails TEX will go into an infinite loop. But if the defaults are set
incorrectly one deserves nothing else!

385 \def\wrong@fontshape{/,

386 \csname D@\f@encoding\endcsname % install defaults if in math
We remember the wanted \curr@fontshape combination which we will need in a
moment.

387 \edef\reserved@a{\csname\curr@fontshape\endcsname}
388 \ifx\last@fontshape\reserved@a

389 \errmessage{Corrupted NFSS tablesl}

390 \error@fontshape

391 \else

Then we warn the user about the mess and set the shape to its default.

392 \let\f@shape\default@shape

If the combination is not known, try the default series.

393 \expandafter\ifx\csname\curr@fontshape\endcsname\relax
394 \let\f@series\default@series

If this is still undefined, try the default family. Otherwise give up. We never try
to change the encoding scheme!

395 \expandafter

396 \ifx\csname\curr@fontshape\endcsname\relax
397 \let\f@family\default@family

398 \fi \fi

399 \fi

At this point a valid \curr@fontshape combination must have been found. We
inform the user about this fact.

The \expandafter\string here stops TEX adding the space that it usu-
ally puts after command names in messages. The similar construction with
\@undefined just produces ‘undefined’, but saves a few tokens.

\@wrong@font@char is locally redefined in \UseTextSymbol from its normal
(empty) definition, to report the symbol generating the font switch.

400 \@font@warning{Font shape °\expandafter\string\reserved®a’

401 \expandafter\@gobble\string\Q@undefined\MessageBreak
402 using ‘\curr@fontshape’ instead\Q@uwrong@font@charl}y,
403 \globalllet\last@fontshape\reserved@a

We change \@defaultsubs to produce a warning at the end of the document.
The macro \@defaultsubs is initially \relax but gets changed here if some
default font substitution happens. It is then executed in \enddocument.

404 \gdef\@defaultsubs{)
405 \@font@warning{Some font shapes were not available, defaults
406 substituted.\Q@gobbletwo}}’

If we substitute a \curr@fontshape combination by the default one we don’t
want the warning to be printed out whenever this (unknown) combination is used.
Therefore we globally \let the macro corresponding to the wanted combination
equal to its substitution. This requires the use of four \expandafter’s since
\csname. .. \endcsname has to be expanded before \reserved@a (i.e. the requested
combination), and this must happen before the \let is executed.

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 119

\@wrong@font@char

\@@defaultsubs
\@defaultsubs

\strip@prefix

\install@mathalphabet

\math@fonts

\select@group

407 \global\expandafter\expandafter\expandafter\let
408 \expandafter\reservedQa
409 \csname\curr@fontshape\endcsname

Now we can redefine \font@name accordingly. This must be done globally since
it might occur in the group opened by \define@newfont. If we would this def-
inition were local the closing \endgroup there would restore the old meaning of
\font@name and then switch to the wrong font at the end of \selectfont although
the correct font was loaded.

410 \xdef\font@name{’
411 \csname\curr@fontshape/\f@size\endcsnamely,

The last thing this macro does is to call \pickup@font again to load the font if
it is not defined yet. At this point this code will loop endlessly if the defaults are
not well defined.

412 \pickup@font}

Normally empty but redefined in \UseTextSymbol so that the Font shape unde-
fined message can refer to the symbol causing the problem.

413 \let\@wrong@font@char\Qempty

See above.

414 \let\@defaultsubs\relax

In \extract@font we will need a way to recover the replacement text of a macro.
This is done by the primitive \meaning together with the macro \strip@prefix
(for the details see appendix D of the TEXbook, p. 382).

415 \def\strip@prefix#1>{}

27 Assigning math fonts to versions

This is just another name for \gdef but we can redefine it if necessary later on.

416 \let\install@mathalphabet\gdef

417 \let\math@fonts\Qempty

\select@group has four arguments: the new (math alphabet identifier) (a control
sequence), the (math group number), the extra macro for math mode and the
\curr@fontshape definition macro name. We first check if we are in math mode.

418 %\def\select@group#1#2#3{\relax\ifmmode

We do these things locally using \begingroup instead of \bgroup to avoid the
appearance of an empty Ord atom on the math list.
419 % \begingroup

We set the math fonts for the family in question by calling \getanddefine@fonts
in the correct environment.

420 % \escapechar\m@ne
421 % \getanddefine@fonts{\csname c@mv@\math@version\endcsnamel}#3J,

We globally select the math fonts. . .
422 % \globaldefs\@ne \math@fonts
. and close the group to restore \globaldefs and \escapechar.

423 % \endgroup

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 120

As long as no size or version change occurs the (math alphabet identifier) should

simply switch to the installed math group instead of calling \select@group un-

necessarily. So we globally redefine the first argument (the new (math alphabet
identifier)) to expand into a \mathgroup switch and then select this alphabet.
Note that this redefinition will be overwritten by the next call to a version macro.
The original code for the end of \select@group was

\gdef#1{#3\mathgroup #2}#1\fi}

i.e. first redefining the (math alphabet identifier) and then calling the new defi-
nition to switch to the wanted (math group). Now we define the (math alphabet
identifier) as a call to the \use@mathgroup command.

424 % \xdef#1{\noexpand\use@mathgroup\noexpand#2,

425 % {\number\csname c@mv@\math@version\endcsnamel}l}}

But this is not sufficient, as we learned the hard way. The problem here is that
the loading of the fonts that comprise the alphabet identifier #1, as well as the
necessary math font assignments is deferred until it is used. This is OK so far,
but if the fonts are switched within the current formula (which may happen if a
sub-formula is a box that contains a math version switch) the font assignments
for #1 are not restored unless #1 is used again. This is disastrous since TeX sees
the wrong fonts at the end of the math formula, when it converts the math list
into a horizontal list.

This is taken into account as follows: When a math alphabet identifier is
used for the first time in a certain version it modifies the corresponding macro
\mv@(version) so that it calls \getanddefine@fonts directly in future as well.
We use the macro \extract@alph@from@version to do this. It takes the math
alphabet identifer #1 and the math version macro as arguments.

426 % \expandafter\extract@alph@from@version

427 %, \csname mv@\math@version\expandafter\endcsname

428 % \expandafter{\number\csname c@mv@\math@version\endcsnamel},
429 % #1%

430 % \stepcounter{mv@\math@version}y,

Finally, it is not possible to simply call the new definition since we have an ar-
gument (the third argument of \use@mathgroup or more exactly the argument
od \math@egroup if the margid option is in force) which would swallow our clos-
ing \fi. So we use the \expandafter technique to remove the \fi before the
\use@mathgroup is expanded.

431 %\expandafter #1\fi}

\extract@alph@from@version We proceed to the definition of the macro \extract@alph@from@version. As
stated above, it takes a math alphabet identifier and a math version macro (e.g.
\mv@normal) as its arguments.
432 \def\extract@alph@from@version#1#2#3{J,

To extract and replace the definition of math alphabet identifier #3 in macro #1
we have to recall how this definition looks like: Somewhere in the replacement
text of #1 there is the sequence

\install@mathalphabet(math alphabet identifier) #3{%

(Definitions for Y#3}

Hence, the first thing we do is to extract the tokens preceding this definitions, the
definition itself, and the tokens following it. To this end we define one auxiliary
macro \reserved@a.
433 \def\reserved@a##1\install@mathalphabet#3##2##3\@nil{%

When \reserved@a is expanded, it will have the tokens preceding the definition
in question in its first argument (##1), the following tokens in its third argument
(##3), and the replacement text for the math alphabet identifier #3 in its sec-
ond argument. (##2). This is then recorded for later use in a temporary macro
\reserved®@b.
434 \def\reservedQ@b{##2}}

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 121

\math@bgroup
\mathQegroup

\calculate@math@sizes

\defaultscriptratio

\defaultscriptscriptratio

Additionally, we define a macro \reserved@c to reconstruct the definitions for the
math version in question from the tokens that will remain unchanged (##1 and
##3) and the yet to build new definitions for the math alphabet identifier #3.

435 \def\reserved@c####i{\gdef#1{##1####1##3}}1)
Then we execute our auxiliary macro.
436 \expandafter\reserved@a#1\@nil

OK, so now we have to build the new definition for #3. To do so, we first extract
the interesting parts out of the old one. The old definition looks like:

\select@group(math alphabet identifier)
(math group number)(math extra part)
(curr@fontshape definition)
So we define a new temporary macro \reserved®@a that extracts these parts.
437 \def\reserved@a\select@group#3##1##2\enil{’
This macro can now directly rebuild the math version definition by calling
\reserved@c:

438 \reserved@c{/,

439 \getanddefine@fonts{#2}##2J

440 \install@mathalphabet#3{%

441 \relax\ifmmode \else \non@alpherr#3\fi

442 \use@mathgroup##1{#2}}}Y

In addtion it defines the alphabet the way it should be used from now on.
443 \gdef#3{\relax\ifmmode \else \non@alpherr#3\fi

444 \use@mathgroup##1{#2}1}1}/

Finally, we only have to call this macro \reserved@a on the old definitions
recorded in \reserved@b:

445 \expandafter\reserved@a\reserved@b\0@nil
446 }

Here are the default definitions for \math@bgroup and \math@egroup. We use
\bgroup instead of \begingroup to avoid ‘leaking out’ of style changes. This has
the side effect of always producing mathord atoms.

447 \let\math@bgroup\bgroup
448 \def\math@egroup#1{#1\egroup}
449 (/2ekernel | autoload)

Here is the default definition for \calculate@math@sizes a more elaborate inter-
face is under testing in mthscale.sty.

450 (x2ekernel | defl)

451 \gdef\calculate@math@sizes{/

452 \@font@info{Calculating\space math\space sizes\space for\space
453 size\space <\f@size>}},

454 \dimen@\f@size \p@

455 \Q@tempdimb \defaultscriptratio \dimen®@

456 \dimen@ \defaultscriptscriptratio \dimen®@

457 \expandafter\xdef\csname S@\f@size\endcsname{},

458 \gdef\noexpand\tf@size{\f@sizel}},

459 \gdef\noexpand\sf@size{\strip@pt\Q@tempdimbl}y,
460 \gdef\noexpand\ssf@size{\strip@pt\dimen@}y,
461 \noexpand\math@fontstrue}}

462 (/2ekernel | defl)

463 (*autoload)

464 \def\calculate@math@sizes{\try@sizes\calculate@math@sizes}
465 (/autoload)

The default ratio for math sizes is:
1 to \defaultscriptratio to \defaultscriptscriptratio.
By default this is 1 to .7 to .5.

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 122

\noaccents@

\showhyphens

\addto@hook

\@vpt

\@vipt

\@viipt

\@viiipt

\@ixpt

\@xpt

\@xipt

\@xiipt

\@xivpt

\@xviipt

\@xxpt

466 (*2ekernel | autoload)
467 \def\defaultscriptratio{.7}
468 \def\defaultscriptscriptratio{.5}

If we don’t have a definition for \noaccents@ we provide a dummy.

469 \ifx\noaccents@\@undefined

470

\let\noaccents@\@empty

471 \fi

The \showhyphens command must be redefined since the version in plain.tex
uses \tenrm. We have also made some further adjustments for its use in IXTEX.

472 (/2ekernel | autoload)
473 (*2ekernel | autoerr)
474 \gdef\showhyphens#1{/,

475
476
477
478
479
480
481

\setboxO0\vbox{/
\color@begingroup
\everypar{}%
\parfillskip\z@skip\hsize\maxdimen
\normalfont
\pretolerance\m@ne\tolerance\m@ne\hbadness\z@\showboxdepth\z@\ #17%
\color@endgroup}}

482 (/2ekernel | autoerr)
483 (autoload)\def\showhyphens{\Qautoerr\showhyphens}
484 (*2ekernel | autoload)

We need a macro to add tokens to a hook.
485 \long\def\addto@hook#1#2{#1\expandafter{\the#1#2}}

486

487

488

489

490

491

492

493

494

495

496

\def\@vpt{5}

\def\@vipt{6}

\def\@viipt{7}

\def\@viiipt{8}

\def\@ixpt{9}

\def\@xpt{10}

\def\@xipt{10.95}

\def\@xiipt{12}

\def\@xivpt{14.4}

\def\@xviipt{17.28}

\def\@xxpt{20.74}

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 123

\@xxvpt
497 \def\@xxvpt{24.88}

498 (/2ekernel | autoload)

File o: 1tfssbas.dtx Date: 2002/10/02 Version v3.0x 124

File p
Itfsstrc.dtx

28 Introduction

This package contains the code for tracing font loading and font changes. It
basically overlays some of the low-level functions of NFSS with additional code
used for tracing.

The package accepts the following options:

errorshow Write all information about font changes etc. only to the transcript
file unless an error happens. This means that information about font sub-
stitution will not be shown on the terminal.

warningshow Show all NFSS warnings on the terminal. This setting corresponds
to the default behaviour of NFSS if the tracefnt package is not loaded!

infoshow Show all NFSS warning and all NFSS info messages (that are normally
only written to the transcript file) also on the terminal. This is the default
if the tracefnt package is loaded.

debugshow In addition to infoshow show also changing of math fonts as far as
possible (this option can produce a large amount of output.

loading Show the name of external fonts when they are loaded. This option
shows only “newly” loaded fonts not those already preloaded in the format
or the class file before the tracefnt package became active.

pausing Turn all font warnings into errors so that ETEX will stop.

29 A driver for this document

The next bit of code contains the documentation driver file for TEX, i.e., the file
that will produce the documentation you are currently reading. It will be extracted
from this file by the DOCSTRIP program.

When this file is processed directly by IATEX this will produce the documen-
tation as well.

1 (xdriver)

2 \documentclass{ltxdoc}

3

4

5 %\0OnlyDescription % comment out for implementation details
6

7 \begin{document}

8 \DocInput{ltfsstrc.dtx}

9 \end{document}

10 (/driver)

30 The Implementation

Warning: Read the macro documentation with a grain of salt. It
is still basically the documentation from the first NFSS release and
therefore in some cases probably not completely accurate.

If we are making a package file it is a good idea to test whether we are running
under 2e. This code is actually placed at the very beginning of this file for easier
maintenance, thus commented out here.

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 125

\tracingfonts

11 (xpackage)
12 %\NeedsTeXFormat{LaTeX2e}
13 %\ProvidesPackage{tracefnt} [??/77/77 v7.?7
14 % Standard LaTeX package (font tracing)]
15 (/package)
The debug module makes use of commands contained in a special package file
named trace.sty.?

16 (+debug) \input trace.sty

31 Handling Options

Here is the definition of the integer register for the font trace. As a default in a
package file we use 1 to give error messages if fonts are substituted. If this code is
used for debugging or tracing reasons in the format file (i.e. in fam.dtx) we use 0
as the default. But if no font trace is used we build a definition that will produce
a warning message.

17 (x2ekernel | autoload)

18 \def\tracingfonts{/

19 \@font@warning{Command \noexpand\tracingfonts

20 not provided.\MessageBreak
21 Use the ‘tracefnt’ package.\MessageBreak Command found:1}Y
22 \count@}

23 (/2ekernel | autoload)

The \count@ in the line above will remove the number after \tracingfonts. Note
that this definition will be overwritten be the next line if one of these modules are
included.

24 (xpackage, trace, debug)

25 \newcount\tracingfonts

26 \tracingfonts=0

27 (/package, trace, debug)

The option errorshow turns off all warnings so that only real errors are shown.
warningshow corresponds to the NFSS default (when tracefnt is not loaded).
infoshow is the default for this package here; and debugshow, loading, and
pausing extend the amount of information even further.

28 (xpackage)
29 \DeclareOption{errorshow}{%
30 \def\@font@info#1{Y

31 \GenericInfo{(Font)\@spaces\@spaces\@spaces\space\space}’
32 {LaTeX Font Info: \space\space\space#1}1}/

33 \def\@font@warning#1{%

34 \GenericInfo{(Font)\@spaces\@spaces\@spaces\space\space}’
35 {LaTeX Font Warning: #1}1}/

36 }

37 \DeclareOption{warningshow}{/
38 \def\@font@info#1{J

39 \GenericInfo{(Font)\@spaces\@spaces\@spaces\space\spacel’

40 {LaTeX Font Info: \space\space\space#1}}/,

41 \def\@font@warning#1{/,

42 \GenericWarning{(Font) \@spaces\@spaces\@spaces\space\spacel/,
43 {LaTeX Font Warning: #1}1}/

44 }

45 \DeclareOption{infoshow}{/

46 \def\@font@info#1{}

47 \GenericWarning{(Font) \@spaces\@spaces\@spaces\space\spacel}/,
48 {LaTeX Font Info: \space\space\space#1}}/,

4This package is not in distribution at the moment (and probably doesn’t any longer work).
Think of this part of the code as being historical artefacts.

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 126

\extract@font

49 \def\@font@warning#1{%

50 \GenericWarning{ (Font) \@spaces\@spaces\@spaces\space\spacel}l/,
51 {LaTeX Font Warning: #1}}J

52 }

53 \DeclareOption{loading}{’

54 \tracingfonts\tw@

55 %}

56 \DeclareOption{debugshow}{/

57 \ExecuteOptions{infoshowl}
58 \tracingfonts\three
5 }

60 \DeclareOption{pausing}{/

61 \def\@font@warning#1{J,

62 \GenericError

63 {(Font)\@spaces\@spaces\@spaces\space\spacel}/,

64 {LaTeX Font Warning: #1}%

65 {See the LaTeX Companion for details.l}}

66 {I’11 stop for every LaTeX Font Warning because
67 you requested\MessageBreak the ‘pausing’ option
68 to the tracefnt package.}}%

69 7}

We make infoshow the default, which in turn defines \font@warning and
\font@info.
70 \ExecuteOptions{infoshow}
71 \ProcessOptions
72 (/package)
We also need a default definition inside the kernel:

73 (*2ekernel | autoload)
74 \def\@font@info#1{},

75 \GenericInfo{(Font)\@spaces\@spaces\@spaces\space\spacel/,

76 {LaTeX Font Info: \space\space\space#1}}/,

77 \def\@font@warning#1{%

78 \GenericWarning{ (Font) \@spaces\@spaces\@spaces\space\spacel}/,
79 {LaTeX Font Warning: #1}1}/,

80 (/2ekernel | autoload)

32 Macros common to fam.tex and tracefnt.sty

In the first versions of tracefnt.dtx some macros of fam.dtx® were redefined
to included the extra tracing information. Now these macros are all defined in
this file (i.e. removed from fam.dtx) and different production versions can be
obtained simply by specifying a different set of modules to include when generating
ltfss.dtx.

32.1 General font loading

This macro organizes the font loading. It first calls \get@external@font which
will return in \external@font the name of the external font file (the .tfm) as it
was determined by the NFSS tables.

81 (x2ekernel | package | autoload)

82 \def\extract@font{}

83 \get@external@font

Then the external font is loaded and assigned to the font identifier stored inside
\font@name (for this reason we need \expandafter).

84 \global\expandafter\font\font@name\external@font\relax

5This file is currently not distributed in documented form. Its code is part of 1tfss.dtx.

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 127

\get@external@font

\selectfont

When tracing we typeout the internal and external font name.
85 (xtrace)

86 \ifnum \tracingfonts >\G@ne
87 \@font@info{External font ‘\external@font’
88 loaded as\MessageBreak \font@name}\fi

89 (/trace)

Finally we call the corresponding “loading action” macros to finish things. First
the font is locally selected to allow the use of \font inside the loading action
macros.

90 \font@name \relax

The next two lines execute the “loading actions” for the family and then for the
individual font shape.

91 \csname \f@encoding+\f@family\endcsname
92 \csname\curr@fontshape\endcsname

93 \relax

94 }

95 (/2ekernel | package | autoload)

The \relax at the end needs to be explained. This is inserted to prevent TEX
from scanning too far when it is executing the replacement text of the loading
code macros.

This function tries to find an external font name. It will place the name into the
macro \external@font. If no font is found it will return the one that was defined
via \DeclareErrorFont.

96 (x2ekernel | autoload)

97 \def\get@external@font{/

We don’t know the external font name at the beginning.

98 \let\external@font\Q@empty

99 \edef\font@info{\expandafter\expandafter\expandafter\string
100 \csname \curr@fontshape \endcsnamely,

101 \try@size@range

If this failed, we’ll try to substitute another size of the same font. This is done
by the \try@size@substitution macro. It “knows about” \do@extract@font,
\font@name, \f@size, and so on.

102 \ifx\external@font\@empty

103 \try@size@substitution

104 \ifx\external@font\Q@empty

105 \@latex@error{Font \expandafter \string\font®@name\space
106 not found}\@eha

107 \error@fontshape

108 \get@external@font

109 \fi\fi

110 }

111 (/2ekernel | autoload)

The macro \selectfont is called whenever a font change must take place.

112 (x2ekernel | package | autoload)

113 \DeclareRobustCommand\selectfont

114 {

When debug is specified we actually want something like ‘undebug’. The font
selection is now stable so that using \tracingall on some other macros will show
us a lot of unwanted information about font loading. Therefore we disable tracing
during font loading as long as \tracingfonts is less than 4.

115 (+debug) \pushtracing

116 (+debug) \ifnum\tracingfonts<4 \tracingoff

117 (+debug) \else \tracingon\p@selectfont \fi

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 128

\set@fontsize

If \baselinestretch was redefined by the user it will not longer match its
internal counterpart \f@linespread. If so we call \set@fontsize to prepare
\size@update.

118 \ifx\f@linespread\baselinestretch \else

119 \set@fontsize\baselinestretch\f@size\f@baselineskip \fi

Then we generate the internal name of the font by concatenating family, series,
shape, and current size, with slashes as delimiters between them. This is much
more readable than standard ITEX’s \twfbf, etc. We define \font@name globally,
as always. The reason for this is explained later on.

120 \xdef\font@name{’,

121 \csname\curr@fontshape/\f@size\endcsnamely,

We call the macro \pickup@font which will load the font if necessary.

122 \pickup@font

Then we select the font.

123 \font@name

If \tracingfonts is greater than 2 we also show the font switch. We do this
before \glb@settings is called since this macro might redefine \font@name.

124 (xtrace)

125 \ifnum \tracingfonts>\tw@

126 \@font@info{Switching to \font@name}\fi

127 (/trace)

Finally we call \size@update. This macro is normally empty but will contain
actions (like setting the \baselineskip) that have to be carried out when the
font size, the base \baselineskip or the \baselinestretch have changed.

128 \sizeQ@update

A similar function is called to handle anything related to encoding updates. This
one is changed from \relax by \fontencoding.

129 \encG@update

Just before ending this macro we have to pop the tracing stack if it was pushed
before.

130 (+debug) \poptracing
131 }

The macro \set@fontsize does the actual work. First it assigns new values to
\f@size, \f@baselineskip and \f@linespread.
132 \def\set@fontsize#1#2#3{/,

133 \@defaultunits\Q@tempdimb#2pt\relax\@nnil
134 \edef\f@size{\strip@pt\@tempdimb},

135 \@defaultunits\@tempskipa#3pt\relax\@nnil
136 \edef\f@baselineskip{\the\@tempskipal
137 \edef\f@linespread{#1}%

For backward compatibility and for later testing within \selectfont the internal
value of \f@linespread is passed back to \baselinestretch.
138 \let\baselinestretch\f@linespread

Additional processing will happen within \selectfont. For this reason the macro
\size@update (which will be called in \selectfont) will be defined to be:

139 \def\size@update{’
First calculate the new \baselineskip and also store it in normalbaselineskip

140 \baselineskip\f@baselineskip\relax
141 \baselineskip\f@linespread\baselineskip
142 \normalbaselineskip\baselineskip

then to set up a new \strutbox

143 \setbox\strutbox\hbox{%

144 \vrule\@height.7\baselineskip
145 \@depth.3\baselineskip
146 \@width\z@}Y

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 129

\size@update

\type@restoreinfo

\glb@settings

\glb@currsize

We end with a bit of tracing information.

147 (xtrace)
148 \ifnum \tracingfonts>\tw@

149 \ifx\f@linespread\@empty

150 \let\reserved@a\@empty

151 \else

152 \def\reserved@a{\f@linespread x}/,

153 \fi

154 \@font@info{Changing size to \f@size/\reserved@a
155 \f@baselineskip}y,

156 \aftergroup\type@restoreinfo \fi

157 (/trace)

When all this is processed \size@update redefines itself to \relax so that in later
calls of \selectfont no extra code will be executed.

158 \let\size@update\relaxl}
159}

Instead of defining this macro internally we might speed things up by placing the
code into a separate macro and use \let!

Normally this macro does nothing; it will be redefined by \set@fontsize to ini-
tiate an update.

160 \let\size@update\relax

This macro produces some info when a font size and/or baseline change will get
restored.

161 (xtrace)
162 \def\type@restoreinfo{},

163 \ifx\f@linespread\Q@empty

164 \let\reserved@a\@empty

165 \else

166 \def\reserved@a{\f@linespread x}J

167 \fi

168 \@font@info{Restoring size to

169 \f@size/\reserved@a\f@baselineskip}}

170 (/trace)

The macro \glb@settings globally selects all math fonts for the current size if
necessary.

171 \def\glb@settings{%

When \glb@settings gains control a size change was requested and all previous
font assignments need to be replaced. Therefore the old values of the fonts are
no longer needed. For every math group the new assignments are appended to
\math@fonts. But this happens only if the math@fonts switch is set to true.
However, we always set up the correct math sizes for script and scriptscript fonts
since they may be needed even if we don’t set up the whole math machinery.

Here we set the math size, script size and scriptscript size. If the S@... macro
is not defined we have to first calculate the three sizes.

172 \expandafter\ifx\csname S@\f@size\endcsname\relax
173 \calculate@math@sizes
174 \fi

The effect of this is that \calculate@math@sizes may or may not define the Se...
macro. In the first case the next time the same size is requested this macro is used,
otherwise \calculate@math@sizes is called again. This also sets the math@fonts
switch. If it is true we must switch the math fonts.

175 \csname S@\f@size\endcsname
176 \ifmath@fonts

177 (xtrace)

178 \ifnum \tracingfonts>\tw@

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 130

\baselinestretch

\every@math@size

179 \@font@info{Setting up math fonts for
180 \f@size/\f@baselineskip}\fi
181 (/trace)

Inside a group we execute the macro for the current math wversion. This sets
\math@fonts to a list of \textfont... assignments. \getanddefine@fonts
(which may be called at this point) needs the \escapechar parameter to be set
to —1.

182 \begingroup
183 \escapechar\m@ne
184 \csname mv@\math@version \endcsname

Then we set \globaldefs to 1 so that all following changes are done globally. The
math font assignments recorded in \math@fonts are executed and \glb@currsize
is set equal to \f@size. This signals that the fonts for math in this size are set

up.

185 \globaldefs\@ne

186 \math@fonts

187 \let \glb@currsize \f@size
188 \endgroup

Finally we execute any code that is supposed to happen whenever the math font
setup changes. This register will be executed in local mode which means that
everything that is supposed to have any effect should be done globally inside. We
can’t execute it within \globaldefs\@ne as we don’t know what ends up inside
this register, e.g., it might contain calculations which use some local registers to
calculate the final (global) value.

189 \the\every@math@size
Otherwise we announce that the math fonts are not set up for this size.

190 (xtrace)

191 \else

192 \ifnum \tracingfonts>\tw@

193 \@font@info{No math setup for

194 \f@size/\f@baselineskip}\fi
195 (/trace)

196 \fi

197 }

198 (/2ekernel | package | autoload)

In \selectfont we used \baselinestretch as a factor when assigning a value to
\baselineskip. We use 1 as a default (i.e. no stretch).

199 (*2ekernel | autoload)
200 \def\baselinestretch{1}

We must still define the hook \every@math@size we used in \glb@settings. We
initialize it to nothing. It is important to remember that everything that goes into
this hook should to global updates, local changes will have weird effects.

201 \newtoks\every@math@size

202 \every@math@size={3}
203 (/2ekernel | autoload)

32.2 Math fonts setup
32.2.1 Outline of algorithm for math font sizes

TEX uses the the math fonts that are current when the end of a formula is reached.
If we don’t want to keep font setups local to every formula (which would result in
an enormous overhead, we have to be careful not to end up with the wrong setup
in case formulas are nested, e.g., we need to be able to handle

$ a=b+c \mbox{ \small for all b and $c\in Z$}$

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 131

Here the inner formulae b and c\in Z are typeset in \small but we have to return
to \normalsize before we reach the closing $ of the outer formula.
This is handled in the following way:

1.

At any point in the document the global variable \gbl@currsize contains
the point size for which the math fonts currently are set up.

Whenever we start a formula we compare its value with the local variable
\f@size that describes the current text font size.

If both are the same we assume that we can use the current math font setup
without adjustment.

. If they differ we call \gbl@settings which changes the math font setup and

updates \gbl@currsize.

(a) If we are recursively inside another formula (\if@inmath) we ensure
that \gbl@settings is executed again in the outer formula, so that the
old setup is automatically restored.

(b) Otherwise, we set the switch @inmath locally to true so that all nested
formulae will be able to detect that they are nested in some outer
formula.

The above algorithm has the following features:

For sizes which are not containing any formula no math setup is done. Com-
pared to the original algorithm of NFSS this results in the following savings:

— No unnecessary loading of math fonts for sizes that are not used to
typeset any math formulae (explicit or implicit ones).

— No time overhead due to unnecessary changes of the math font setup
on entrance and exit of the text font size.

Math font setup changes for top-level formulae will survive (there is no
restoration after the formula) thus any following formula in the same size will
be directly typesetable. Compared to original implementation in NFSS2 the
new algorithm has the overhead of one test per formula to see if the current
math setup is valid (in the original algorithm the setup was always valid,
thus no test was necessary).

In nested formulae the math font setup is restored in the outer formula by
a series of \aftergroup commands and checks. Compared to the original
algorithm this involves additional checks (2 X (non-math levels) per inner
formula).

32.2.2 Code for math font size setting

\check@mathfonts In the \check@mathfonts macros we implement the steps 2 to 4 except that
instead of a switch the macro \init@restore@glb@settings is used.

204 (*2ekernel | package | autoload)
205 \def\check@mathfonts{%

206

\ifx \glb@currsize \f@size

207 (*trace)

208
209
210

\ifnum \tracingfonts>\three
\@font@info{*** MATH: no change \f@size\space
curr/global (\curr@math@size/\glb@currsize)}\fi

211 (/trace)

212

\else

213 (*trace)

214
215
216

\ifnum \tracingfonts>\three
\@font@info{*** MATH: setting up \f@size\space
curr/global (\curr@math@size/\glb@currsize)}\fi

File p: 1tfsstrc.dtx Date: 1997/05/29 Version v3.0j 132

217 (/trace)

218 \glb@settings
219 \init@restore@glb@settings
220 \fi

221 \let\curr@math@size\f@size
222 \def\init@restore@glb@settings{\aftergroup\restglb@settings}’
223 }

\init@restore@glb@settings This macros does by default nothing but get redefined inside \check@mathfonts
to initiate fontsize restoring in nested formulas.
224 (—trace) \let\init@restore@glb@settings\relax

225 (*trace)
226 \def\init@restore@glb@settings{},

227 \ifnum \tracingfonts>\three@

228 \@font@info{*** MATH: no resetting (not in
229 nested math)}\fi

230 }

231 (/trace)

\restglb@settings This macro will be executed the first time after the current formula.

232 \def\restglb@settings{/,
233 (*trace)

234 \ifnum \tracingfonts>\thre@

235 \@font@info{*** MATH: restoring}\fi

236 (/trace)

237 \begingroup

238 \let\f@size\curr@math@size

239 \ifx\glb@currsize \f@size

240 (*trace)

241 \ifnum \tracingfonts>\three

242 \@font@info{*** MATH: ... already okay (\f@size)}\fi
243 (/trace)

244 \else

245 (*trace)

246 \ifnum \tracingfonts>\thre@

247 \@font@info{*** MATH: ... to \f@sizel}\fi
248 (/trace)

249 \glb@settings

250 \fi

251 \endgroup

252 }

32.2.3 Other code for math

\use@mathgroup The \use@mathgroup macro should be used in user macros to select a math group.
Depending on whether or not the margid option is in force it has two or three
arguments. For this reason it should be called as the last macro.

First we test if we are inside math mode since we don’t want to apply a useless
definition.

253 \def\use@mathgroup#1#2{\relax\ifmmode

254 (*trace)
255 \ifnum \tracingfonts>\tw@

256 \count@#2\relax
257 \@font@info{Using \noexpand\mathgroup
258 (\the\count@) #2}\fi

259 (/trace)

If so we first call the ‘=" macro (i.e. argument three) to set up special things
for the select