Use of "mhequ.sty" (v1.6.1)

A simple labelled equation:

$$
\begin{equation*}
\sum_{i=1}^{5} X_{i}^{j} X_{i}^{j}=y^{j} \tag{1}
\end{equation*}
$$

Removing or adding the label does not require a change of environment:

$$
\sum_{i=1}^{5} X_{i}^{j} X_{i}^{j}=y^{j}
$$

A simple list of equations can be displayed either with one number per equation

$$
\begin{align*}
& f(x)=\sin (x)+1 \tag{2}\\
& h(x)=f(x)+g(x)-3, \tag{3}
\end{align*}
$$

or with one number for the whole list

$$
\begin{align*}
& f(x)=\sin (x)+1 \tag{4}\\
& h(x)=f(x)+g(x)-3,
\end{align*}
$$

using only a very small modification in the syntax. Of course, it can also have no number at all:

$$
\begin{aligned}
& f(x)=\sin (x)+1, \\
& h(x)=f(x)+g(x)-3 .
\end{aligned}
$$

Let us make a first group:

$$
\begin{align*}
& f(x)=\sin (x)+1, \tag{5a}\\
& g(x)=\cos (x)-x^{2}+4, \tag{5b}\\
& h(x)=f(x)+g(x)-3 . \tag{5c}
\end{align*}
$$

You can refer to the whole block (5) or to one line, like (5a) for example. You can use any tag you like with the \backslash tag command

$$
x=y .
$$

Of course, you can also refer to it as usual: (\star). You can mix mhequ with the usual equation environment. (But why would you?)

$$
\begin{equation*}
x=y+z \tag{6}
\end{equation*}
$$

If you want to typeset several columns of equations, it is quite easy:

$$
\left.\begin{array}{lll}
x=y+z & a=b+c & x=v \\
x=y+z & a=b+c & x=u+1 \tag{7'}\\
& \text { (multicol) } & x=y \\
\begin{array}{l}
\text { a }
\end{array}=b \\
x=y+z & a^{2}=(b-c)^{3}+y
\end{array}\right]
$$

and also (this is some \intertext)

$$
\begin{equation*}
x=y+z \quad a=(b+c)^{2}-5 \quad \ell=m \tag{8}
\end{equation*}
$$

You can even extend the block (5) much later like

$$
\begin{array}{clc}
x=y+z & x=y+z & f(x)=b \\
x=y+z & x=y+z & g(x)=b \\
\sin ^{2} x+\cos ^{2} x=1 \tag{5f}
\end{array}
$$

You can also change the type of the subnumbering and use the \text command without having to load amstext. Like for example

$$
\begin{array}{ll}
I_{1}=\int_{a}^{b} g(x) d x, & \text { (First equation) } \\
I_{2}=\int_{a}^{b} g\left(x^{2}-1\right) d x . & \text { (Second equation) } \tag{9B}
\end{array}
$$

