
AcroTEX.Net

The rangen Package

Random Generation of Integer,
Rational, and Real Numbers with

Applications to the exercise,
quiz, and shortquiz

Environments of Exerquiz

D. P. Story

Copyright © 2009 dpstory@acrotex.net www.acrotex.net
Prepared: April 20, 2009 Version 1.0

Beta
 V

ers
ion

mailto:dpstory@acrotex.net
www.acrotex.net

Table of Contents

1 Introduction 4

2 Requirements 5

2.1 LATEX Package Requirements . 5

2.2 PDF Creator Requirements . 5

3 Installation 5

4 Package Options 5

5 Basic Commands 6

5.1 \RandomZ . 6

5.2 \RandomQ . 8

5.3 \RandomR . 11

5.4 \RandomL . 13

5.5 \RandomI . 14

5.6 \RandomP . 15

5.7 \RandomS . 16

5.8 Commands that Operate on Numbers 17

• \nOf and \dOf . 18

• Special Formatting Commands: The \ds and \fmt families . . 18

• Getting the Data type with \typeOf 19

5.9 \defineZ, \defineQ, and \defineR 20

6 rangen and fp 21

7 rangen and exerquiz 22

7.1 Creating Quizzes using rangen . 22

7.2 Creating Solutions to Random Quizzes 26

Table of Contents (cont.) 3

Solutions to Quizzes 28

Introduction 4

1. Introduction
This is a package that I began back in the year 2000 AD; at that time, I managed to
obtain a working version up and running with many bugs, then forgot about it.
Now, in my retirement, I stumbled across the work and decided to give it another
go.

The rangen package, as the title implies, can (pseudo-)randomly generate inte-
gers, rationals, and real numbers. Generate said numbers using the \RandomZ,
\RandomQ, and \RandomR commands, respectively; in addition to these, there
is \RandomL for creating a list of numbers, from which one number is selected at
random, and \RandomI for generating a random index value that can be used
in conjunction with \RandomL.

The AcroTEX eDucation Bundle (AeB) contains a package called exerquiz that is
used to create exercises and quizzes. My goal in writing the rangen package
was to integrate it with the quiz system of exerquiz so that quiz questions could
be composed using the “natural” syntax of rangen, each time the source file is
LATEXed, new random numbers populate the question. To get your interest, here
is an example,

Quiz Arithmetic. A simple arithmetic problem, I’ve created one problem, then
copied it to make two problems.

1.
11
16

− 5
16

= 2.
1
4

− 3
8

=

Indefinite Integration. There are two integration problems, again, the second
question is a copy and paste of the first. The parameters of the problem were, of
course, populated by different random numbers.

3.
∫

2
3
x2 +

2
3
x + 1 dx =

4.
∫

1x2 + 1x + 3 dx =

Definite integration can also be posed, but is not illustrated here.

Analytic Geometry. Find the equation of the line that passes through P and Q.

5. P (4, −8), Q(7, 0):

6. P (1, −5), Q(3, 9):

5

Each time the manual is compiled, a new set of problems of the same type is
generated. This package is pretty impressive, I’m sure you’ll agree. DPS
These examples were taken from the demo file rangen_tst.tex.

2. Requirements
The requirements for your LATEX system, and well as any other software, is high-
lighted in this section.

2.1. LATEX Package Requirements

The following packages, in addition to the standard LATEX distribution, are required:

1. The lcg package (2008/09/10 v1.2) by Erich Janka.

2. The hyperref package, a recent version.

3. If you want to use rangen to create quizzes, then exerquiz of AeB is re-
quired.1

2.2. PDF Creator Requirements

The package works for all PDF creators: Acrobat Distiller, pdftex, and dvipdfm.

3. Installation
Unzip rangen.zip into your LATEX tree, the folder rangen is constructed with to
contain the installation.

4. Package Options
Currently, there is only one option, testmode. Then this option is used, each
time the file is run, the random number generator of lcd is re-seeded Normally,
the seed is based on the time, the date and other factors; the clock of the TEX
compiler gives the time to the nearest minute, so one must wait at least a minute
before getting a new seed, this is not acceptable when testing a package. When
testmode is used, the initial seed is seed=1, and increments by one thereafter;

1AeB: http://www.math.uakron.edu/∼dpstory/webeq.html

http://www.math.uakron.edu/~dpstory/webeq.html

6

after the increment, this value is saved to the file \jobname.seed and input
back in on the next compile.

Any other options that are passed to rangen, are passed on to the lcg package.
Useful options for lcg are quiet and seed=<number>.

5. Basic Commands
This package defines the commands \RandomZ, \RandomQ, and \RandomR,
\RandomL, and \RandomI. We describe these commands in this section.

For convenience of terminology, a number created by one of the above com-
mands will be referred to as a RV (random variable).

\RandomZ and \RandomQ use the count registers, so there is a restriction on the
size of any RV generated by these two commands, we must have

−231 + 1 ≤ RV ≤ 231 − 1 =⇒ −2147483647 ≤ RV ≤ 2147483647

For simple applications envisioned for rangen, this range should be plenty
enough.

The \RandomR command uses the dimension registers, so a RV generated by
\RandomR is restricted to

−214 < RV < 214 =⇒ −16384 < RV < 16384

Again, this is not a package for making floating point calculations, it is a package
for generating integers, rationals, and decimal numbers with an eye towards
application to academic problem generation. Floating point arithmetic can be
accomplished using the fp package; rangen and fp seem to be compatible.

5.1. \RandomZ

The command \RandomZ defines a random integer, the syntax is

\RandomZ[<key-values>]{\<name>}{<zLEP>}{<zUEP>}

Basic Commands 7

Parameter Description:

1. <key-values>: The key-value pairs that modify the choice of the variable.
The key-value pairs recognize are

(a) ne: Restrict the choice of the random integer by requiring it not be
equal to another number, for example, ne=0 or ne=\b. In the latter
case, \b is a number defined already by either an earlier \RandomZ
call, or by \defineZ, discussed later. Multiple restrictions can be
placed as well, for example, if ne={0,-1}, rangen selects an integer
different from 0 or -1.

2. \<name>: The name of the random integer. For example, \a, \b, etc.

3. <zLEP>: An integer that is the lower endpoint of the interval from which
the number is randomly selected. The lower endpoint may be an in-
teger previously calculated by an earlier \RandomZ call, for example,
\RandomZ{\b}{\a}{5}, this will generate an integer \b such that \a ≤
\b ≤ 5. To get strict inequality, use the syntax \RandomZ{\b}{\a*}{5},
then rangen attempts to satisfy \a < \b ≤ 5. The range of \a should be
such that the upper limit for \a is less than the upper limit of \b. When
the endpoint is a number, the * is ignored.

When the lower endpoint is a command created by (\RandomZ|Q|R|L, or
by \defineZ|Q|R), the endpoint is converted to a real number.

4. <zUEP>: An integer that is the upper endpoint of the interval from
which the number is randomly selected. The upper endpoint may be
an integer previously calculated by an earlier \RandomZ call, for exam-
ple, \RandomZ{\b}{-5}{\a}, this will generate an integer \b such that
−5 ≤ \b ≤ \a. To get strict inequality, use the syntax −5 ≤ \b ≤ \a∗,
then rangen attempts to satisfy −5 ≤ \b < \a. The range of \a should be
such that the lower limit for \a is greater than the lower limit of \b. When
the endpoint is a number, the * is ignored.

When the upper endpoint is a command created by (\RandomZ|Q|R|L,
or by \defineZ|Q|R), the endpoint is converted to a real number.

Examples:

1. \RandomZ{\a}{-5}{5}: \a=-2. To get another random integer, we
repeatedly execute \RandomZ{\a}{-5}{5} followed by \a, for example,
we copy and paste \RandomZ{\a}{-5}{5}\a three times to get -4, 2, 0.

Basic Commands 8

2. Illustrate ne: Copy and paste \RandomZ[ne={0,-1}]{\a}{-5}{5}\a
repeatedly: 1, 3, -3, 3, and -4. If rangen worked as it should, the list of five
number should not contain a 0 or a -1, does it?

3. Illustrate \a ≤ \b: We use the code

\RandomZ{\a}{-5}{5}\RandomZ{\b}{\a}{10}$\a \le \b$

We now copy and paste this code: 5 ≤ 8, 1 ≤ 9. To get strict inequality we
execute

\RandomZ{\a}{-5}{5}\RandomZ{\b}{\a*}{10}$\a < \b$

We now copy and paste this code: 3 < 8, −1 < 3

Data Type Properties. When a random number is created, there are several
auxiliary commands that are defined.

\nOf{\<name>}
\dOf{\<name>}
\fmt{\<name>}
\ds{\<name>}

Command Description:

1. \nOf{\<name>} the numerator for the number \<name>. For an inte-
ger this is just \<name>. This function becomes important for rational
numbers. If \a is the rational number 2/3, then \nOf{\a}=2.

2. \dOf{\<name>} the denominator for the number \<name>. For an inte-
ger this is just 1. This function becomes important for rational numbers. If
\a is the rational number 2/3, then \dOf{\a}=3.

3. \fmt allows for special formatting for in-line numbers. Without one of the
special formatting options, \fmt\a is the same as \a.

4. \ds allows for special formatting for display style number. \ds is relevant
for rational numbers. If \a represents the rational 1/2, the \a expanded
is 1/2, while \ds\a expanded is 1

2 . The \ds command also obeys the
formatting options.

5.2. \RandomQ

The command \RandomQ defines a random rational, the syntax is

\RandomQ[<key-values>]{\<name>}[<max_denom>]{<qLEP>}{<qUEP>}

Basic Commands 9

Parameter Description:

1. <key-values>: The key-value pairs that modify the choice of the variable.
The key-value pairs recognize are

(a) ne: Restrict the choice of the random rational by requiring it not be
equal to another number, for example, ne=0 or ne=\b. In the latter
case, \b is a number defined already by either an earlier \RandomQ
call, or by \defineQ, discussed later. Multiple restrictions can be
placed as well, for example, if ne={0,-1}, rangen selects an integer
different from 0 or -1.

2. \<name>: The name of the random rational. For example, \a, \b, etc.

3. <max_denom>: The largest denominator you want your random rational
to have. For example, \RandomQ{\a}[9]{1/2}{7/2}: The value of \a
is a rational number between 1/2 and 7/2 having a maximum denominator
of 9. If this parameter is not specified, the least common denominator is
used; for the example, that would be 2. To contrast the two, consider the
following examples:

(a) \RandomQ{\a}[9]{1/2}{7/2}\a: 2/3, 5/3, 20/9, and 29/9.
(b) \RandomQ{\a}{1/2}{7/2}\a: 2, 7/2, 1, 2.

The fractions are reduced to lowest terms, and represented as an integer if
needed.

Here is more detail on the algorithm used to generate a rational: We
illustrate using the example, \RandomQ{\a}[9]{1/2}{7/2}, the details
are simplified slightly.

(a) Convert the range so that the endpoints have a denominator of 9.

LEP :
1
2

=
9/2
9

=
4.5
9

<
5
9

round up

UEP :
7
2

=
63/2

9
=

31.5
9

>
31
9

round down

(b) We randomly choose an integer between 5 and 31, call it \z; our
random rational is then \z/9, unless there is an * affixed to one of
both endpoints.

(c) If one or both endpoints is itself a random rational (or integer) and the
* character is used, then the lower end of the range is incremented
(from 5 to 6) and/or the upper end is decremented (from 31 to 30).

(d) Reduce the fraction obtained in the previous step.

Basic Commands 10

You can see from this example, there are a lot of choices for the random
integer, there are 27 possibilities between 5 and 32.

4. <qLEP>: A rational (of the form a/b) that is the lower endpoint of the
interval from which the number is randomly selected. The lower endpoint
may be a rational (or integer) previously calculated by an earlier \RandomQ
call, for example, \RandomQ{\b}{\a}{4/3}, this will generate an integer
\b such that \a ≤ \b ≤ 4/3. To get strict inequality, use the syntax
\RandomZ{\b}{\a*}{4/3}, then rangen attempts to satisfy \a < \b ≤
4/3. The range of \a should be such that the upper limit for \a is less than
the upper limit of \b. When the endpoint is a number, the * is ignored.

When the lower endpoint is a command created by (\RandomZ|Q|R|L, or
by \defineZ|Q|R), the endpoint is converted to a real number.

5. <qUEP>: A rational that is the upper endpoint of the interval from which
the number is randomly selected. The upper endpoint may be a rational
(or integer) previously calculated by an earlier \RandomQ call, for example,
\RandomQ{\b}{-4/3}{\a}, this will generate an integer \b such that
−4/3 ≤ \b ≤ \a. To get strict inequality, use the syntax −4/3 ≤ \b ≤
\a∗, then rangen attempts to satisfy −4/3 ≤ \b < \a. The range of \a
should be such that the lower limit for \a is greater than the lower limit of
\b. When the endpoint is a number, the * is ignored.

When the upper endpoint is a command created by (\RandomZ|Q|R|L,
or by \defineZ|Q|R), the endpoint is converted to a real number.

1. \RandomZ{\a}{-5}{5}: \a=-2. To get another random integer, we
repeatedly execute \RandomZ{\a}{-5}{5} followed by \a, for example,
we copy and paste \RandomZ{\a}{-5}{5}\a three times to get -4, 2, 0.

2. Illustrate ne: Copy and paste \RandomZ[ne={0,-1}]{\a}{-5}{5}\a
repeatedly: 1, 3, -3, 3, and -4. If rangen worked as it should, the list of five
number should not contain a 0 or a -1, does it?

3. Illustrate \a ≤ \b: We use the code

\RandomZ{\a}{-5}{5}\RandomZ{\b}{\a}{10}$\a \le \b$

We now copy and paste this code: 5 ≤ 8, 1 ≤ 9. To get strict inequality we
execute

\RandomZ{\a}{-5}{5}\RandomZ{\b}{\a*}{10}$\a < \b$

We now copy and paste this code: 3 < 8, −1 < 3

Basic Commands 11

Examples:

1. \RandomQ{\a}{-5/2}{5/2}: \a=-1. We repeatedly copy and paste
\RandomQ{\a}{-5/2}{5/2}\a three times to get 1, -1, 1.

2. Illustrate ne: \RandomQ[ne={0,-1}]{\a}{-5/2}{5/2}\a, copy and
paste this code repeatedly: 1/2, -1/2, -3/2, 1/2, and -2. If rangen worked as
it should, the list of five number should not contain a 0 or a -1, does it?

3. Illustrate \a ≤ \b: We use the code
\RandomQ{\a}{-5/2}{5/2}\RandomQ{\b}[4]{\a}{10}$\a \le \b$

and copy and paste: 2 ≤ 29/4, 0 ≤ 3. To get strict inequality we execute
\RandomQ{\a}{-5/2}{5/2}\RandomQ{\b}[4]{\a*}{10}$\a < \b$

to get 1 < 3, −3/2 < 21/4

For a rational number, the commands \nOf, \dOf, \fmt, and \ds are also
defined, see ‘Data Type Properties’ on page 8.

5.3. \RandomR

The command \RandomR defines a random real number, the syntax is

\RandomR[<key-values>]{\<name>}{<rLEP>}{<rUEP>}

Parameter Description:

1. <key-values>: The key-value pairs that modify the choice of the variable.
The key-value pairs recognize are

(a) round: Round the generated real number so that number of decimal
places equals the value of the round key; for example, round=2
rounds the result to 2 decimal places.

(b) showzeros: Show trailing zeros, only valid when the round key is
used. For example, round=4,showzeros might yield a result of
3.2300, whereas without the showzeros key, the same result would
be 3.23.

(c) ne: Restrict the choice of the random real by requiring it not be equal
to another number real, for example, ne=-1 or ne=\b. In the latter
case, \b is a number defined already by either an earlier \RandomR
call, or by \defineR, discussed later. Multiple restrictions can be
placed as well, for example, if ne={0,-1}, rangen selects an integer
different from 0 or -1.

Basic Commands 12

Note, comparisons are made after rounding.

2. \<name>: The name of the random rational. For example, \a, \b, etc.

3. <rLEP>: A real number (or integer) that is the lower endpoint of the
interval from which the number is randomly selected. The lower end-
point may be a number previously calculated by an earlier \RandomR
call, for example, \RandomR{\b}{\a}{1.3}, this will generate an inte-
ger \b such that \a ≤ \b ≤ 1.3. To get strict inequality, use the syntax
\RandomZ{\b}{\a*}{1.3}, then rangen attempts to satisfy \a < \b ≤
4/3. The range of \a should be such that the upper limit for \a is less than
the upper limit of \b. When the endpoint is a number, the * is ignored.

When the lower endpoint is a command created by (\RandomZ|Q|R|L, or
by \defineZ|Q|R), the endpoint is converted to a real number.

4. <rUEP>: A real number that is the upper endpoint of the interval from
which the number is randomly selected. The upper endpoint may be a
number previously calculated by an earlier \RandomR call, for example,
\RandomR{\b}{-1.3}{\a}, this will generate an integer \b such that
−1.3 ≤ \b ≤ \a. To get strict inequality, use the syntax −1.3 ≤ \b ≤ \a∗,
then rangen attempts to satisfy −1.3 ≤ \b < \a. The range of \a should
be such that the lower limit for \a is greater than the lower limit of \b.
When the endpoint is a number, the * is ignored.

When the upper endpoint is a command created by (\RandomZ|Q|R|L,
or by \defineZ|Q|R), the endpoint is converted to a real number.

\RandomR divides range into equal sub-intervals, and randomly chooses node.
The number of subdivisions is determined by \RNGpowerOfTen, and can be
set by \nDivisionsPowerOfTen. This last command takes an integer argu-
ment, n, 1 ≤ n ≤ 4, the number of subdivisions is then 10n. Strictly speaking
\RNGpowerOfTen does not have to be a power of 10, you can make the defini-
tion \def\RNGpowerOfTen{16}, and that should work as well. The default is
\nDivisionsPowerOfTen{2}, that is, divide the range into 100 equal subdi-
visions.

Examples:

1. \RandomR{\a}{-2.3}{2.3}: \a=-1.19624. To get another random
integer, we repeatedly execute \RandomR{\a}{-2.3}{2.3} followed
by \a, for example, we copy and paste \RandomR{\a}{-2.3}{2.3}\a

Basic Commands 13

three times to get

− 0.9203, 1.56316, 0.13747

2. round: We use \RandomR[round=4]{\a}{-2}{2}\a to get

− 0.8002, 1.3594, 0.1196

3. showzeros: For \RandomR[round=4,showzeros]{\a}{-2}{2}\a,
we have

− 0.8002, 1.3594, 0.1196, − 1.4801, 1.5194

4. Illustrate \a ≤ \b: We use the code

\RandomR{\a}{-5}{5}\RandomR{\b}{\a}{10}$\a \le \b$

We now copy and paste this code:

− 2.00027 ≤ 8.07932, 0.29951 ≤ 1.56052

To get strict inequality we execute

\RandomR{\a}{-5}{5}\RandomR{\b}{\a*}{10}$\a < \b$

We now copy and paste this code a couple of times:

− 2.00027 < 0.75961, 0.29951 < 1.56052

5.4. \RandomL

The command \RandomL defines a list of numbers (integer, rational, decimal),
and randomly selects a number from the list.

\RandomL[<key-values>]{\<name>}{<n1,n2,n3,...>}

Parameter Description:

1. <key-values>: The only key-value pairs recognized is index=<posZ>.
The index is a base-1 index, thus index=1 references the first number in the
list.

Theindex key can be used to retrieve a particular number from this list; for
example, by executing \RandomL[index=2]{\a}{17,1/2,1.3}, the
value of \a is 1/2.

Basic Commands 14

The value of index can be any positive integer, even one generated using
\RandomI. If the value of index is greater than the number of items in the
list, modular arithmetic is performed to put the index back into the proper
range.

When the index key is not present, a number is randomly selected from
the list.

2. \<name>: The name of the number generated. The number generated will
be defined as integer, rational, or real; consequently\nOf,\dOf,\fmt, and
\ds are defined.

3. <n1,n2,n3,...>: A (possibly mixed) list of numbers. The numbers can
be literal (12, 1.2, 3/4), or control sequences of numbers (commands) de-
fined earlier by \RandomZ|Q|R|L or by \defineZ|Q|R.

Examples:

1. \RandomL{\a}{17,3.14,88,3/4,1/2}\a, Select a number from this
list at random \a=88, again \a=3.14, and again \a=88.

2. \RandomL[index=3]{\a}{17,3.14,88,3/4,1/2}\a, \a=88.

5.5. \RandomI

The command \RandomI defines a list of integers, {1,2,3...n} and randomly
selects an integer, thought of as an index value, from the list.

\RandomI{\<name>}{<n>}

Parameter Description:

1. \<name>: The name of the number generated, the number will be defined
as an integer number.

2. <n>: A positive number greater than 1. The list {1,2,3...n} is implicitly
created.

Example: \RandomI{\indx}{6}\indx yields 5, 5, 1, 1.

My thought in creating \RandomI is to use it in conjunction with \RandomL
(using the index key). For example,

\RandomI{\indx}{4}
\RandomL[index=\indx]{\a}{1/2,1/3,1/4,1/5}

Basic Commands 15

\RandomL[index=\indx]{\b}{5/3,6/5,7/2,5/6}
\begin{equation*}

(\a)+(\b) =
\end{equation*}

This code results in the following arithmetic problem:

(1/2) + (5/3) =

This is probably not a good example of the usage of \RandomI. See the next
section on \RandomP.

5.6. \RandomP

The command \RandomP defines a list of strings (literal expressions), and ran-
domly selects one from the list. (The “P” in \RandomP stands for “Problem.”

\RandomP[<key-values>]{\<name>}{<list of literals>}

Parameter Description:

1. <key-values>: The only key-value pairs recognized is index=<posZ>.
The index is a base-1 index, thus index=1 references the first number in the
list.

The index key can be used to retrieve a particular literal from this list; for
example, by executing \RandomP[index=2]{\a}{d,p,s}, the value of
\a is p.

The value of index can be any positive integer, even one generated using
\RandomI, or by another list. If the value of index is greater than the
number of items in the list, modular arithmetic is performed to put the
index back into the proper range.

When the index key is not present, a number is randomly selected from
the list.

2. \<name>: The name of the literal generated.

3. <list of literals>: A comma-delimited list of literal strings, selected
literal is not interpreted as a number, but as passed into the definition of
\<name>.

Examples.

Basic Commands 16

1. Executing \RandomP{\a}{1+16,\cos(\pi),%
\frac{d}{dx}\frac{1}{2}x^2,{\int \cos(x)\,dx}}

$\texttt{\string\a} = \a$, we get \a = cos(π). and then again,
\a = d

dx
1
2x

2.
2. Use \RandomI with \RandomP. You can create a series of questions and

answers using these two:
\RandomI{\indx}{5}
\RandomP[index=\indx]{\q}{1+16,\cos(\pi),\pi\sin(\pi),%

\frac{d}{dx}\frac{1}{2}x^2,{\int \cos(x)\,dx}}
\RandomP[index=\indx]{\a}{17,-1,0,x,\sin(x)+C}
\begin{equation*}

\q = \a
\end{equation*}

The execution of these lines becomes∫
cos(x) dx = sin(x) + C

You can create a switch to include the answer or not.
3. There is an alternate approach to this previous example. Random lists

(\RandomL and \RandomP) define a macro \iOf, the value of which is
the index of the item selected (at random). We can use \iOf in the above
problem as follows:
\RandomP{\q}{1+16,\cos(\pi),\pi\sin(\pi),%

\displaystyle\frac{d}{dx}\frac{1}{2}x^2,%
{\int \cos(x)\,dx}}

\RandomP[index=\iOf{\q}]{\a}{17,-1,0,x,\sin(x)+C}
\begin{equation*}

\q = \a
\end{equation*}
The execution of these lines gives the output…

π sin(π) = 0

Here, we select the answer to the randomly chosen question.

5.7. \RandomS

The command \RandomS generates a random sign, either + or -. This may be
useful for creating addition/subtraction problems.

\RandomS[<dec>]{\<name>}

Basic Commands 17

Parameter Description:

1. <dec>: A number between 0 and 1. This command generates a + sign
with probability <dec>. The default value is 0.5.

2. \<name>: The name that references the generated random sign.

Examples:

1. Random addition problem:

\RandomZ{\a}{1}{20}\RandomZ{\b}{1}{20}\RandomS{\s}
\begin{equation*}

\a \s \b
\end{equation*}

This code expands to

6 + 15

Whether we add or subtract the summands is determined by the command
\s.

2. Random Differentiation problem:

\RandomQ{\a}[8]{1}{2}\RandomQ{\b}[8]{2}{3}
\RandomZ{\n}{1}{6}\RandomS{\si}\RandomS{\sii}

Differentiate
\begin{equation*}

\frac{d}{dx}(\bigl (\a) \si (\b) x^{\sii\n}\bigr)
\end{equation*}

Differentiate

d

dx

(
(9/8) − (9/4)x+6)

5.8. Commands that Operate on Numbers

Associated with each data type (integer, rational, and real) are several useful
commands \nOf, \dOf, \iOf, \fmt, and \ds.

Basic Commands 18

• \nOf and \dOf

For integer, rational, and real numbers \nOf and \dOf are the numerator and
denominator, respectively.

• Integer: \nOf is the integer, and \dOf is 1; for example, define an integer
by \RandomZ{\a}{-5}{5}, \a=-1, \nOf{\a}=-1, and \dOf{\a}=1, as
advertised.

• Rational: \nOf is the numerator (an integer), and \dOf is the denom-
inator (an integer) of the reduced fraction. For example, define \a by
\RandomQ[ne=0]{\a}[9]{-3/2}{3/2}, then

\a = −2/9, \nOf{\a} = −2, and \dOf{\a} = 9.

• Real: \nOf is the numerator (an integer), and \dOf is the denominator (an
integer) of the reduced fraction, after the real is converted into a rational
number. For example, \RandomR{\a}{.25}{.75}, then

\a = 0.37474, \nOf{\a} = 18737, and \dOf{\a} = 50000

If we round using with \RandomR[round=2]{\a}{.25}{.75}, we get

\a = 0.64, \nOf{\a} = 16, and \dOf{\a} = 25

• Special Formatting Commands: The \ds and \fmt families

When a RV, such as \a, is a rational number type, say \a=1/3, the command \a
expands to 1/3. To get a display style formatting of the rational use the \ds
command. The expansion of $\cs{ds}\cs{a}$ is 1

3 .

We have seen in several examples in which the formatting was not always what
we’d like. Expressions like x1 should be x, 1x should be x, −1x should be −x. The
formatting commands \cfmt and \efmt (and their display style counterparts
\cds and \eds) attempt to format the special cases of 1 and -1, as they appear
in an exponent (the ‘e’ variations) and as they appear as a coefficient (the ‘c’
variations).

All the formatting commands \cfmt, \efmt, \ds, \cds, and \eds take a RV as
its argument. \(c|e)fmt|(c|e)ds\a expands to \a when \a is not 1 or -1.
These cases are covered below.

Basic Commands 19

• For \a=1, \cfmt\a=\efmt\a=\cds\a=\eds\a=<empty>, the empty
string. Thus, if \a=1, and we typeset $\a x^{\a}$, we get 1x1, which
is not the standard way of writing this expression, but if we typeset
$\cfmt\a x^{\efmt\a}$ we get x, which is correct. Notice that we
used \cfmt on the baseline, and \efmt in the exponent. It does not make
any difference here, but it does if \a=-1, see the next bullet point.

• \a=-1, then

\cfmt\a = \cds\a = - (minus sign)

\efmt\a = \eds\a = -1 (minus one)

Returning to the same expression in the previous bullet, if \a=-1, and we
typeset $\a x^{\a}$, we get −1x−1, which is not the standard way of
writing this expression, but if we typeset $\cfmt\a x^{\efmt\a}$ we
get −x−1, which is correct. Notice the difference cases if I had typeset
$\cfmt\a x^{\cfmt\a}$, I would have gotten −x−, not good.

The ‘c’-variation is used for unitary signs, not binary signs. For example, ,
if \a=-1, and we typeset $2 + \cfmt\a x$, we get 2 + −x, which may
be fine is some situations, but most of the time it is not. As a work around,
make coefficients positive, and generate a random sign using \RandomS;
for example, if we execute \RandomS{\s}\RandomZ{\a}{1}{3} and
typeset $2 \s \cfmt\a x$, we get an addition half the time and a sub-
traction half the time, 2 − x, 2 + 3x, 2 − 3x, 2 − 2x, 2 + 3x, 2 + x.

Similarly, the ‘e’-variation is for unitary sign in the exponent, and should be
used when there is a need for these special format rules.

• Random Sign: The formatting commands are defined for a random sign
created by \RandomS and following the same definitions outline above.
These are of marginal value in this context.

• Getting the Data type with \typeOf

There may be occasions where you want to know the data type of a RV. The
rangen does change the data type in special cases. For example, if \a is created
by \cs{RandomQ}{\a}[2]{1}{3}, and its value happens to be an integer,
rangen changes its type of integer. You can determine the type of a RV with the
\typeOf command, which takes a RV as its argument, the value of \typeOf
is a nonnegative integer. The following table gives the values of \typeOf, and
associated data types.

Basic Commands 20

Data type \typeOf
Integer 0
Rational 1
Real 2
Literal 3

A suggested application to \typeOf: Suppose, \a is a rational RV (for exam-
ple, \RandomQ{\a}[2]{1}{3}), and we want to typeset $\cfmt\a x$ One
instance might be 3/2x, this is not good syntax; so we typeset $(\cfmt\a) x$
to get (3/2)x, that’s good. But if \a is an integer, such as 1, 2, or 3, we get (2)x,
which contains redundant parentheses. Now we come to the use of \typeof.
We now typeset the expression

$ \ifnum\typeOf\a=0\relax\cfmt\a\else(\cfmt\a)\fi x $

If \a is not an integer we get, for \a=3/2, we obtain (3/2)x, but for for \a=2, we
get 2x.

5.9. \defineZ, \defineQ, and \defineR

The rangen package internally uses\defineZ,\defineQ, and\defineR to de-
fine an integer, a rational number, and a real (decimal) number. These command
may be used by the document author as well to create non-random variables.

\defineZ{\<name>}{zValue}
\defineQ{\<name>}{zNumer}{zDenom}
\defineR{\<name>}{rValue}

Thus, \defineZ{\a}{17} defines \a=17, \defineQ{\a}{-3}{2} defines
\a=-3/2, and \defineR{\a}{17.88} defines \a=17.88.

The various properties data types are created by \defineZ, \defineQ, and
\defineR; these are \nOf, \dOf, \typeOf, \ds, \eds, \cds, \efmt, and
\cfmt.

The following are other important points to remember.

• Positive Denominators. Notice that if \defineQ{\a}{3}{-2}, then
\a=-3/2, and \nOf\a=-3, and \dOf\a=2. Thus, rangen does not allow a
negative denominator.

• Automatic Reduction. If we make the definition \defineQ{\a}{6}{4},
then \a=3/2, a rational number is automatically reduced to lowest terms.

21

• Re-classification. If we make the definition \defineQ{\a}{6}{2},
then \a=3 is reduced to lowest terms and re-classified as an integer
\typeOf\a=0 (an integer).

6. rangen and fp
After a little bit of testing, it appears that fp can work with the rangen package.
The rangen package does not provide any command for combining RVs using
such operations as addition, subtraction, multiplication, division, etc.

The rangen package package does provide several useful commands that fp
does not, these are \reduceFrac, \gcd, and \lcm.

\reduceFrac takes two arguments (numerator and denominator), both inte-
gers, and attempts to reduce the implied fraction to lowest terms, and returns
the result in two macros \rfNumer and \rfDenom. For example, to reduce the
fraction 4/12, we execute \reduceFrac{4}{12}, which returns \rfNumer=1,
and \rfDenom=3, forming the reduced fraction 1/3; thus, 4/12 = 1/3.

The greatest common divisor command \gcd takes two integers as its arguments
and returns its result in the macro \thegcd. For example, the \gcd{4,8} is 4,
while the \gcd{4}{6} is 2.

The least common multiple command \lcd takes two integers as its arguments,
and returns its result in the macro \thelcd. For example, \lcm{4}{5} is
\thelcm=20, while, \lcm{4}{6} is \thelcm=12.

The following example illustrates the use of the rangen and fp packages to
pose a random arithmetic problem, and present a detailed solution.

\RandomQ{\a}[6]{2}{4}\RandomQ{\b}[6]{2}{4}
\gcd{\dOf\a}{\dOf\b}
\FPeval\lcd{clip((\dOf\a)*(\dOf\b)/\thegcd)}
\FPeval\si{clip(\lcd/(\dOf\a))}
\FPeval\sii{clip(\lcd/(\dOf\b))}
\FPeval\finalnum{clip((\si)*(\nOf\a)+(\sii)*(\nOf\b))}
\defineQ{\ans}{\finalnum}{\lcd}
$$

\ds\a \thisop \ds\b = \frac{(\si)(\nOf\a)+(\sii)(\nOf\b)}{\lcd}
= \frac{\finalnum}{\lcd}\ifnum\lcd=\dOf\ans\else =\ds\ans\fi

$$

22

An instance of this code might look like this:

8
3

+
17
6

=
(2)(8) + (1)(17)

6
=

33
6

=
11
2

If there is any reduction of the fraction (brought on by the \defineQ command),
this additional expression is included.

See the demo file rangen_fp.tex for a complete example.

7. rangen and exerquiz
Developing a package for randomly generating numbers that could be used as
a basis for creating random quizzes (see the example back in Section 1, page 4)
was my original motivation for writing the original package back in the year 2000
AD. In this section, we introduce the techniques that I’ve developed for creating
random quizzes, and, more importantly, how to grade them and to exhibit to
the user the correct answer. This system is not a computer algebra system, so,
it is difficult, but not impossible to also supply a solution (a opposed to just the
answer) to the problem as well.

Now,…let’s see how its done! Examples of this section were taken from the demo
file rangen_tst.tex.

7.1. Creating Quizzes using rangen

The rangen package provides three JavaScript functions that are used with ex-
erquiz quizzes, these are

• rEval(str): The function rEval evaluates its argument. rEval searches
its argument for rEval and rFrac, and executes any inner nested func-
tions first.

• rFrac(str): Evaluates a rational number by evaluating the value of the
numerator and denominator separately. rFrac searches its argument for
rEval and rFrac, and executes any inner nested functions first.

• rngCorrAnsButton: A function that is used to represent the correct
answer to the user.

The best way of illustrating these function is by discussing an example or two.

rangen and exerquiz 23

Example 1. We create two RVs, \a and \b that are rational numbers. We want
to add them, and present the answer as a rational number.

\RandomQ{\a}[16]{1/8}{15/16}\RandomQ[ne=\a]{\b}[16]{1/8}{15/16}

1.
5
16

− 13
16

=

The question is posed using \RespBoxMath.

1 $\displaystyle\ds\a - \ds\b =
2 \RespBoxMath[\rectW{.5in}]{
3 (\nOf\a*\dOf\b-\nOf\b*\dOf\a)/(\dOf\a*\dOf\b)}
4 {2}{.0001}{[0,2]}
5 [{priorParse: \Array(nodec,NoAddOrSub)}]$

Exerquiz determines whether the user’s answer is correct, it by evaluating the
author’s answer at randomly selected points. Exerquiz uses the floating point
arithmetic of JavaScript to evaluate the user’s answer. The author’s correct answer
is given in line (1), and it is just the formula for combining two fractions \a
and \b; note the use of \nOf and \dOf. Line (2) is standard parameters for
\RespBoxMath, the number of random points to use, the precision, and the
interval from which to select the points. Line (3) specifies a couple of routines
from the dljslib package, these prevent the user from using decimals and rational
arithmetic to answer the question. (The latter function would, for example,
prevent the user from copying the question and pasting it into the answer.)

Now comes the most interesting part, at least to me: The presentation of the
correct answer to the user. These is where the JavaScript functions rEval and
rFrac are used. The code for the answer button is shown below.

1 \CorrAnsButton{rFrac(
2 rEval(\nOf\a*\dOf\b-\nOf\b*\dOf\a)/rEval(\dOf\a*\dOf\b)
3)}*{rngCorrAnsButton}

Here, this code is broken across several lines to fit on the page. We direct the
\CorrAnsButton to use the function rngCorrAnsButton, as seen in line (3).
This is a special function define by rangen to help in the presentation of the
answer to the user.

Keep in mind, the inner-most rEval and rFrac functions are evaluated first;
consequently, the two rEval functions in line (2) are evaluated first. These two
evaluations calculate the numerator and denominator separately, this results in a

rangen and exerquiz 24

numerical numerator and denominator. The function rFrac is then executed on
the resulting rational number, this function reduces the fraction to lowers terms.
This final calculation is what the user sees when the correct answer button is
pressed.

The next example will illustrate a decimal presentation of the answer, and intro-
duces a new command, \RNGprintf.

Example 2. We create four RVs, \a, \b, \c, and \n, three rational and one
integer. The exponent of the power is rational, hence, we represent a decimal
answer to the user.

\RandomQ{\a}[8]{1/4}{7/6}\RandomZ{\b}{1}{3}
\RandomQ{\n}[8]{1/2}{3/2}\RandomZ[ne=\zZero]{\c}{-3}{3}

2.
∫ 1

7/8
2x7/8 dx =

The question is posed using \RespBoxMath.

1 $\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx =
2 \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}
3 {3}{.0001}{[0,2]}$

The correct answer is given on line (2), and is based on the known form of the
integrand; here, we use standard integration formulas.

The code for the correct answer button has a new element in it

1 \CorrAnsButton{rEval(
2 \c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)
3)}*{rngCorrAnsButton\RNGprintf{\%.4f}}}\kern1bp\sqTallyBox

The rEval function evaluates the expression on line (2), the result is a decimal
number. As before, we use the rngCorrAnsButton, but we’ve added the
\RNGprintf command to the end of the function name. This is a kludge that
I’ve developed to be able to format a numerical answer. The \RNGprintf
command uses the Acrobat JavaScript function util.printf. The argument
of \RNGprintf is passed toutil.printf as its formatting string. Here, we use
\%.4f, so the number is presented as a floating point number with four decimal
places. See the documentation of util.printf in the JavaScript for Acrobat
API Reference.2

2http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp

http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp

rangen and exerquiz 25

The final example it the one seen in ‘Introduction’ on page 4, it uses another
new command, \defineDepQJS. This command is used to define a new RV
as a rational function of other RVs, and to define special JavaScript formatting,
\js. The results of this command are used exclusively for JavaScript, and are not
meant to be typeset.

\defineDepQJS{\<name>}{<numer>}{<denom>}
{<expression assessed through \js>}

This function defines\<name> to be(<numer>)/(<denom>),\jsas the the 4th

argument, and \nOf and \dOf, as usual. The expression <numer> and <denom>
can be functions of RV defined earlier. The 4th argument can also be a function of
earlier arguments, including \<name>, \nOf\<name>, and \dOf\<name>. An
example will perhaps illustrate.

Example 3. Find the equation of the line that passes through P and Q.

We begin by defining our variables:

1 \RandomZ{\a}{-10}{9}\RandomZ{\b}{-10}{9}
2 \RandomZ{\c}{\a*}{10}\RandomZ{\d}{\b*}{10}
3 \defineDepQJS{\m}{\d - \b}{\c - \a}
4 {rFrac(rEval(\nOf\m)/rEval(\dOf\m))}
5 \defineDepQJS{\yIntercept}{\b - \a*\m}{1}
6 {rFrac((rEval(\b*\dOf\m-\a*\nOf\m))/(rEval(\dOf\m)))}

Our big problem is to compute the slope of the line, \m. I define \m as using
\defineDepQJS. The numerator and denominator are those in the slope cal-
culation, given two points. The expansion of \m will be (\d-\b)(\c-\a), and
the JavaScript will be performing the arithmetic operations. The expression that
is accessed with the \js is the fourth argument, line (4); here, we calculate slope
as a rational number. We make a similar definition for the \yIntercept of the
line.

Below are the two points $P(\a, \b)$ and $Q(\c, \d)$.

3. P (−5, 4), Q(−2, 7):

The question is posed using \RespBoxMath.

1 $P(\,\a, \b\,)$, $Q(\,\c, \d\,)$:
2 \RespBoxMath{y=\m*x + \yIntercept}(xy)
3 {3}{.0001}{[0,2]x[0,2]}*{ProcRespEq}

rangen and exerquiz 26

The answer is given in line (2), and will be evaluated numerically, and compared
numerically with the user’s response.

The code for the correct answer button has a new element in it

1 \CorrAnsButton{y = \js\m\space x + \js\yIntercept}
2 *{rngCorrAnsButton}

The display of the answer to the user is done using\js\m and\js\yIntercept
to represent the slope and intercept as a rational number.

Think of \defineDepQJS a convenient way of defining (JavaScript) expressions
that will appear in \RespBoxMath and for \CorrAnsButton.

7.2. Creating Solutions to Random Quizzes

Writing a solution to a question that is based on a formula or template can be
difficult. LATEX is not a computer algebra system, so the possibilities are limited.
Still, rangen supplies the writeRVsTo environment to support a solution.

Example 4. We create two RVs, \a and \b that are rational numbers. We want
to add them, and present the answer as a rational number.

\begin{writeRVsTo}{quizzes}
\RandomQ{\a}[16]{1/8}{15/16}\RandomQ[ne=\a]{\b}[16]{1/8}{15/16}
\end{writeRVsTo}

We make that same definitions as in Example 1, but we enclose these definitions
within the writeRVsTo. This environment writes its contents to the quiz solu-
tions file, and also executes its contents. This way, the definitions are make both
here, and just before the solution to this problem in the solutions file.

4.
5
16

+
13
16

=

The verbatim listing of this quiz is

\item $\displaystyle\ds\a + \ds\b =
\RespBoxMath[\rectW{.5in}]{

(\nOf\a*\dOf\b+\nOf\b*\dOf\a)/(\dOf\a*\dOf\b)}*{2}
{.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill

\CorrAnsButton{rFrac(rEval(
\nOf\a * \dOf\b + \nOf\b * \dOf\a)/rEval(\dOf\a * \dOf\b))

}*{rngCorrAnsButton}\kern1bp\sqClearButton

rangen and exerquiz 27

\begin{solution}\relax\RNGadd\a\b\defineQ{\ans}{\rfNumer}{\rfDenom}%
The solution to this problem is
\begin{equation*}

\boxed{\ds\a - \ds\b = \ds\ans}
\end{equation*}
Did I forget to tell you that a simple command \cs{RNGadd}
for adding two rational numbers is defined by
\textsf{rangen}. Sorry about that! \dps
\end{solution}

The writeRVsTo has the following syntax

\begin{writeRVsTo}{quizzes|exercises}
<rangen commands creating RVs>
\end{writeRVsTo}

The argument can be either the string quizzes or exercises. In the first case,
the content of the environment is written to the solutions file for quizzes, and in
the latter case, to the solutions file for the exercises.

That’s all for now, I simply must get back to my retirement. DPS

28

Solutions to Quizzes
Solution to Quiz: The solution to this problem is

5
16

+
13
16

=
9
8

Did I forget to tell you that a simple command \RNGadd for adding two rational
numbers is defined by rangen. Sorry about that! DPS �

	Table of Contents
	1 Introduction
	2 Requirements
	2.1 LaTeX Package Requirements
	2.2 PDF Creator Requirements

	3 Installation
	4 Package Options
	5 Basic Commands
	5.1 \RandomZ
	5.2 \RandomQ
	5.3 \RandomR
	5.4 \RandomL
	5.5 \RandomI
	5.6 \RandomP
	5.7 \RandomS
	5.8 Commands that Operate on Numbers
	• \nOf and \dOf
	• Special Formatting Commands: The \ds and \fmt families
	• Getting the Data type with \typeOf

	5.9 \defineZ, \defineQ, and \defineR

	6 rangen and fp
	7 rangen and exerquiz
	7.1 Creating Quizzes using rangen
	7.2 Creating Solutions to Random Quizzes

	Solutions to Quizzes

	obj:
	answer:
	1:
	2:
	3:
	4:
	5:
	6:

	sq1:
	1:

	sq2:
	1:

	sq3:
	1:

	corr:
	answer:
	1:
	2:
	3:
	4:
	5:
	6:

	sq1:
	1:

	sq2:
	1:

	sq3:
	1:

	tally:
	answer:
	1:
	2:
	3:
	4:
	5:
	6:

	clear:
	answer:
	sq2:
	sq3:
	sq1:

	tallytotal:
	answer:

