AcroTEX.Net

The rangen Package

Random Generation of Integer,
 Rational, and Real Numbers, with
 Applications to the exercise,
 quiz, and shortquiz
 Environments of Exerquiz

D. P. Story

Table of Contents

1 Introduction 4
2 Requirements 5
2.1 ETEX Package Requirements 5
2.2 PDF Creator Requirements 5
3 Installation 5
4 Package Options 5
5 Basic Commands 6
5.1 \RandomZ 6
5.2 \RandomQ 8
5.3 \RandomR 11
$5.4 \backslash$ RandomL 13
5.5 \RandomI 14
5.6 \RandomP 15
5.7 \RandomS 16
5.8 Commands that Operate on Numbers 17

- \nOf and \dOf 18
- Special Formatting Commands: The \ds and \fmt families 18
- Getting the Data type with \typeOf 19
5.9 \defineZ, \defineQ, and \defineR 20
6 rangen and $f p$ 21
7 rangen and exerquiz 22
7.1 Creating Quizzes using rangen 22
7.2 Creating Solutions to Random Quizzes 26
Table of Contents (cont.) 3
Solutions to Quizzes 28

1. Introduction

This is a package that I began back in the year 2000 AD; at that time, I managed to obtain a working version up and running with many bugs, then forgot about it. Now, in my retirement, I stumbled across the work and decided to give it another go.

The rangen package, as the title implies, can (pseudo-)randomly generate integers, rationals, and real numbers. Generate said numbers using the \backslash RandomZ, \backslash RandomQ, and \backslash RandomR commands, respectively; in addition to these, there is \backslash RandomL for creating a list of numbers, from which one number is selected at random, and \backslash RandomI for generating a random index value that can be used in conjunction with \backslash RandomL.
The AcroT E eDucation Bundle (AeB) contains a package called exerquiz that is used to create exercises and quizzes. My goal in writing the rangen package was to integrate it with the quiz system of exerquiz so that quiz questions could be composed using the "natural" syntax of rangen, each time the source file is $\mathrm{ET}_{\mathrm{E}} X e d$, new random numbers populate the question. To get your interest, here is an example,
Quiz Arithmetic. A simple arithmetic problem, I've created one problem, then copied it to make two problems.

1. $\frac{11}{16}-\frac{5}{16}=$ \qquad Ans
2. $\frac{1}{4}-\frac{3}{8}=\square$
Ans

Indefinite Integration. There are two integration problems, again, the second question is a copy and paste of the first. The parameters of the problem were, of course, populated by different random numbers.

3. $\int \frac{2}{3} x^{2}+\frac{2}{3} x+1 d x=\square$	Ans
4. $\int 1 x^{2}+1 x+3 d x=\square$	
	Ans

Definite integration can also be posed, but is not illustrated here.
Analytic Geometry. Find the equation of the line that passes through P and Q.

5. $P(4,-8), Q(7,0): \square$	Ans
6. $P(1,-5), Q(3,9): \square$	Ans

Each time the manual is compiled, a new set of problems of the same type is generated. This package is pretty impressive, I'm sure you'll agree. \mathfrak{P}

These examples were taken from the demo file rangen_tst.tex.

2. Requirements

The requirements for your $k_{E} X$ system, and well as any other software, is highlighted in this section.

2.1. 断X Package Requirements

The following packages, in addition to the standard $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution, are required:

1. The Icg package (2008/09/10 v1.2) by Erich Janka.
2. The hyperref package, a recent version.
3. If you want to use rangen to create quizzes, then exerquiz of $A e B$ is required. ${ }^{1}$

2.2. PDF Creator Requirements

The package works for all PDF creators: Acrobat Distiller, pdftex, and dvipdfm.

3. Installation

Unzip rangen . zip into your $\mathbb{k T}_{\mathrm{E}} \mathrm{X}$ tree, the folder rangen is constructed with to contain the installation.

4. Package Options

Currently, there is only one option, testmode. Then this option is used, each time the file is run, the random number generator of lcd is re-seeded Normally, the seed is based on the time, the date and other factors; the clock of the $T_{E} X$ compiler gives the time to the nearest minute, so one must wait at least a minute before getting a new seed, this is not acceptable when testing a package. When testmode is used, the initial seed is seed=1, and increments by one thereafter;

[^0]after the increment, this value is saved to the file \jobname. seed and input back in on the next compile.

Any other options that are passed to rangen, are passed on to the lcg package. Useful options for Icg are quiet and seed=<number>.

5. Basic Commands

This package defines the commands \backslash RandomZ, \backslash RandomQ, and \backslash RandomR, \backslash RandomL, and \backslash RandomI. We describe these commands in this section.

For convenience of terminology, a number created by one of the above commands will be referred to as a RV (random variable).
\backslash RandomZ and \backslash RandomQ use the count registers, so there is a restriction on the size of any RV generated by these two commands, we must have

$$
-2^{31}+1 \leq \mathrm{RV} \leq 2^{31}-1 \Longrightarrow-2147483647 \leq \mathrm{RV} \leq 2147483647
$$

For simple applications envisioned for rangen, this range should be plenty enough.
The \backslash RandomR command uses the dimension registers, so a RV generated by \backslash RandomR is restricted to

$$
-2^{14}<\mathrm{RV}<2^{14} \Longrightarrow-16384<\mathrm{RV}<16384
$$

Again, this is not a package for making floating point calculations, it is a package for generating integers, rationals, and decimal numbers with an eye towards application to academic problem generation. Floating point arithmetic can be accomplished using the fp package; rangen and fp seem to be compatible.

5.1. \backslash RandomZ

The command \backslash Random Z defines a random integer, the syntax is \RandomZ[<key-values>] \{\<name>\}\{<zLEP>\}\{<zUEP>\}

Parameter Description:

1. <key-values>: The key-value pairs that modify the choice of the variable. The key-value pairs recognize are
(a) ne: Restrict the choice of the random integer by requiring it not be equal to another number, for example, ne=0 or ne=$=\backslash \mathrm{b}$. In the latter case, $\backslash \mathrm{b}$ is a number defined already by either an earlier \backslash Random Z call, or by \defineZ, discussed later. Multiple restrictions can be placed as well, for example, if ne=\{0, -1$\}$, rangen selects an integer different from 0 or -1.
2. \<name>: The name of the random integer. For example, $\backslash a, \backslash b$, etc.
3. <zLEP>: An integer that is the lower endpoint of the interval from which the number is randomly selected. The lower endpoint may be an integer previously calculated by an earlier \backslash RandomZ call, for example, \backslash Random $Z\{\backslash \mathrm{~b}\}\{\backslash \mathrm{a}\}\{5\}$, this will generate an integer $\backslash \mathrm{b}$ such that $\backslash \mathrm{a} \leq$ $\backslash \mathrm{b} \leq 5$. To get strict inequality, use the syntax \backslash Random $Z\{\backslash \mathrm{~b}\}\{\backslash \mathrm{a} *\}\{5\}$, then rangen attempts to satisfy $\backslash \mathrm{a}<\backslash \mathrm{b} \leq 5$. The range of $\backslash \mathrm{a}$ should be such that the upper limit for $\backslash a$ is less than the upper limit of $\backslash \mathrm{b}$. When the endpoint is a number, the $*$ is ignored.

When the lower endpoint is a command created by (\backslash Random $Z|Q| R \mid L$, or by \backslash define $|Q| R)$, the endpoint is converted to a real number.
4. <zUEP>: An integer that is the upper endpoint of the interval from which the number is randomly selected. The upper endpoint may be an integer previously calculated by an earlier \RandomZ call, for example, \backslash RandomZ $\{\backslash \mathrm{b}\}\{-5\}\{\backslash \mathrm{a}\}$, this will generate an integer $\backslash \mathrm{b}$ such that $-5 \leq \backslash \mathrm{b} \leq \backslash \mathrm{a}$. To get strict inequality, use the syntax $-5 \leq \backslash \mathrm{b} \leq \backslash \mathrm{a} *$, then rangen attempts to satisfy $-5 \leq \backslash \mathrm{b}<\backslash \mathrm{a}$. The range of $\backslash \mathrm{a}$ should be such that the lower limit for $\backslash a$ is greater than the lower limit of $\backslash \mathrm{b}$. When the endpoint is a number, the $*$ is ignored.

When the upper endpoint is a command created by (\backslash RandomZ $|Q| R \mid L$, or by \backslash define $Z|Q| R$), the endpoint is converted to a real number.

Examples:

1. \backslash Random $Z\{\backslash a\}\{-5\}\{5\}$: $\backslash a=-2$. To get another random integer, we repeatedly execute \backslash Random $Z\{\backslash a\}\{-5\}\{5\}$ followed by \backslash a, for example, we copy and paste \backslash Random $Z\{\backslash a\}\{-5\}\{5\} \backslash$ a three times to get $-4,2,0$.
2. Illustrate ne: Copy and paste \backslash RandomZ[ne=\{0, -1$\}]\{\backslash \mathrm{a}\}\{-5\}\{5\} \backslash \mathrm{a}$ repeatedly: $1,3,-3,3$, and -4 . If rangen worked as it should, the list of five number should not contain a 0 or a -1 , does it?
3. Illustrate $\backslash \mathrm{a} \leq \backslash \mathrm{b}$: We use the code
\backslash RandomZ $\{\backslash a\}\{-5\}\{5\} \backslash$ RandomZ $\{\backslash \mathrm{b}\}\{\backslash \mathrm{a}\}\{10\} \$ \backslash \mathrm{a} \backslash \mathrm{le} \backslash \mathrm{b} \$$
We now copy and paste this code: $5 \leq 8,1 \leq 9$. To get strict inequality we execute
\backslash RandomZ $\{\backslash \mathrm{a}\}\{-5\}\{5\} \backslash$ RandomZ $\backslash \backslash \mathrm{b}\}\{\backslash \mathrm{a} *\}\{10\} \$ \backslash \mathrm{a}<\backslash \mathrm{b} \$$
We now copy and paste this code: $3<8,-1<3$

Data Type Properties. When a random number is created, there are several auxiliary commands that are defined.

```
\nOf{\<name>}
\dOf{\<name>}
\mt{\<name>}
\ds{\<name>}
```


Command Description:

1. $\backslash n 0 f\{\backslash<$ name $>\}$ the numerator for the number $\backslash<n a m e>$. For an integer this is just $\backslash<n a m e>$. This function becomes important for rational numbers. If $\backslash a$ is the rational number $2 / 3$, then $\backslash n 0 f\{\backslash a\}=2$.
2. $\backslash \mathrm{dOf}\{\backslash<$ name $>\}$ the denominator for the number $\backslash<$ name>. For an integer this is just 1 . This function becomes important for rational numbers. If $\backslash a$ is the rational number $2 / 3$, then $\backslash d O f\{\backslash a\}=3$.
3. $\backslash f m t$ allows for special formatting for in-line numbers. Without one of the special formatting options, \fmt $\backslash a$ is the same as $\backslash a$.
4. \ds allows for special formatting for display style number. \ds is relevant for rational numbers. If \backslash a represents the rational $1 / 2$, the \backslash a expanded is $1 / 2$, while $\backslash \mathrm{d} \backslash$ a expanded is $\frac{1}{2}$. The \ds command also obeys the formatting options.

5.2. \RandomQ

The command \backslash RandomQ defines a random rational, the syntax is

```
\RandomQ[<key-values>]{\<name>}[<max_denom>] {<qLEP>}{<qUEP>}
```


Parameter Description:

1. <key-values>: The key-value pairs that modify the choice of the variable. The key-value pairs recognize are
(a) ne: Restrict the choice of the random rational by requiring it not be equal to another number, for example, ne=0 or ne=$=\backslash \mathrm{b}$. In the latter case, $\backslash b$ is a number defined already by either an earlier \backslash Random Q call, or by \defineQ, discussed later. Multiple restrictions can be placed as well, for example, if ne $=\{0,-1\}$, rangen selects an integer different from 0 or -1.
2. \<name>: The name of the random rational. For example, $\backslash a, \backslash b$, etc.
3. <max_denom>: The largest denominator you want your random rational to have. For example, \backslash Random $Q\{\backslash a\}[9]\{1 / 2\}\{7 / 2\}$: The value of $\backslash a$ is a rational number between $1 / 2$ and $7 / 2$ having a maximum denominator of 9 . If this parameter is not specified, the least common denominator is used; for the example, that would be 2 . To contrast the two, consider the following examples:
(a) \backslash Random $Q\{$ a\} $[9]\{1 / 2\}\{7 / 2\} \backslash a: 2 / 3,5 / 3,20 / 9$, and 29/9.
(b) \backslash Random $Q\{\backslash a\}\{1 / 2\}\{7 / 2\} \backslash a: 2,7 / 2,1,2$.

The fractions are reduced to lowest terms, and represented as an integer if needed.
Here is more detail on the algorithm used to generate a rational: We illustrate using the example, \RandomQ\{\a\}[9]\{1/2\}\{7/2\}, the details are simplified slightly.
(a) Convert the range so that the endpoints have a denominator of 9 .

$$
\begin{array}{ll}
\text { LEP }: \frac{1}{2}=\frac{9 / 2}{9}=\frac{4.5}{9}<\frac{5}{9} & \text { round up } \\
\text { UEP }: \frac{7}{2}=\frac{63 / 2}{9}=\frac{31.5}{9}>\frac{31}{9} & \text { round down }
\end{array}
$$

(b) We randomly choose an integer between 5 and 31, call it $\backslash z$; our random rational is then $\backslash z / 9$, unless there is an $*$ affixed to one of both endpoints.
(c) If one or both endpoints is itself a random rational (or integer) and the * character is used, then the lower end of the range is incremented (from 5 to 6) and/or the upper end is decremented (from 31 to 30).
(d) Reduce the fraction obtained in the previous step.

You can see from this example, there are a lot of choices for the random integer, there are 27 possibilities between 5 and 32 .
4. <qLEP>: A rational (of the form a / b) that is the lower endpoint of the interval from which the number is randomly selected. The lower endpoint may be a rational (or integer) previously calculated by an earlier \backslash RandomQ call, for example, \backslash Random $Q\{\backslash b\}\{\backslash a\}\{4 / 3\}$, this will generate an integer $\backslash \mathrm{b}$ such that $\backslash \mathrm{a} \leq \backslash \mathrm{b} \leq 4 / 3$. To get strict inequality, use the syntax \backslash RandomZ\{ $\backslash \mathrm{b}\}\{\backslash \mathrm{a} *\}\{4 / 3\}$, then rangen attempts to satisfy $\backslash \mathrm{a}<\backslash \mathrm{b} \leq$ $4 / 3$. The range of $\backslash a$ should be such that the upper limit for $\backslash \mathrm{a}$ is less than the upper limit of $\backslash \mathrm{b}$. When the endpoint is a number, the $*$ is ignored.

When the lower endpoint is a command created by (\backslash RandomZ $|Q| R \mid L$, or by \backslash define $|Q| R)$, the endpoint is converted to a real number.
5. <qUEP>: A rational that is the upper endpoint of the interval from which the number is randomly selected. The upper endpoint may be a rational (or integer) previously calculated by an earlier \backslash RandomQ call, for example, \backslash Random $Q\{\backslash \mathrm{~b}\}\{-4 / 3\}\{\backslash \mathrm{a}\}$, this will generate an integer $\backslash \mathrm{b}$ such that $-4 / 3 \leq \backslash \mathrm{b} \leq \backslash \mathrm{a}$. To get strict inequality, use the syntax $-4 / 3 \leq \backslash \mathrm{b} \leq$ $\backslash \mathrm{a} *$, then rangen attempts to satisfy $-4 / 3 \leq \backslash \mathrm{b}<\backslash \mathrm{a}$. The range of $\backslash \mathrm{a}$ should be such that the lower limit for $\backslash a$ is greater than the lower limit of $\backslash \mathrm{b}$. When the endpoint is a number, the $*$ is ignored.

When the upper endpoint is a command created by (\backslash RandomZ|Q|R|L, or by \backslash def ine $Z|Q| R$), the endpoint is converted to a real number.

1. \backslash Random $Z\{\backslash a\}\{-5\}\{5\}: \backslash a=-2$. To get another random integer, we repeatedly execute \backslash Random $Z\{\backslash a\}\{-5\}\{5\}$ followed by \backslash a, for example, we copy and paste \backslash Random $Z\{\backslash a\}\{-5\}\{5\} \backslash$ a three times to get $-4,2,0$.
2. Illustrate ne: Copy and paste \backslash RandomZ[ne $=\{0,-1\}]\{\backslash \mathrm{a}\}\{-5\}\{5\} \backslash \mathrm{a}$ repeatedly: $1,3,-3,3$, and -4 . If rangen worked as it should, the list of five number should not contain a 0 or a -1 , does it?
3. Illustrate $\backslash \mathrm{a} \leq \backslash \mathrm{b}$: We use the code
\backslash RandomZ $\{\backslash a\}\{-5\}\{5\} \backslash$ RandomZ $\{\backslash \mathrm{b}\}\{\backslash \mathrm{a}\}\{10\} \$ \backslash \mathrm{a} \backslash \mathrm{le} \backslash \mathrm{b} \$$
We now copy and paste this code: $5 \leq 8,1 \leq 9$. To get strict inequality we execute
\backslash RandomZ $\{\backslash \mathrm{a}\}\{-5\}\{5\} \backslash$ RandomZ $\backslash \backslash \mathrm{b}\}\{\backslash \mathrm{a} *\}\{10\} \$ \backslash \mathrm{a}<\backslash \mathrm{b} \$$
We now copy and paste this code: $3<8,-1<3$

Examples:

1. \backslash Random $Q\{\backslash a\}\{-5 / 2\}\{5 / 2\}: \backslash a=-1$. We repeatedly copy and paste \backslash Random $Q\{\backslash a\}\{-5 / 2\}\{5 / 2\} \backslash$ a three times to get $1,-1,1$.
2. Illustrate ne: \backslash RandomQ $[$ ne $=\{0,-1\}]\{\backslash a\}\{-5 / 2\}\{5 / 2\} \backslash a$, copy and paste this code repeatedly: $1 / 2,-1 / 2,-3 / 2,1 / 2$, and -2 . If rangen worked as it should, the list of five number should not contain a 0 or a -1 , does it?
3. Illustrate $\backslash \mathrm{a} \leq \backslash \mathrm{b}$: We use the code
\backslash RandomQ\{\a\}\{-5/2\}\{5/2\}\RandomQ\{\b\}[4]\{\a\}\{10\}\$\a \le $\backslash \mathrm{b} \$$ and copy and paste: $2 \leq 29 / 4,0 \leq 3$. To get strict inequality we execute \backslash RandomQ $\backslash \backslash a\}\{-5 / 2\}\{5 / 2\} \backslash$ RandomQ $\backslash \backslash b\}[4]\{\backslash a *\}\{10\} \$ \backslash a<\backslash b \$$ to get $1<3,-3 / 2<21 / 4$

For a rational number, the commands $\backslash n 0 f, \backslash d 0 f, \backslash f m t$, and $\backslash d s$ are also defined, see‘Data Type Properties’ on page 8.

5.3. \backslash RandomR

The command \backslash RandomR defines a random real number, the syntax is
\RandomR [<key-values>] \{\<name>\} \{<rLEP>\} \{<rUEP>\}

Parameter Description:

1. <key-values>: The key-value pairs that modify the choice of the variable. The key-value pairs recognize are
(a) round: Round the generated real number so that number of decimal places equals the value of the round key; for example, round=2 rounds the result to 2 decimal places.
(b) showzeros: Show trailing zeros, only valid when the round key is used. For example, round $=4$, showzeros might yield a result of 3.2300, whereas without the showzeros key, the same result would be 3.23.
(c) ne: Restrict the choice of the random real by requiring it not be equal to another number real, for example, $n e=-1$ or ne $=\backslash \mathrm{b}$. In the latter case, $\backslash \mathrm{b}$ is a number defined already by either an earlier \backslash RandomR call, or by \defineR, discussed later. Multiple restrictions can be placed as well, for example, if ne $=\{0,-1\}$, rangen selects an integer different from 0 or -1.

Note, comparisons are made after rounding.
2. \<name>: The name of the random rational. For example, $\backslash a, \backslash b$, etc.
3. <rLEP>: A real number (or integer) that is the lower endpoint of the interval from which the number is randomly selected. The lower endpoint may be a number previously calculated by an earlier \backslash RandomR call, for example, \backslash RandomR $\{\backslash \mathrm{b}\}\{\backslash \mathrm{a}\}\{1.3\}$, this will generate an integer $\backslash \mathrm{b}$ such that $\backslash \mathrm{a} \leq \backslash \mathrm{b} \leq 1.3$. To get strict inequality, use the syntax \backslash RandomZ\{ $\backslash \mathrm{b}\}\{\backslash \mathrm{a} *\}\{1.3\}$, then rangen attempts to satisfy $\backslash \mathrm{a}<\backslash \mathrm{b} \leq$ $4 / 3$. The range of $\backslash \mathrm{a}$ should be such that the upper limit for $\backslash \mathrm{a}$ is less than the upper limit of $\backslash \mathrm{b}$. When the endpoint is a number, the $*$ is ignored.

When the lower endpoint is a command created by (\backslash Random $Z|Q| R \mid L$, or by $\backslash d e f$ ine $Z|Q| R$), the endpoint is converted to a real number.
4. <rUEP>: A real number that is the upper endpoint of the interval from which the number is randomly selected. The upper endpoint may be a number previously calculated by an earlier \backslash RandomR call, for example, \backslash RandomR\{ $\backslash \mathrm{b}\}\{-1.3\}\{\backslash \mathrm{a}\}$, this will generate an integer $\backslash \mathrm{b}$ such that $-1.3 \leq \backslash \mathrm{b} \leq \backslash \mathrm{a}$. To get strict inequality, use the syntax $-1.3 \leq \backslash \mathrm{b} \leq \backslash \mathrm{a} *$, then rangen attempts to satisfy $-1.3 \leq \backslash \mathrm{b}<\backslash \mathrm{a}$. The range of $\backslash \mathrm{a}$ should be such that the lower limit for $\backslash \mathrm{a}$ is greater than the lower limit of $\backslash \mathrm{b}$. When the endpoint is a number, the $*$ is ignored.

When the upper endpoint is a command created by (\backslash RandomZ $|Q| R \mid L$, or by \backslash def ineZ $|Q| R$), the endpoint is converted to a real number.
\backslash RandomR divides range into equal sub-intervals, and randomly chooses node. The number of subdivisions is determined by \RNGpowerOfTen, and can be set by $\backslash n D i v i s i o n s P o w e r O f T e n$. This last command takes an integer argument, $n, 1 \leq n \leq 4$, the number of subdivisions is then 10^{n}. Strictly speaking \backslash RNGpowerOfTen does not have to be a power of 10, you can make the definition \def \backslash RNGpowerOfTen\{16\}, and that should work as well. The default is \backslash nDivisionsPowerOfTen\{2\}, that is, divide the range into 100 equal subdivisions.

Examples:

1. \backslash RandomR $\{\backslash a\}\{-2.3\}\{2.3\}: \backslash a=-1.19624$. To get another random integer, we repeatedly execute \backslash RandomR $\{\backslash a\}\{-2.3\}\{2.3\}$ followed by $\backslash \mathrm{a}$, for example, we copy and paste \backslash RandomR $\{\backslash \mathrm{a}\}\{-2.3\}\{2.3\} \backslash \mathrm{a}$
three times to get
$-0.9203,1.56316,0.13747$
2. round: We use \backslash RandomR [round=4] $\{\backslash a\}\{-2\}\{2\} \backslash$ a to get
$-0.8002,1.3594,0.1196$
3. showzeros: For \backslash RandomR[round=4, showzeros] $\{\backslash a\}\{-2\}\{2\} \backslash a$, we have

$$
-0.8002,1.3594,0.1196,-1.4801,1.5194
$$

4. Illustrate $\backslash \mathrm{a} \leq \backslash \mathrm{b}$: We use the code
\backslash RandomR $\{\backslash a\}\{-5\}\{5\} \backslash$ RandomR $\{\backslash \mathrm{b}\}\{\backslash \mathrm{a}\}\{10\} \$ \backslash \mathrm{a}$ \le $\backslash \mathrm{b} \$$ We now copy and paste this code:

$$
-2.00027 \leq 8.07932,0.29951 \leq 1.56052
$$

To get strict inequality we execute
\backslash RandomR $\{\backslash \mathrm{a}\}\{-5\}\{5\} \backslash$ RandomR $\{\backslash \mathrm{b}\}\{\backslash \mathrm{a} *\}\{10\} \$ \backslash \mathrm{a}<\backslash \mathrm{b} \$$ We now copy and paste this code a couple of times:

$$
-2.00027<0.75961,0.29951<1.56052
$$

5.4. \backslash RandomL

The command \backslash RandomL defines a list of numbers (integer, rational, decimal), and randomly selects a number from the list.
\RandomL[<key-values>] \{\<name>\}\{<n1, n2, n3, . . .>\}

Parameter Description:

1. <key-values>: The only key-value pairs recognized is index=<posZ>. The index is a base- 1 index, thus index=1 references the first number in the list.
The index key can be used to retrieve a particular number from this list; for example, by executing \backslash RandomL[index $=2$] $\{\backslash a\}\{17,1 / 2,1.3\}$, the value of $\backslash a$ is $1 / 2$.

The value of index can be any positive integer, even one generated using \backslash RandomI. If the value of index is greater than the number of items in the list, modular arithmetic is performed to put the index back into the proper range.
When the index key is not present, a number is randomly selected from the list.
2. \<name>: The name of the number generated. The number generated will be defined as integer, rational, or real; consequently $\backslash \mathrm{nOf}, \backslash \mathrm{dOf}$, \fmt, and \backslash ds are defined.
3. <n1, n2, n3, .. >: A (possibly mixed) list of numbers. The numbers can be literal (12, 1.2,3/4), or control sequences of numbers (commands) defined earlier by \backslash Random $Z|Q| R \mid L$ or by \backslash define $Z|Q| R$.

Examples:

1. \backslash RandomL $\{\backslash a\}\{17,3.14,88,3 / 4,1 / 2\} \backslash a$, Select a number from this list at random $\backslash a=88$, again $\backslash a=3.14$, and again $\backslash a=88$.
2. \backslash RandomL [index $=3$] $\{\backslash \mathrm{a}\}\{17,3.14,88,3 / 4,1 / 2\} \backslash \mathrm{a}, \backslash \mathrm{a}=88$.

5.5. \backslash RandomI

The command \backslash RandomI defines a list of integers, $\{1,2,3 \ldots \mathrm{n}\}$ and randomly selects an integer, thought of as an index value, from the list.

```
\RandomI{\<name>}{<n>}
```


Parameter Description:

1. \<name>: The name of the number generated, the number will be defined as an integer number.
2. <n>: A positive number greater than 1 . The list $\{1,2,3 \ldots \mathrm{n}\}$ is implicitly created.

Example: \backslash RandomI $\{\backslash$ indx $\}\{6\} \backslash i n d x$ yields 5, 5, 1, 1.
My thought in creating \backslash RandomI is to use it in conjunction with \backslash RandomL (using the index key). For example,

```
\RandomI{\indx}{4}
\RandomL[index=\indx]{\a}{1/2,1/3,1/4,1/5}
```

```
    \RandomL[index=\indx]{\b}{5/3,6/5,7/2,5/6}
\begin{equation*}
    (\a)+(\b) =
\end{equation*}
```

This code results in the following arithmetic problem:

$$
(1 / 2)+(5 / 3)=
$$

This is probably not a good example of the usage of \backslash RandomI. See the next section on \RandomP.

5.6. \backslash RandomP

The command \backslash RandomP defines a list of strings (literal expressions), and randomly selects one from the list. (The "P" in \RandomP stands for"Problem."
\RandomP[<key-values>]\{\<name>\}\{<list of literals>\}

Parameter Description:

1. <key-values>: The only key-value pairs recognized is index=<posZ>. The index is a base- 1 index, thus index=1 references the first number in the list.
The index key can be used to retrieve a particular literal from this list; for example, by executing \backslash RandomP [index $=2$] $\{\backslash a\}\{d, p, s\}$, the value of $\backslash \mathrm{a}$ is p .
The value of index can be any positive integer, even one generated using \backslash RandomI, or by another list. If the value of index is greater than the number of items in the list, modular arithmetic is performed to put the index back into the proper range.
When the index key is not present, a number is randomly selected from the list.
2. \<name>: The name of the literal generated.
3. <list of literals>: A comma-delimited list of literal strings, selected literal is not interpreted as a number, but as passed into the definition of \<name>.

Examples.

1. Executing \backslash RandomP $\{\backslash \mathrm{a}\}\{1+16, \backslash \cos (\backslash \mathrm{pi}), \%$
$\backslash f r a c\{d\}\{d x\} \backslash f r a c\{1\}\{2\} x^{\wedge} 2$, $\{\backslash$ int $\left.\backslash \cos (x) \backslash, d x\}\right\}$
$\$ \backslash$ texttt $\{\backslash$ string $\backslash \mathrm{a}\}=\backslash \mathrm{a} \$$, we get $\backslash \mathrm{a}=\cos (\pi)$. and then again, $\backslash \mathrm{a}=\frac{d}{d x} \frac{1}{2} x^{2}$.
2. Use \RandomI with \RandomP. You can create a series of questions and answers using these two:
\backslash RandomI $\{\backslash$ indx $\}\{5\}$
\backslash RandomP[index $=\backslash$ indx] $\{\backslash q\}\{1+16, \backslash \cos (\backslash p i), \backslash p i \backslash \sin (\backslash p i), \%$ $\backslash f r a c\{d\}\{d x\} \backslash f r a c\{1\}\{2\} x^{\wedge} 2,\{\backslash$ int $\left.\backslash \cos (x) \backslash, d x\}\right\}$
\backslash RandomP[index= ind $x]\{\backslash a\}\{17,-1,0, x, \backslash \sin (x)+C\}$
\begin\{equation*\} }
$\backslash q=\backslash a$
\end\{equation*\} }
The execution of these lines becomes

$$
\int \cos (x) d x=\sin (x)+C
$$

You can create a switch to include the answer or not.
3. There is an alternate approach to this previous example. Random lists (\backslash RandomL and \backslash RandomP) define a macro \iOf, the value of which is the index of the item selected (at random). We can use \iOf in the above problem as follows:
\backslash RandomP\{\q\}\{1+16, \cos($\backslash p i$) $, \backslash p i \backslash \sin (\backslash p i), \%$
\backslash displaystyle $\backslash f r a c\{d\}\{d x\} \backslash f r a c\{1\}\{2\} x^{\wedge} 2, \%$ $\{\backslash i n t \backslash \cos (x) \backslash, d x\}\}$
\backslash RandomP[index=\iOf $\{\backslash q\}]\{\backslash a\}\{17,-1,0, x, \backslash \sin (x)+C\}$
\begin\{equation*\} }
$\backslash q=\backslash a$
\end\{equation*\} }
The execution of these lines gives the output...

$$
\pi \sin (\pi)=0
$$

Here, we select the answer to the randomly chosen question.

5.7. \backslash RandomS

The command \backslash RandomS generates a random sign, either + or -. This may be useful for creating addition/subtraction problems.

```
\RandomS [<dec>]{\<name>}
```


Parameter Description:

1. <dec>: A number between 0 and 1. This command generates a + sign with probability <dec>. The default value is 0.5 .
2. \<name>: The name that references the generated random sign.

Examples:

1. Random addition problem:
\backslash RandomZ\{\a\}\{1\}\{20\}\RandomZ\{\b\}\{1\}\{20\}\RandomS\{\s\}
\begin\{equation*\} }
$\backslash a \ s \backslash b$
\end\{equation*\} }
This code expands to
$6+15$
Whether we add or subtract the summands is determined by the command \s.
2. Random Differentiation problem:
\backslash RandomQ $\{\backslash \mathrm{a}\}$ [8] $\{1\}\{2\} \backslash$ RandomQ $\{\backslash \mathrm{b}\}$ [8] $\{2\}\{3\}$
\backslash RandomZ $\{\backslash \mathrm{n}\}\{1\}\{6\} \backslash$ RandomS $\{\backslash$ si\} \backslash RandomS $\{\backslash$ sii $\}$
Differentiate
\begin\{equation*\} }
$\backslash f r a c\{d\}\{d x\}(\backslash b i g l(\backslash a) ~ \ s i(\backslash b) ~ x \wedge\{\backslash s i i \backslash n\} \backslash b i g r)$
\end\{equation*\} }
Differentiate

$$
\frac{d}{d x}\left((9 / 8)-(9 / 4) x^{+6}\right)
$$

5.8. Commands that Operate on Numbers

Associated with each data type (integer, rational, and real) are several useful commands $\backslash n O f, \backslash d O f, \backslash i O f, \backslash f m t$, and $\backslash d s$.

- $\backslash n O f$ and $\backslash \mathrm{dOf}$

For integer, rational, and real numbers $\backslash \mathrm{nOf}$ and $\backslash \mathrm{dOf}$ are the numerator and denominator, respectively.

- Integer: $\backslash \mathrm{n} 0 \mathrm{f}$ is the integer, and $\backslash \mathrm{dOf}$ is 1 ; for example, define an integer by $\backslash \operatorname{RandomZ}\{\backslash a\}\{-5\}\{5\}, \backslash a=-1, \backslash n 0 f\{\backslash a\}=-1$, and $\backslash d O f\{\backslash a\}=1$, as advertised.
- Rational: $\backslash \mathrm{nOf}$ is the numerator (an integer), and $\backslash \mathrm{dOf}$ is the denominator (an integer) of the reduced fraction. For example, define \a by \backslash RandomQ [ne $=0]\{\backslash a\}[9]\{-3 / 2\}\{3 / 2\}$, then

$$
\backslash \mathrm{a}=-2 / 9, \backslash \mathrm{nOf}\{\backslash \mathrm{a}\}=-2, \text { and } \backslash \mathrm{dOf}\{\backslash \mathrm{a}\}=9
$$

- Real: $\backslash n 0 f$ is the numerator (an integer), and $\backslash d 0 f$ is the denominator (an integer) of the reduced fraction, after the real is converted into a rational number. For example, \backslash RandomR $\{\backslash a\}\{.25\}\{.75\}$, then

$$
\backslash \mathrm{a}=0.37474, \backslash \mathrm{n} 0 \mathrm{f}\{\backslash \mathrm{a}\}=18737, \text { and } \backslash \mathrm{dOf}\{\backslash \mathrm{a}\}=50000
$$

If we round using with \backslash RandomR [round=2] $\{\backslash \mathrm{a}\}\{.25\}\{.75\}$, we get

$$
\backslash \mathrm{a}=0.64, \backslash \mathrm{nOf}\{\backslash \mathrm{a}\}=16, \text { and } \backslash \mathrm{dOf}\{\backslash \mathrm{a}\}=25
$$

- Special Formatting Commands: The \ds and \fmt families

When a RV, such as $\backslash \mathrm{a}$, is a rational number type, say $\backslash \mathrm{a}=1 / 3$, the command $\backslash \mathrm{a}$ expands to $1 / 3$. To get a display style formatting of the rational use the $\backslash \mathrm{ds}$ command. The expansion of $\$ \backslash \operatorname{cs}\{d s\} \backslash \operatorname{cs}\{a\} \$$ is $\frac{1}{3}$.
We have seen in several examples in which the formatting was not always what we'd like. Expressions like x^{1} should be $x, 1 x$ should be $x,-1 x$ should be $-x$. The formatting commands \cfmt and \efmt (and their display style counterparts $\backslash c d s$ and \eds) attempt to format the special cases of 1 and -1 , as they appear in an exponent (the ' e ' variations) and as they appear as a coefficient (the ' c ' variations).
All the formatting commands \cfmt, \efmt, \ds, \cds, and \eds take a RV as its argument. $\backslash(c \mid e) f m t \mid(c \mid e) d s \backslash a$ expands to $\backslash a$ when $\backslash a$ is not 1 or -1 . These cases are covered below.

- For $\backslash a=1, \backslash c f m t \backslash a=\backslash e f m t \backslash a=\backslash c d s \backslash a=\backslash e d s \backslash a=<e m p t y>$, the empty string. Thus, if $\backslash a=1$, and we typeset $\$ \backslash a \mathrm{x}\{\backslash \mathrm{a}\} \$$, we get $1 x^{1}$, which is not the standard way of writing this expression, but if we typeset $\$ \backslash c f m t \backslash a \mathrm{x}\{\backslash \backslash e f m t \backslash a\} \$$ we get x, which is correct. Notice that we used $\backslash c f m t$ on the baseline, and $\backslash e f m t$ in the exponent. It does not make any difference here, but it does if $\backslash a=-1$, see the next bullet point.
- $\backslash a=-1$, then

$$
\begin{aligned}
& \backslash c f m t \backslash a=\backslash c d s \backslash a=-\quad(\text { minus sign }) \\
& \backslash e f m t \backslash a=\backslash e d s \backslash a=-1 \quad \text { (minus one })
\end{aligned}
$$

Returning to the same expression in the previous bullet, if $\backslash a=-1$, and we typeset $\$ \backslash \mathrm{a} \mathrm{x}^{\wedge}\{\backslash \mathrm{a}\} \$$, we get $-1 x^{-1}$, which is not the standard way of writing this expression, but if we typeset $\$ \backslash c f m t \backslash a \operatorname{x}\{\backslash$ efmt $\backslash a\} \$$ we get $-x^{-1}$, which is correct. Notice the difference cases if I had typeset $\$ \backslash c f m t \backslash a \mathrm{x}\left\{\{\backslash \mathrm{cfmt} \backslash \mathrm{a}\} \$\right.$, I would have gotten $-x^{-}$, not good.
The 'c'-variation is used for unitary signs, not binary signs. For example, , if $\backslash \mathrm{a}=-1$, and we typeset $\$ 2+\backslash c f m t \backslash \mathrm{a}$ x $\$$, we get $2+-x$, which may be fine is some situations, but most of the time it is not. As a work around, make coefficients positive, and generate a random sign using \backslash RandomS; for example, if we execute \backslash RandomS $\{\backslash s\} \backslash$ RandomZ $\{\backslash a\}\{1\}\{3\}$ and typeset $\$ 2 \backslash \mathrm{~s} \backslash \mathrm{cfmt} \backslash \mathrm{a} \mathrm{x} \$$, we get an addition half the time and a subtraction half the time, $2-x, 2+3 x, 2-3 x, 2-2 x, 2+3 x, 2+x$.
Similarly, the 'e'-variation is for unitary sign in the exponent, and should be used when there is a need for these special format rules.

- Random Sign: The formatting commands are defined for a random sign created by \backslash RandomS and following the same definitions outline above. These are of marginal value in this context.

- Getting the Data type with \type0f

There may be occasions where you want to know the data type of a RV. The rangen does change the data type in special cases. For example, if $\backslash \mathrm{a}$ is created by $\backslash \operatorname{cs}\{\operatorname{RandomQ\} }\{\backslash a\}[2]\{1\}\{3\}$, and its value happens to be an integer, rangen changes its type of integer. You can determine the type of a RV with the \typeOf command, which takes a RV as its argument, the value of \typeOf is a nonnegative integer. The following table gives the values of $\backslash t y p e 0 f$, and associated data types.

Data type	\type0f
Integer	0
Rational	1
Real	2
Literal	3

A suggested application to \backslash typeOf: Suppose, $\backslash \mathrm{a}$ is a rational RV (for example, \backslash Random $Q\{\backslash a\}[2]\{1\}\{3\}$), and we want to typeset $\$ \backslash c f m t \backslash a \mathrm{x} \$$ One instance might be $3 / 2 x$, this is not good syntax; so we typeset $\$(\backslash c f m t \backslash a) ~ \mathrm{x} \$$ to get $(3 / 2) x$, that's good. But if $\backslash \mathrm{a}$ is an integer, such as 1 , 2 , or 3 , we get (2) x, which contains redundant parentheses. Now we come to the use of \typeof. We now typeset the expression

\$ \ifnum\typeOf \a=0\relax\cfmt\a\else(\cfmt\a) \fi x \$

If $\backslash \mathrm{a}$ is not an integer we get, for $\backslash \mathrm{a}=3 / 2$, we obtain (3/2) x, but for for $\backslash \mathrm{a}=2$, we get $2 x$.

5.9. \defineZ, \defineQ, and \defineR

The rangen package internally uses \defineZ, \defineQ, and \def ineR to define an integer, a rational number, and a real (decimal) number. These command may be used by the document author as well to create non-random variables.

```
\defineZ{\<name>}{zValue}
\defineQ{\<name>}{zNumer}{zDenom}
\defineR{\<name>}{rValue}
```

Thus, \backslash defineZ $\{\backslash a\}\{17\}$ defines $\backslash a=17, \backslash$ defineQ $\backslash \backslash a\}\{-3\}\{2\}$ defines $\backslash a=-3 / 2$, and $\backslash \operatorname{defineR}\{\backslash a\}\{17.88\}$ defines $\backslash a=17.88$.
The various properties data types are created by \defineZ, \defineQ, and
 \cfmt.

The following are other important points to remember.

- Positive Denominators. Notice that if \backslash defineQ $\backslash \backslash a\}\{3\}\{-2\}$, then $\backslash \mathrm{a}=-3 / 2$, and $\backslash \mathrm{nOf} \backslash \mathrm{a}=-3$, and $\backslash \mathrm{dOf} \backslash \mathrm{a}=2$. Thus, rangen does not allow a negative denominator.
- Automatic Reduction. If we make the definition $\backslash \operatorname{def}$ ine $Q\{\backslash a\}\{6\}\{4\}$, then $\backslash a=3 / 2$, a rational number is automatically reduced to lowest terms.
- Re-classification. If we make the definition \defineQ\{\a\}\{6\}\{2\}, then $\backslash a=3$ is reduced to lowest terms and re-classified as an integer \typeOf $\backslash a=0$ (an integer).

6. rangen and fp

After a little bit of testing, it appears that fp can work with the rangen package. The rangen package does not provide any command for combining RVs using such operations as addition, subtraction, multiplication, division, etc.

The rangen package package does provide several useful commands that fp does not, these are \reduceFrac, \gcd, and $\backslash l \mathrm{~cm}$.
\reduceFrac takes two arguments (numerator and denominator), both integers, and attempts to reduce the implied fraction to lowest terms, and returns the result in two macros \rfNumer and $\backslash r f$ Denom. For example, to reduce the fraction $4 / 12$, we execute \backslash reduceFrac $\{4\}\{12\}$, which returns $\backslash r f$ Numer=1, and $\backslash r f$ Denom=3, forming the reduced fraction $1 / 3 ;$ thus, $4 / 12=1 / 3$.

The greatest common divisor command $\backslash g c d$ takes two integers as its arguments and returns its result in the macro \backslash thegcd. For example, the $\backslash \operatorname{gcd}\{4,8\}$ is 4, while the $\backslash \operatorname{gcd}\{4\}\{6\}$ is 2.

The least common multiple command \lcd takes two integers as its arguments, and returns its result in the macro \thelcd. For example, $\backslash \operatorname{lcm}\{4\}\{5\}$ is \backslash thelcm=20, while, $\backslash l \mathrm{~cm}\{4\}\{6\}$ is \backslash thelcm=12.

The following example illustrates the use of the rangen and fp packages to pose a random arithmetic problem, and present a detailed solution.

```
\RandomQ{\a}[6] {2}{4}\RandomQ{\b} [6] {2}{4}
\gcd{\dOf\a}{\dOf\b}
\FPeval\lcd{clip((\dOf\a)*(\dOf\b)/\thegcd)}
\FPeval\si{clip(\lcd/(\dOf\a))}
\FPeval\sii{clip(\lcd/(\dOf\b))}
\FPeval\finalnum{clip((\si)*(\nOf\a)+(\sii)*(\nOf\b))}
\defineQ{\ans}{\finalnum}{\lcd}
$$
    \ds\a \thisop \ds\b = \frac{(\si)(\n0f\a)+(\sii)(\n0f\b)}{\lcd}
        = \frac{\finalnum}{\lcd}\ifnum\lcd=\dOf\ans\else =\ds\ans\fi
```

An instance of this code might look like this:

$$
\frac{8}{3}+\frac{17}{6}=\frac{(2)(8)+(1)(17)}{6}=\frac{33}{6}=\frac{11}{2}
$$

If there is any reduction of the fraction (brought on by the \def ineQ command), this additional expression is included.

See the demo file rangen_fp.tex for a complete example.

7. rangen and exerquiz

Developing a package for randomly generating numbers that could be used as a basis for creating random quizzes (see the example back in Section 1, page 4) was my original motivation for writing the original package back in the year 2000 AD. In this section, we introduce the techniques that l've developed for creating random quizzes, and, more importantly, how to grade them and to exhibit to the user the correct answer. This system is not a computer algebra system, so, it is difficult, but not impossible to also supply a solution (a opposed to just the answer) to the problem as well.

Now,...let's see how its done! Examples of this section were taken from the demo file rangen_tst.tex.

7.1. Creating Quizzes using rangen

The rangen package provides three JavaScript functions that are used with exerquiz quizzes, these are

- rEval (str): The function rEval evaluates its argument. rEval searches its argument for rEval and rFrac, and executes any inner nested functions first.
- rFrac (str): Evaluates a rational number by evaluating the value of the numerator and denominator separately. rFrac searches its argument for rEval and rFrac , and executes any inner nested functions first.
- rngCorrAnsButton: A function that is used to represent the correct answer to the user.

The best way of illustrating these function is by discussing an example or two.

Example 1. We create two $R V s$, $\backslash a$ and $\backslash b$ that are rational numbers. We want to add them, and present the answer as a rational number.
\backslash RandomQ $\{\backslash \mathrm{a}\}[16]\{1 / 8\}\{15 / 16\} \backslash$ RandomQ [ne=$=\mathrm{a}]\{\backslash \mathrm{b}\}[16]\{1 / 8\}\{15 / 16\}$

$$
\text { 1. } \frac{5}{16}-\frac{13}{16}=\square \quad \begin{array}{|l|l|}
\hline \text { Ans } & \text { Clear } \\
\hline
\end{array}
$$

The question is posed using \backslash RespBoxMath.

```
$\displaystyle\ds\a - \ds\b =
\RespBoxMath[\rectW{.5in}]{
    (\nOf\a*\dOf\b-\nOf\b*\dOf\a)/(\dOf\a*\dOf\b)}
    {2}{.0001}{[0, 2]}
    [{priorParse: \Array(nodec,NoAddOrSub)}]$
```

Exerquiz determines whether the user's answer is correct, it by evaluating the author's answer at randomly selected points. Exerquiz uses the floating point arithmetic of JavaScript to evaluate the user's answer. The author's correct answer is given in line (1), and it is just the formula for combining two fractions \a and $\backslash \mathrm{b}$; note the use of $\backslash \mathrm{nOf}$ and $\backslash \mathrm{dOf}$. Line (2) is standard parameters for \backslash RespBoxMath, the number of random points to use, the precision, and the interval from which to select the points. Line (3) specifies a couple of routines from the dljslib package, these prevent the user from using decimals and rational arithmetic to answer the question. (The latter function would, for example, prevent the user from copying the question and pasting it into the answer.)
Now comes the most interesting part, at least to me: The presentation of the correct answer to the user. These is where the JavaScript functions rEval and rFrac are used. The code for the answer button is shown below.

```
\CorrAnsButton{rFrac(
    rEval(\nOf \a*\dOf\b-\nOf\b*\dOf\a)/rEval(\dOf \a*\dOf\b)
)}*{rngCorrAnsButton}
```

Here, this code is broken across several lines to fit on the page. We direct the \backslash CorrAnsButton to use the function rngCorrAnsButton, as seen in line (3). This is a special function define by rangen to help in the presentation of the answer to the user.

Keep in mind, the inner-most rEval and rFrac functions are evaluated first; consequently, the two rEval functions in line (2) are evaluated first. These two evaluations calculate the numerator and denominator separately, this results in a
numerical numerator and denominator. The function rFrac is then executed on the resulting rational number, this function reduces the fraction to lowers terms. This final calculation is what the user sees when the correct answer button is pressed.
The next example will illustrate a decimal presentation of the answer, and introduces a new command, \RNGprintf.

Example 2. We create four RVs, $\backslash \mathrm{a}, \backslash \mathrm{b}, \backslash \mathrm{c}$, and $\backslash \mathrm{n}$, three rational and one integer. The exponent of the power is rational, hence, we represent a decimal answer to the user.
\backslash RandomQ\{\a\} [8] $\{1 / 4\}\{7 / 6\} \backslash$ RandomZ $\{\backslash \mathrm{b}\}\{1\}\{3\}$
\backslash RandomQ\{\n\}[8] \{1/2\}\{3/2\}\RandomZ[ne=\zZero] $\{\backslash c\}\{-3\}\{3\}$

$$
\text { 2. } \int_{7 / 8}^{1} 2 x^{7 / 8} d x=
$$

Ans	Clear

The question is posed using \backslash RespBoxMath.

```
$\displaystyle\int_{\a}^{\b} \cfmt\c x^{\efmt\n}\,dx =
    \RespBoxMath{\c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)}
            {3}{.0001}{[0,2]}$
```

The correct answer is given on line (2), and is based on the known form of the integrand; here, we use standard integration formulas.
The code for the correct answer button has a new element in it

```
\CorrAnsButton{rEval(
    \c((\b)^(\n+1)-(\a)^(\n+1))/(\n+1)
)}*{rngCorrAnsButton\RNGprintf{\%.4f}}}\kern1bp\sqTallyBox
```

The rEval function evaluates the expression on line (2), the result is a decimal number. As before, we use the rngCorrAnsButton, but we've added the \backslash RNGprintf command to the end of the function name. This is a kludge that I've developed to be able to format a numerical answer. The \RNGprintf command uses the Acrobat JavaScript function util. printf. The argument of \backslash RNGprintf is passed to util. printf as its formatting string. Here, we use $\backslash \% .4 f$, so the number is presented as a floating point number with four decimal places. See the documentation of util. printf in the JavaScript for Acrobat API Reference. ${ }^{2}$

[^1]The final example it the one seen in 'Introduction' on page 4, it uses another new command, \defineDepQJS. This command is used to define a new RV as a rational function of other RVs, and to define special JavaScript formatting, \js. The results of this command are used exclusively for JavaScript, and are not meant to be typeset.

```
\defineDepQJS{\<name>}{<numer>}{<denom>}
    {<expression assessed through \js>}
```

This function defines $\backslash<$ name $>$ to be (<numer>) / (<denom>), $\backslash j$ j as the the $4^{\text {th }}$ argument, and \nOf and \dOf, as usual. The expression <numer> and <denom> can be functions of RV defined earlier. The $4^{\text {th }}$ argument can also be a function of earlier arguments, including $\backslash<n a m e>, \backslash n 0 f \backslash<n a m e>$, and $\backslash d O f \backslash<n a m e>$. An example will perhaps illustrate.

Example 3. Find the equation of the line that passes through P and Q.
We begin by defining our variables:

```
\RandomZ{\a}{-10}{9}\RandomZ{\b}{-10}{9}
\RandomZ{\c}{\a*}{10}\RandomZ{\d}{\b*}{10}
\defineDepQJS{\m}{\d - \b}{\c - \a}
    {rFrac(rEval(\nOf\m)/rEval(\dOf\m))}
\defineDepQJS{\yIntercept}{\b - \a*\m}{1}
    {rFrac((rEval(\b*\dOf\m-\a*\nOf\m))/(rEval(\dOf\m)))}
```

Our big problem is to compute the slope of the line, $\backslash \mathrm{m}$. I define $\backslash \mathrm{m}$ as using $\backslash d e f i n e D e p Q J S$. The numerator and denominator are those in the slope calculation, given two points. The expansion of $\backslash m$ will be ($\backslash d-\backslash b$) ($\backslash c-\backslash a$), and the JavaScript will be performing the arithmetic operations. The expression that is accessed with the $\backslash j$ s is the fourth argument, line (4); here, we calculate slope as a rational number. We make a similar definition for the \yIntercept of the line.

Below are the two points $\$ \mathrm{P}(\backslash \mathrm{a}, \backslash \mathrm{b}) \$$ and $\$ \mathrm{Q}(\backslash \mathrm{c}, \backslash \mathrm{d}) \$$.

$$
\text { 3. } P(-5,4), Q(-2,7) \text { : }
$$

The question is posed using \backslash RespBoxMath.

```
$P(\,\a, \b\,)$, $Q(\,\c, \d\,)$:
    \RespBoxMath{y=\m*x + \yIntercept}(xy)
    {3}{.0001}{[0,2]x[0,2]}*{ProcRespEq}
```

The answer is given in line (2), and will be evaluated numerically, and compared numerically with the user's response.

The code for the correct answer button has a new element in it

```
\CorrAnsButton{y = \js\m\space x + \js\yIntercept}
    *{rngCorrAnsButton}
```

The display of the answer to the user is done using $\backslash j s \backslash m$ and $\backslash j s \backslash y$ Intercept to represent the slope and intercept as a rational number.
Think of \def ineDepQJS a convenient way of defining (JavaScript) expressions that will appear in \RespBoxMath and for \CorrAnsButton.

7.2. Creating Solutions to Random Quizzes

Writing a solution to a question that is based on a formula or template can be difficult. $\mathbb{E T}_{E} \mathrm{X}$ is not a computer algebra system, so the possibilities are limited. Still, rangen supplies the writeRVsTo environment to support a solution.

Example 4. We create two RVs, \a and $\backslash \mathrm{b}$ that are rational numbers. We want to add them, and present the answer as a rational number.
\begin\{writeRVsTo\}\{quizzes\} }
\backslash RandomQ $\{\backslash a\}[16]\{1 / 8\}\{15 / 16\} \backslash$ RandomQ[ne=$=$ a] $\{\backslash b\}[16]\{1 / 8\}\{15 / 16\}$ \end\{writeRVsTo\} }

We make that same definitions as in Example 1, but we enclose these definitions within the writeRVsTo. This environment writes its contents to the quiz solutions file, and also executes its contents. This way, the definitions are make both here, and just before the solution to this problem in the solutions file.

$$
\text { 4. } \frac{5}{16}+\frac{13}{16}=\square
$$

The verbatim listing of this quiz is

```
\item $\displaystyle\ds\a + \ds\b =
\RespBoxMath[\rectW{.5in}]{
    (\nOf\a*\dOf\b+\nOf\b*\dOf\a)/(\dOf\a*\dOf\b)}*{2}
    {.0001}{[0,2]}[{priorParse: \Array(nodec,NoAddOrSub)}]$\hfill
\CorrAnsButton{rFrac(rEval(
    \nOf\a * \dOf\b + \nOf\b * \dOf\a)/rEval(\dOf\a * \dOf\b))
}*{rngCorrAnsButton}\kern1bp\sqClearButton
```

```
\begin{solution}\relax\RNGadd\a\b\defineQ{\ans}{\rfNumer}{\rfDenom}%
The solution to this problem is
\begin{equation*}
    \boxed{\ds\a - \ds\b = \ds\ans}
\end{equation*}
Did I forget to tell you that a simple command \cs{RNGadd}
for adding two rational numbers is defined by
\textsf{rangen}. Sorry about that! \dps
\end{solution}
```

The writeRVsTo has the following syntax

```
\begin{writeRVsTo}{quizzes|exercises}
<rangen commands creating RVs>
\end{writeRVsTo}
```

The argument can be either the string quizzes or exercises. In the first case, the content of the environment is written to the solutions file for quizzes, and in the latter case, to the solutions file for the exercises.

That's all for now, I simply must get back to my retirement. $\mathfrak{P S}$

Solutions to Quizzes

Solution to Quiz: The solution to this problem is

$$
\frac{5}{16}+\frac{13}{16}=\frac{9}{8}
$$

Did I forget to tell you that a simple command \backslash RNGadd for adding two rational numbers is defined by rangen. Sorry about that! $\mathfrak{D P}$

[^0]: ${ }^{1}$ AeB: http://www.math.uakron.edu/ \sim dpstory/webeq.html

[^1]: ${ }^{2}$ http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp

