
The SageTEX package∗

Dan Drake and others†

June 20, 2009

1 Introduction

Why should the Haskell and R folks have all the fun? Literate Haskell is a popular
way to mix Haskell source code and LATEX documents. (Actually any kind of
text or document, but here we’re concerned only with LATEX.) You can even
embed Haskell code in your document that writes part of your document for you.
Similarly, the R statistical computing environment includes Sweave, which lets
you do the same thing with R code and LATEX.

The SageTEX package allows you to do (roughly) the same thing with the Sage
mathematics software suite (see http://sagemath.org) and LATEX. (If you know
how to write literate Haskell: the \eval command corresponds to \sage, and the
code environment to the sageblock environment.) As a simple example, imagine
in your document you are writing about how to count license plates with three
letters and three digits. With this package, you can write something like this:

There are 26 choices for each letter, and 10 choices for
each digit, for a total of $26^3 \cdot 10^3 =
\sage{26^3*10^3}$ license plates.

and it will produce

There are 26 choices for each letter, and 10 choices for each digit, for
a total of 263 · 103 = 17576000 license plates.

The great thing is, you don’t have to do the multiplication. Sage does it for you.
This process mirrors one of the great aspects of LATEX: when writing a LATEX
document, you can concentrate on the logical structure of the document and trust
LATEX and its army of packages to deal with the presentation and typesetting.
Similarly, with SageTEX, you can concentrate on the mathematical structure (“I
need the product of 263 and 103”) and let Sage deal with the base-10 presentation
of the number.

A less trivial, and perhaps more useful example is plotting. You can include a
plot of the sine curve without manually producing a plot, saving an EPS or PDF
∗This document corresponds to SageTEX v2.2.1, dated 2009/06/17.
†Author’s website: mathsci.kaist.ac.kr/∼drake/.

1

http://www.haskell.org/haskellwiki/Literate_programming
http://tug.org/pracjourn/2008-1/zahn/
http://sagemath.org
http://mathsci.kaist.ac.kr/\protect \unhbox \voidb@x \penalty \@M \ {}drake/

file, and doing the \includegraphics business with the correct filename yourself.
If you write this:

Here is a lovely graph of the sine curve:

\sageplot{plot(sin(x), x, 0, 2*pi)}

in your LATEX file, it produces

Here is a lovely graph of the sine curve:

1 2 3 4 5 6

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Again, you need only worry about the logical/mathematical structure of your
document (“I need a plot of the sine curve over the interval [0, 2π] here”), while
SageTEX takes care of the gritty details of producing the file and sourcing it into
your document.

But \sageplot isn’t magic I just tried to convince you that SageTEX makes
putting nice graphics into your document very easy; let me turn around and warn
you that using graphics well is not easy, and no LATEX package or Python script
will ever make it easy. What SageTEX does is make it easy to use Sage to create
graphics; it doesn’t magically make your graphics good, appropriate, or useful.
(For instance, look at the sine plot above—I would say that a truly lovely plot
of the sine curve would not mark integer points on the x-axis, but rather π/2, π,
3π/2, and 2π.)

Till Tantau has some good commentary on the use of graphics in section 6 of
the pgf manual. You should always give careful thought and attention to creating
graphics for your document; I have in mind that a good workflow for using SageTEX
for plotting is something like this:

1. Figure out what sort of graphic you need to communicate your ideas or
information.

2. Fiddle around in Sage until you get a graphics object and set of options that
produce the graphic you need.

2

http://www.ctan.org/tex-archive/graphics/pgf/
http://www.ctan.org/tex-archive/graphics/pgf/

3. Copy those commands and options into SageTEX commands in your LATEX
document.

The SageTEX package’s plotting capabilities don’t help you find those Sage
commands to make your lovely plot, but they do eliminate the need to muck
around with saving the result to a file, remembering the filename, including it into
your document, and so on. In section 3, we will see what what we can do with
SageTEX.

2 Installation

To install SageTEX, you need to do two things: make SageTEX known to Sage, and
to LATEX. There are two basic methods to do those two things.

In what follows, “$SAGE ROOT” refers to the root directory of your Sage instal-
lation.

2.1 As a Sage spkg

The easiest way to install SageTEX is by using Sage’s own spkg installation facility;
visit the optional packages page and run sage -i with the appropriate file name.
This will let Sage know about SageTEX; you still need to let LATEX know about it.

The simplest way to “install” SageTEX for LATEX is to copy the file sagetex.sty
from $SAGE ROOT/local/share/texmf to the same directory as your document.
This will always work, as LATEX always searches the current directory for files.

Rather than make lots of copies of sagetex.sty, you can keep it (and
the rest of the SageTEX documentation) in a texmf directory. The easi-
est thing to do is to create a texmf directory in your home directory and
use the texhash utility so that your TEX system can find the new files.
See www.tex.ac.uk/cgi-bin/texfaq2html?label=privinst which describes the
basic ideas, and also www.tex.ac.uk/cgi-bin/texfaq2html?label=what-TDS
which has some information specific to MiKTEX. Linux/Unix users can use
$HOME/texmf and users of MacTEX should use $HOME/Library/texmf.

To copy the files that LATEX needs into your texmf directory, simply do

cp -r $SAGE ROOT/local/share/texmf/* HOMEPREFIX/texmf/

where HOMEPREFIX is the appropriate prefix for your own texmf tree. Then you
need to make TEX aware of the new files by running

texhash HOMEPREFIX/texmf/

2.2 From CTAN

You can also get SageTEX from its CTAN page. This is not the recommended way
to get SageTEX, but it will work.

If you get SageTEX from CTAN, you will need to make the sagetex.sty file
available to LATEX using any of the methods described above, and you will also

3

http://sagemath.org/packages/optional/
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=privinst
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=what-TDS
http://tug.ctan.org/pkg/sagetex

need to make sagetex.py known to Sage. You can either keep a copy of that
file in the same directory as your document or put it where Sage will find it.
You can use the $SAGE_PATH environment variable (which is analogous to the
$PYTHONPATH variable) to tell Sage where the file is, or manually copy sagetex.py
into $SAGE ROOT/local/lib/python/site-packages.

2.3 Using TEXShop

Starting with version 2.25, TEXShop includes support for SageTEX. If you
move the file sage.engine from ~/Library/TeXShop/Engines/Inactive/Sage
to ~/Library/TeXShop/Engines and put the line

%!TEX TS-program = sage

at the top of your document, then TEXShop will automatically run Sage for you
when compiling your document.

Note that you will need to make sagetex.sty and sagetex.py known to LATEX
and Sage using any of the methods described above (although note that TEXShop
includes copies of these files for you). You also might need to edit the sage.engine
script to reflect the location of your Sage installation.

2.4 Other scripts included with SageTEX

SageTEX includes several Python files which may be useful for working with
“SageTEX-ified” documents. The remote-sagetex.py script allows you to use
SageTEX on a computer that doesn’t have Sage installed; see section 5 for more
information.

Also included are makestatic.py and extractsagecode.py, which are con-
venience scripts that you can use after you’ve written your document. See
section 4.3 and section 4.4 for information on using those scripts. The file
sagetexparse.py is a module used by both those scripts. These three files are
independent of SageTEX. If you install from a spkg, these scripts can be found in
$SAGE ROOT/local/share/texmf/.

3 Usage

Let’s begin with a rough description of how SageTEX works. Naturally the very
first step is to put \usepackage{sagetex} in the preamble of your document.
When you use macros from this package and run LATEX on your file, along with
the usual zoo of auxiliary files, a .sage file is written with the same basename as
your document. This is a Sage source file that uses the Python module from this
package and when you run Sage on that file, it will produce a .sout file. That file
contains LATEX code that, when you run LATEX on your source file again, will pull
in all the results of Sage’s computation.

All you really need to know is that to typeset your document, you need to
run LATEX, then run Sage, then run LATEX again. You can even “run Sage” on a

4

http://www.uoregon.edu/~koch/texshop/

computer that doesn’t have Sage installed by using the remote-sagetex.py script;
see section 5. Whenever this manual says “run Sage”, you can either directly run
Sage, or use the remote-sagetex.py script.

Also keep in mind that everything you send to Sage is done within one Sage
session. This means you can define variables and reuse them throughout your
LATEX document; if you tell Sage that foo is 12, then anytime afterwards you can
use foo in your Sage code and Sage will remember that it’s 12—just like in a
regular Sage session.

Now that you know that, let’s describe what macros SageTEX provides and
how to use them. If you are the sort of person who can’t be bothered to read
documentation until something goes wrong, you can also just look through the
example.tex file included with this package.1

WARNING! When you run LATEX on a file named 〈filename 〉.tex, the file
〈filename 〉.sage is created—and will be automatically overwritten if it already
exists. If you keep Sage scripts in the same directory as your SageTEX-ified LATEX
documents, use a different file name!

The final option On a similar note, SageTEX, like many LATEX packages, accepts
the final option. When passed this option, either directly in the \usepackage
line, or from the \documentclass line, SageTEX will not write a .sage file. It will
try to read in the .sout file so that the SageTEX macros can pull in their results.
However, this will not allow you to have an independent Sage script with the same
basename as your document, since to get the .sout file, you need the .sage file.

3.1 Inline Sage

\sage{〈Sage code〉} takes whatever Sage code you give it, runs Sage’s latexsage

function on it, and puts the result into your document.
For example, if you do \sage{matrix([[1, 2], [3,4]])^2}, then that macro

will get replaced by

\left(\begin{array}{rr}
7 & 10 \\
15 & 22
\end{array}\right)

in your document—that LATEX code is exactly exactly what you get from doing

latex(matrix([[1, 2], [3,4]])^2)

in Sage.
Note that since LATEX will do macro expansion on whatever you give to \sage,

you can mix LATEX variables and Sage variables! If you have defined the Sage
1Then again, if you’re such a person, you’re probably not reading this, and are already fiddling

with example.tex. . .

5

variable foo to be 12 (using, say, the sageblock environment), then you can do
something like this:

The prime factorization of the current page number plus foo
is $\sage{factor(foo + \thepage)}$.

Here, I’ll do just that right now: the prime factorization of the current page
number plus 12 is 2 · 32. (Wrong answer? See footnote.2) The \sage command
doesn’t automatically use math mode for its output, so be sure to use dollar signs
or a displayed math environment as appropriate.

If you are doing modular arithmetic or string formatting and need a percent\percent

sign in a call to \sage (or \sageplot), you can use \percent. Using a bare
percent sign won’t work because LATEX will think you’re starting a comment and
get confused; prefixing the percent sign with a backslash won’t work because then
“\%” will be written to the .sage file and Sage will get confused. The \percent
macro makes everyone happy.

Note that using \percent inside the verbatim-like environments described in
section 3.3 isn’t necessary; a literal “%” inside such an environment will get writ-
ten, uh, verbatim to the .sage file.

3.2 Graphics and plotting

\sageplot[〈ltx opts〉][〈fmt〉]{〈graphics obj 〉, 〈keyword args〉} plots the given\sageplot

Sage graphics object and runs an \includegraphics command to put it into
your document. It does not have to actually be a plot of a function; it can be any
Sage graphics object. The options are described in Table 1.

This setup allows you to control both the Sage side of things, and the LATEX
side. For instance, the command

\sageplot[angle=30, width=5cm]{plot(sin(x), 0, pi), axes=False,
chocolate=True}

will run the following command in Sage:

sage: plot(sin(x), 0, pi).save(filename=autogen, axes=False,
chocolate=True)

Then, in your LATEX file, the following command will be issued automatically:

\includegraphics[angle=30, width=5cm]{autogen}

2Is the above factorization wrong? If the current page number plus 12 is one larger than the
claimed factorization, another Sage/LATEX cycle on this source file should fix it. Why? The first
time you run LATEX on this file, the sine graph isn’t available, so the text where I’ve talked about
the prime factorization is back one page. Then you run Sage, and it creates the sine graph and
does the factorization. When you run LATEX again, the sine graph pushes the text onto the next
page, but it uses the Sage-computed value from the previous page. Meanwhile, the .sage file
has been rewritten with the correct page number, so if you do another Sage/LATEX cycle, you
should get the correct value above. However, in some cases, even that doesn’t work because of
some kind of TEX weirdness in ending the one page a bit short and starting another.

6

Option Description
〈ltx options〉 Any text here is passed directly into the op-

tional arguments (between the square brackets) of
an \includegraphics command. If not specified,
“width=.75\textwidth” will be used.

〈fmt〉 You can optionally specify a file extension here; Sage
will then try to save the graphics object to a file with
extension fmt. If not specified, SageTEX will save to
EPS and PDF files.

〈graphics obj 〉 A Sage object on which you can call .save() with a
graphics filename.

〈keyword args〉 Any keyword arguments you put here will all be put
into the call to .save().

Table 1: Explanation of options for the \sageplot command.

You can specify a file format if you like. This must be the second optional
argument, so you must use empty brackets if you’re not passing anything to
\includegraphics:

\sageplot[][png]{plot(sin(x), x, 0, pi)}

The filename is automatically generated, and unless you specify a format, both
EPS and PDF files will be generated. This allows you to freely switch between
using, say, a DVI viewer (many of which have support for automatic reloading,
source specials and make the writing process easier) and creating PDFs for posting
on the web or emailing to colleagues.

If you ask for, say, a PNG file, keep in mind that ordinary latex and DVI
files have no support for PNG files; SageTEX detects this and will warn you that
it cannot find a suitable file if using latex.3 If you use pdflatex, there will be
no problems because PDF files can include PNG graphics.

When SageTEX cannot find a graphics file, it inserts this into your document:

??

That’s supposed to resemble the image-not-found graphics used by web browsers
and use the traditional “??” that LATEX uses to indicate missing references.

You needn’t worry about the filenames; they are automatically generated and
will be put into the directory sage-plots-for-filename.tex. You can safely
delete that directory anytime; if SageTEX can’t find the files, it will warn you to

3We use a typewriter font here to indicate the executables which produce DVI and PDF files,
respectively, as opposed to “LATEX” which refers to the entire typesetting system.

7

run Sage to regenerate them.

WARNING! When you run Sage on your .sage file, all files in the
sage-plots-for-〈filename 〉.tex directory will be deleted! Do not put any
files into that directory that you do not want to get automatically deleted.

The epstopdf option One of the graphics-related options supported by
SageTEX is epstopdf. This option causes SageTEX to use the epstopdf com-
mand to convert EPS files into PDF files. Like with the imagemagick option,
it doesn’t check to see if the epstopdf command exists or add options: it just
runs the command. This option was motivated by a bug in the matplotlib PDF
backend which caused it to create invalid PDFs. Ideally, this option should never
be necessary; if you do need to use it, file a bug!

3.2.1 3D plotting

Right now there is, to put it nicely, a bit of tension between the sort of graphics
formats supported by latex and pdflatex, and the graphics formats supported
by Sage’s 3D plotting systems. LATEX is happiest, and produces the best output,
with EPS and PDF files, which are vector formats. Tachyon, Sage’s 3D plotting
system, produces bitmap formats like BMP and PNG.

Because of this, when producing 3D plots with \sageplot, you must specify
a file format. The PNG format is compressed and lossless and is by far the best
choice, so use that whenever possible. (Right now, it is always possible.) If you
do not specify a file format, or specify one that Tachyon does not understand, it
will produce files in the Targa format with an incorrect extension and LATEX (both
latex and pdflatex) will be profoundly confused. Don’t do that.

Since latex does not support PNGs, when using 3D plotting (and therefore a
bitmap format like PNG), SageTEX will always issue a warning about incompatible
graphics if you use latex, provided you’ve processed the .sage file and the PNG
file exists. The only exception is if you’re using the imagemagick option below.
(Running pdflatex on the same file will work, since PDF files can include PNG
files.)

The imagemagick option As a response to the above issue, the SageTEX pack-
age has an imagemagick option. If you specify this option in the preamble of your
document with the usual “\usepackage[imagemagick]{sagetex}”, then when
you are compiling your document using latex, any \sageplot command which
requests a non-default format will cause the SageTEX Python script to convert the
resulting file to EPS using the Imagemagick convert utility. It does this by exe-
cuting “convert filename.EXT filename.eps” in a subshell. It doesn’t add any
options, check to see if the convert command exists or belongs to Imagemagick—it
just runs the command.

The resulting EPS files are not very high quality, but they will work. This
option is not intended to produce good graphics, but to allow you to see your
graphics when you use latex and DVI files while writing your document.

8

3.2.2 But that’s not good enough!

The \sageplot command tries to be both flexible and easy to use, but if you are
just not happy with it, you can always do things manually: inside a sagesilent
environment (see the next section) you could do

your special commands
x = your graphics object
x.save(filename=myspecialfile.ext, options, etc)

and then, in your source file, do your own \includegraphics command. The
SageTEX package gives you full access to Sage and Python and doesn’t turn off
anything in LATEX, so you can always do things manually.

3.3 Verbatim-like environments

The SageTEX package provides several environments for typesetting and executing
blocks of Sage code.

Any text between \begin{sageblock} and \end{sageblock} will be typesetsageblock

into your file, and also written into the .sage file for execution. This means you
can do something like this:

\begin{sageblock}
var(’x’)
f(x) = sin(x) - 1
g(x) = log(x)
h(x) = diff(f(x) * g(x), x)

\end{sageblock}

and then anytime later write in your source file

We have $h(2) = \sage{h(2)}$, where h is the derivative of
the product of f and g.

and the \sage call will get correctly replaced by sin (1)− 1. You can use any Sage
or Python commands inside a sageblock; all the commands get sent directly to
Sage.

This environment is like sageblock, but it does not typeset any of the code;sagesilent

it just writes it to the .sage file. This is useful if you have to do some setup in
Sage that is not interesting or relevant to the document you are writing.

This environment is the opposite of the one above: whatever you type willsageverbatim

be typeset, but not written into the .sage file. This allows you to typeset psue-
docode, code that will fail, or take too much time to execute, or whatever.

Logically, we now need an environment that neither typesets nor executescomment

your Sage code. . . but the verbatim package, which is always loaded when using

9

SageTEX, provides such an environment: comment. Another way to do this is to
put stuff between \iffalse and \fi.

There is one final bit to our verbatim-like environments: the indentation. The\sagetexindent

SageTEX package defines a length \sagetexindent, which controls how much the
Sage code is indented when typeset. You can change this length however you like
with \setlength: do \setlength{\sagetexindent}{6ex} or whatever.

3.4 Pausing SageTEX

Sometimes when you are writing a document, you may wish to temporarily turn
off or pause SageTEX to concentrate more on your document than on the Sage
computations, or to simply have your document typeset faster. You can do this
with the following commands.

Use these macros to “pause” and “unpause” SageTEX. After issuing this macro,\sagetexpause

\sagetexunpause SageTEX will simply skip over the corresponding calculations. Anywhere a \sage
macro is used while paused, you will simply see “(SageTEX is paused)”, and any-
where a \sageplot macro is used, you will see:

SageTEX is paused; no graphic

Anything in the verbatim-like environments of section 3.3 will be typeset or not
as usual, but none of the Sage code will be executed.

Obviously, you use \sagetexunpause to unpause SageTEX and return to the
usual state of affairs. Both commands are idempotent; issuing them twice or more
in a row is the same as issuing them once. This means you don’t need to precisely
match pause and unpause commands: once paused, SageTEX stays paused until it
sees \sagetexunpause and vice versa.

4 Other notes

Here are some other notes on using SageTEX.

4.1 Using Beamer

The beamer package does not play nicely with verbatim-like environments unless
you ask it to. To use code block environments in a beamer presentation, do:

\begin{frame}[fragile]
\begin{sageblock}
sage stuff
more stuff \end{sageblock}

10

\end{frame}

For some reason, beamer inserts an extra line break at the end of the environment;
if you put the \end{sageblock} on the same line as the last line of your code,
it works properly. See section 12.9, “Verbatim and Fragile Text”, in the beamer
manual.

Thanks to Franco Saliola for reporting this.

4.2 Plotting from Mathematica, Maple, etc.

Sage can use Mathematica, Maple, and friends and can tell them to do plotting,
but since it cannot get those plots into a Sage graphics object, you cannot use
\sageplot to use such graphics. You’ll need to use the method described in
“But that’s not good enough!” (section 3.2.2) with some additional bits to get
the directory right—otherwise your file will get saved to someplace in a hidden
directory.

For Mathematica, you can do something like this inside a sagesilent or
sageblock environment:

mathematica(’myplot = commands to make your plot’)
mathematica(’Export["%s/graphicsfile.eps", myplot]’ % os.getcwd())

then put \includegraphics[opts]{graphicsfile} in your file.
For Maple, you’ll need something like

maple(’plotsetup(ps, plotoutput=‘%s/graphicsfile.eps‘, \
plotoptions=‘whatever‘);’ % os.getcwd())

maple(’plot(function, x=1..whatever);’)

and then \includegraphics as necessary.
These interfaces, especially when plotting, can be finicky. The above com-

mands are just meant to be a starting point.

4.3 Sending SageTEX files to others who don’t use Sage

What can you do when sending a LATEX document that uses SageTEX to a colleague
who doesn’t use Sage?4 The best option is to bring your colleague into the light
and get him or her using Sage! But this may not be feasible, because some
(most?) mathematicians are fiercely crotchety about their choice of computer
algebra system, or you may be sending a paper to a journal or the arXiv, and such
places will not run Sage just so they can typeset your paper—at least not until
Sage is much closer to its goal of world domination.

How can you send your SageTEX-enabled document to someone else who doesn’t
use Sage? The easiest way is to simply include with your document the following
files:

4Or who cannot use Sage, since currently SageTEX is not very useful on Windows.

11

1. sagetex.sty

2. the generated .sout file

3. the sage-plots-for-〈filename 〉.tex directory and its contents

As long as sagetex.sty is available, your document can be typeset using any
reasonable LATEX system. Since it is very common to include graphics files with
a paper submission, this is a solution that should always work. (In particular, it
will work with arXiv submissions.)

There is another option, and that is to use the makestatic.py script included
with SageTEX.

Use of the script is quite simple. Copy it and sagetexparse.py to the directory
with your document, and run

python makestatic.py inputfile [outputfile]

where inputfile is your document. (You can also set the executable bit of
makestatic.py and use ./makestatic.py.) This script needs the pyparsing mod-
ule to be installed.5 You may optionally specify outputfile; if you do so, the
results will be written to that file. If the file exists, it won’t be overwritten unless
you also specify the -o switch.

You will need to run this after you’ve compiled your document and run Sage on
the .sage file. The script reads in the .sout file and replaces all the calls to \sage
and \sageplot with their plain LATEX equivalent, and turns the sageblock and
sageverbatim environments into verbatim environments. Any sagesilent en-
vironment is turned into a comment environment. The resulting document should
compile to something identical, or very nearly so, to the original file.

One large limitation of this script is that it can’t change anything while SageTEX
is paused, since Sage doesn’t compute anything for such parts of your document.
It also doesn’t check to see if pause and unpause commands are inside comments
or verbatim environments. If you’re going to use makestatic.py, just remove all
pause/unpause statements.

The parsing that makestatic.py does is pretty good, but not perfect. Right
now it doesn’t support having a comma-separated list of packages, so you can’t
have \usepackage{sagetex, foo}. You need to have just \usepackage{sagetex}.
(Along with package options; those are handled correctly.) If you find other pars-
ing errors, please let me know.

4.4 Extracting the Sage code from a document

This next script is probably not so useful, but having done the above, this was
pretty easy. The extractsagecode.py script does the opposite of makestatic.py,
in some sense: given a document, it extracts all the Sage code and removes all the
LATEX.

5If you don’t have pyparsing installed, you can simply copy the file
$SAGE ROOT/local/lib/python/matplotlib/pyparsing.py into your directory.

12

http://pyparsing.wikispaces.com

Its usage is the same as makestatic.py.
Note that the resulting file will almost certainly not be a runnable Sage script,

since there might be LATEX commands in it, the indentation may not be correct,
and the plot options just get written verbatim to the file. Nevertheless, it might
be useful if you just want to look at the Sage code in a file.

5 Using SageTEX without Sage installed

You may want to edit and typeset a SageTEX-ified file on a computer that doesn’t
have Sage installed. How can you do that? We need to somehow run Sage on
the .sage file. The included script remote-sagetex.py takes advantage of Sage’s
network transparency and will use a remote server to do all the computations.
Anywhere in this manual where you are told to “run Sage”, instead of actually
running Sage, you can run

python remote-sagetex.py filename.sage

The script will ask you for a server, username, and password, then process all
your code and write a .sout file and graphics files exactly as if you had used a
local copy of Sage to process the .sage script. (With some minor limitations and
differences; see below.)

One important point: the script requires Python 2.6. It will not work with
earlier versions. (It will work with Python 3.0 or later with some trivial changes.)

You can provide the server, username and password with the command-line
switches --server, --username, and --password, or you can put that information
into a file and use the --file switch to specify that file. The format of the file
must be like the following:

hash mark at beginning of line marks a comment
server = "http://example.com:1234"
username = ’my_user_name’
password = ’s33krit’

As you can see, it’s really just like assigning a string to a variable in Python. You
can use single or double quotes and use hash marks to start comments. You can’t
have comments on the same line as an assignment, though. You can omit any of
those pieces of information information; the script will ask for anything it needs
to know. Information provided as a command line switch takes precedence over
anything found in the file.

You can keep this file separate from your LATEX documents in a secure location;
for example, on a USB thumb drive or in an automatically encrypted directory
(like ~/Private in Ubuntu). This makes it much harder to accidentally upload
your private login information to the arXiv, put it on a website, send it to a
colleague, or otherwise make your private information public.

13

5.1 Limitations of remote-sagetex.py

The remote-sagetex.py script has several limitations. It completely ignores the
epstopdf and imagemagick flags. The epstopdf flag is not a big deal, since it
was originally introduced to work around a matplotlib bug which has since been
fixed. Not having imagemagick support means that you cannot automatically
convert 3D graphics to eps format; using pdflatex to make PDFs works around
this issue.

5.2 Other caveats

Right now, the “simple server API” that remote-sagetex.py uses is not terribly
robust, and if you interrupt the script, it’s possible to leave an idle session running
on the server. If many idle sessions accumulate on the server, it can use up a lot of
memory and cause the server to be slow, unresponsive, or maybe even crash. For
now, I recommend that you only run the script manually. It’s probably best to not
configure your TEX editing environment to automatically run remote-sagetex.py
whenever you typeset your document, at least not without showing you the output
or alerting you about errors.

6 Implementation

There are two pieces to this package: a LATEX style file, and a Python module.
They are mutually interdependent, so it makes sense to document them both here.

6.1 The style file

All macros and counters intended for use internal to this package begin with “ST@”.

6.1.1 Initialization

Let’s begin by loading some packages. The key bits of sageblock and friends are
stol—um, adapted from the verbatim package manual. So grab the verbatim
package.
1 \RequirePackage{verbatim}

Unsurprisingly, the \sageplot command works poorly without graphics support.
2 \RequirePackage{graphicx}

The makecmds package gives us a \provideenvironment which we need, and we
use ifpdf and ifthen in \sageplot so we know what kind of files to look for.
3 \RequirePackage{makecmds}

4 \RequirePackage{ifpdf}

5 \RequirePackage{ifthen}

Next set up the counters, default indent, and flags.
6 \newcounter{ST@inline}

7 \newcounter{ST@plot}

14

8 \setcounter{ST@inline}{0}

9 \setcounter{ST@plot}{0}

10 \newlength{\sagetexindent}

11 \setlength{\sagetexindent}{5ex}

12 \newif\ifST@paused

13 \ST@pausedfalse

Set up the file stuff, which will get run at the beginning of the document, after we
know what’s happening with the final option. First, we open the .sage file:
14 \AtBeginDocument{\@ifundefined{ST@final}{%

15 \newwrite\ST@sf%

16 \immediate\openout\ST@sf=\jobname.sage%

\ST@wsf We will write a lot of stuff to that file, so make a convenient abbreviation, then
use it to put the initial commands into the .sage file. The hash mark below gets
doubled when written to the file, for some obscure reason related to parameter
expansion. It’s valid Python, though, so I haven’t bothered figuring out how to get
a single hash. We are assuming that the extension is .tex; see the initplot doc-
umentation on page 24 for discussion of file extensions. The “(\jobname.sage)”
business is there because the comment below will get pulled into the autogenerated
.py file (second order autogeneration!) and I’d like to reduce possible confusion if
someone is looking around in those files.
17 \newcommand{\ST@wsf}[1]{\immediate\write\ST@sf{#1}}%

18 \ST@wsf{# This file (\jobname.sage) was *autogenerated* from the file \jobname.tex.}%

19 \ST@wsf{import sagetex}%

20 \ST@wsf{_st_ = sagetex.SageTeXProcessor(’\jobname’)}}%

On the other hand, if the ST@final flag is set, don’t bother with any of the file
stuff, and make \ST@wsf a no-op.
21 {\newcommand{\ST@wsf}[1]{\relax}}}

Now we declare our options, which mostly just set flags that we check at the
beginning of the document, and when running the .sage file.

The final option controls whether or not we write the .sage file; the
imagemagick and epstopdf options both want to write something to that same
file. So we put off all the actual file stuff until the beginning of the document—
by that time, we’ll have processed the final option (or not) and can check the
\ST@final flag to see what to do. (We must do this because we can’t specify code
that runs if an option isn’t defined.)

For final, we set a flag for other guys to check, and if there’s no .sout file,
we warn the user that something fishy is going on.
22 \DeclareOption{final}{%

23 \newcommand{\ST@final}{x}%

24 \IfFileExists{\jobname.sout}{}{\AtEndDocument{\PackageWarningNoLine{sagetex}%

25 {‘final’ option provided, but \jobname.sout^^Jdoesn’t exist! No Sage

26 input will appear in your document. Remove the ‘final’^^Joption and

27 rerun LaTeX on your document}}}}

15

For imagemagick, we set two flags: one for LATEX and one for Sage. It’s important
that we set ST@useimagmagick before the beginning of the document, so that
the graphics commands can check that. We do wait until the beginning of the
document to do file writing stuff.
28 \DeclareOption{imagemagick}{%

29 \newcommand{\ST@useimagemagick}{x}%

30 \AtBeginDocument{%

31 \@ifundefined{ST@final}{%

32 \ST@wsf{_st_.useimagemagick = True}}{}}}

For epstopdf, we just set a flag for Sage. Then, process the options.
33 \DeclareOption{epstopdf}{%

34 \AtBeginDocument{%

35 \@ifundefined{ST@final}{%

36 \ST@wsf{_st_.useepstopdf = True}}{}}}

37 \ProcessOptions\relax

The \relax is a little incantation suggested by the “LATEX 2ε for class and package
writers” manual, section 4.7.

Pull in the .sout file if it exists, or do nothing if it doesn’t. I suppose we
could do this inside an AtBeginDocument but I don’t see any particular reason to
do that. It will work whenever we load it. If the .sout file isn’t found, print the
usual TEX-style message. This allows programs (Latexmk, for example) that read
the .log file or terminal output to detect the need for another typesetting run to
do so. If the “No file foo.sout” line doesn’t work for some software package,
please let me know and I can change it to use PackageInfo or whatever.
38 \InputIfFileExists{\jobname.sout}{}{\typeout{No file \jobname.sout.}}

The user might load the hyperref package after this one (indeed, the hyperref
documentation insists that it be loaded last) or not at all—so when we hit the
beginning of the document, provide a dummy NoHyper environment if one hasn’t
been defined by the hyperref package. We need this for the \sage macro below.
39 \AtBeginDocument{\provideenvironment{NoHyper}{}{}}

6.1.2 The \sage macro

\sage This macro combines \ref, \label, and Sage all at once. First, we use Sage to
get a LATEX representation of whatever you give this function. The Sage script
writes a \newlabel line into the .sout file, and we read the output using the \ref
command. Usually, \ref pulls in a section or theorem number, but it will pull in
arbitrary text just as well.

The first thing it does it write its argument into the .sage file, along with
a counter so we can produce a unique label. We wrap a try/except around the
function call so that we can provide a more helpful error message in case something
goes wrong. (In particular, we can tell the user which line of the .tex file contains
the offending code.) We can use ^^J to put linebreaks into the .sage file, but
LATEX wants to put a space after that, which is why we don’t put the “except” on
its own line here in the source.

16

http://www.phys.psu.edu/~collins/software/latexmk-jcc/

40 \newcommand{\sage}[1]{\ST@wsf{%

41 try:^^J

42 _st_.inline(\theST@inline, #1)^^Jexcept:^^J

43 _st_.goboom(\the\inputlineno)}%

The inline function of the Python module is documented on page 24. Back in
LATEX-land: if paused, say so.
44 \ifST@paused

45 \mbox{(Sage\TeX{} is paused)}%

Otherwise. . . our use of \newlabel and \ref seems awfully clever until you load
the hyperref package, which gleefully tries to hyperlink the hell out of everything.
This is great until it hits one of our special \newlabels and gets deeply confused.
Fortunately the hyperref folks are willing to accomodate people like us, and give
us a NoHyper environment.
46 \else

47 \begin{NoHyper}\ref{@sageinline\theST@inline}\end{NoHyper}

Now check if the label has already been defined. (The internal implementation of
labels in LATEX involves defining a macro called “r@@labelname”.) If it hasn’t, we
set a flag so that we can tell the user to run Sage on the .sage file at the end of
the run.
48 \@ifundefined{r@@sageinline\theST@inline}{\gdef\ST@rerun{x}}{}

49 \fi

In any case, the last thing to do is step the counter.
50 \stepcounter{ST@inline}}

\percent A macro that inserts a percent sign. This is more-or-less stolen from the Docstrip
manual; there they change the catcode inside a group and use gdef, but here we
try to be more LATEXy and use \newcommand.
51 \catcode‘\%=12

52 \newcommand{\percent}{%}

53 \catcode‘\%=14

6.1.3 The \sageplot macro and friends

Plotting is rather more complicated, and requires several helper macros that ac-
company \sageplot.

\ST@plotdir A little abbreviation for the plot directory. We don’t use \graphicspath because
it’s apparently slow—also, since we know right where our plots are going, no need
to have LATEX looking for them.
54 \newcommand{\ST@plotdir}{sage-plots-for-\jobname.tex}

\ST@missingfilebox The code that makes the “file not found” box. This shows up in a couple places
below, so let’s just define it once.
55 \newcommand{\ST@missingfilebox}{\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}}

17

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=graphicspath

\sageplot This function is similar to \sage. The neat thing that we take advantage of is that
commas aren’t special for arguments to LATEX commands, so it’s easy to capture
a bunch of keyword arguments that get passed right into a Python function.

This macro has two optional arguments, which can’t be defined using LATEX’s
\newcommand; we use Scott Pakin’s brilliant newcommand package to create this
macro; the options I fed to his script were similar to this:

MACRO sageplot OPT[#1={width}] OPT[#2={notprovided}] #3

Observe that we are using a Python script to write LATEX code which writes Python
code which writes LATEX code. Crazy!

Here’s the wrapper command which does whatever magic we need to get two
optional arguments.
56 \newcommand{\sageplot}[1][width=.75\textwidth]{%

57 \@ifnextchar[{\ST@sageplot[#1]}{\ST@sageplot[#1][notprovided]}}

The first optional argument #1 will get shoved right into the optional argument
for \includegraphics, so the user has easy control over the LATEX aspects of the
plotting. We define a default size of 3/4 the textwidth, which seems reasonable.
(Perhaps a future version of SageTEX will allow the user to specify in the package
options a set of default options to be used throughout.) The second optional
argument #2 is the file format and allows us to tell what files to look for. It
defaults to “notprovided”, which tells the Python module to create EPS and PDF
files. Everything in #3 gets put into the Python function call, so the user can put
in keyword arguments there which get interpreted correctly by Python.

\ST@sageplot Let’s see the real code here. We write a couple lines to the .sage file, including a
counter, input line number, and all of the mandatory argument; all this is wrapped
in another try/except.
58 \def\ST@sageplot[#1][#2]#3{\ST@wsf{try:^^J

59 _st_.plot(\theST@plot, format=’#2’, _p_=#3)^^Jexcept:^^J

60 _st_.goboom(\the\inputlineno)}%

The Python plot function is documented on page 25.
Now we include the appropriate graphics file. Because the user might be

producing DVI or PDF files, and have supplied a file format or not, and so
on, the logic we follow is a bit complicated. Figure 1 shows what we do; for
completeness—and because I think drawing trees with TikZ is really cool—we
show what \ST@inclgrfx does in Figure 2. This entire complicated business is
intended to avoid doing an \includegraphics command on a file that doesn’t
exist, and to issue warnings appropriate to the situation.

If we are creating a PDF, we check to see if the user asked for a different
format, and use that if necessary:
61 \ifpdf

62 \ifthenelse{\equal{#2}{notprovided}}%

63 {\ST@inclgrfx{#1}{pdf}}%

64 {\ST@inclgrfx{#1}{#2}}%

18

http://tug.ctan.org/tex-archive/support/newcommand/

DVI or PDF?

Format provided?

STig EPS

no

IM option set?

Warn that DVI +
PNG = bad

no

STig EPS

yes

yes

DVI

Format provided?

STig PDF

no

STig #2

yes

PDF

Figure 1: The logic tree that \sageplot uses to decide whether to run
\includegraphics or to yell at the user. “Format” is the #2 argument to
\sageplot, “STig ext” means a call to \ST@inclgrfx with “ext” as the second
argument, and “IM” is Imagemagick.

Otherwise, we are creating a DVI file, which only supports EPS. If the user pro-
vided a format anyway, don’t include the file (since it won’t work) and warn the
user about this. (Unless the file doesn’t exist, in which case we do the same thing
that \ST@inclgrfx does.)
65 \else

66 \ifthenelse{\equal{#2}{notprovided}}%

67 {\ST@inclgrfx{#1}{eps}}%

If a format is provided, we check to see if we’re using the imagemagick option.
If not, we’re going to issue some sort of warning, depending on whether the file
exists yet or not.
68 {\@ifundefined{ST@useimagemagick}%

69 {\IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

70 {\ST@missingfilebox%

71 \PackageWarning{sagetex}{Graphics file

72 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

73 cannot be used with DVI output. Use pdflatex or create an EPS

74 file. Plot command is}}%

75 {\ST@missingfilebox%

76 \PackageWarning{sagetex}{Graphics file

77 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

78 does not exist. Plot command is}%

79 \gdef\ST@rerun{x}}}%

Otherwise, we are using Imagemagick, so try to include an EPS file anyway.
80 {\ST@inclgrfx{#1}{eps}}}%

81 \fi

Step the counter and we’re done with the usual work.
82 \stepcounter{ST@plot}}

19

Paused?

Insert “we’re paused” box

yes

Does EXT file exist?

Warn user to
rerun Sage

no

Use includegraphics

yes

no

Figure 2: The logic used by the \ST@inclgrfx command.

\ST@inclgrfx This command includes the requested graphics file (#2 is the extension) with the
requested options (#1) if the file exists. Note that it just needs to know the
extension, since we use a counter for the filename. If we are paused, it just puts
in a little box saying so.
83 \newcommand{\ST@inclgrfx}[2]{\ifST@paused

84 \fbox{\rule[-1cm]{0cm}{2cm}Sage\TeX{} is paused; no graphic}

85 \else

86 \IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

87 {\includegraphics[#1]{\ST@plotdir/plot-\theST@plot.#2}}%

If the file doesn’t exist, we insert a little box to indicate it wasn’t found, issue a
warning that we didn’t find a graphics file, then set a flag that, at the end of the
run, tells the user to run Sage again.
88 {\ST@missingfilebox%

89 \PackageWarning{sagetex}{Graphics file

90 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space does not

91 exist. Plot command is}%

92 \gdef\ST@rerun{x}}

93 \fi}

Figure 2 makes this a bit clearer.

6.1.4 Verbatim-like environments

\ST@beginsfbl This is “begin .sage file block”, an internal-use abbreviation that sets things up
when we start writing a chunk of Sage code to the .sage file. It begins with
some TEX magic that fixes spacing, then puts the start of a try/except block in
the .sage file—this not only allows the user to indent code without Sage/Python
complaining about indentation, but lets us tell the user where things went wrong.
The blockbegin and blockend functions are documented on page 25. The last
bit is some magic from the verbatim package manual that makes LATEX respect
line breaks.
94 \newcommand{\ST@beginsfbl}{%

95 \@bsphack\ST@wsf{%

96 _st_.blockbegin()^^Jtry:}%

97 \let\do\@makeother\dospecials\catcode‘\^^M\active}

20

\ST@endsfbl The companion to \ST@beginsfbl.
98 \newcommand{\ST@endsfbl}{%

99 \ST@wsf{except:^^J

100 _st_.goboom(\the\inputlineno)^^J_st_.blockend()}}

Now let’s define the “verbatim-like” environments. There are four possibilities,
corresponding to the two independent choices of typesetting the code or not, and
writing to the .sage file or not.

sageblock This environment does both: it typesets your code and puts it into the .sage file
for execution by Sage.

101 \newenvironment{sageblock}{\ST@beginsfbl%

The space between \ST@wsf{ and \the is crucial! It, along with the “try:”, is
what allows the user to indent code if they like. This line sends stuff to the .sage
file.

102 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}%

Next, we typeset your code and start the verbatim environment.
103 \hspace{\sagetexindent}\the\verbatim@line\par}%

104 \verbatim}%

At the end of the environment, we put a chunk into the .sage file and stop the
verbatim environment.

105 {\ST@endsfbl\endverbatim}

sagesilent This is from the verbatim package manual. It’s just like the above, except we
don’t typeset anything.

106 \newenvironment{sagesilent}{\ST@beginsfbl%

107 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}}%

108 \verbatim@start}%

109 {\ST@endsfbl\@esphack}

sageverbatim The opposite of sagesilent. This is exactly the same as the verbatim environ-
ment, except that we include some indentation to be consistent with other typeset
Sage code.

110 \newenvironment{sageverbatim}{%

111 \def\verbatim@processline{\hspace{\sagetexindent}\the\verbatim@line\par}%

112 \verbatim}%

113 {\endverbatim}

Logically, we now need an environment which neither typesets nor writes code
to the .sage file. The verbatim package’s comment environment does that.

21

6.1.5 Pausing SageTEX

How can one have Sage to stop processing SageTEX output for a little while, and
then start again? At first I thought I would need some sort of “goto” statement in
Python, but later realized that there’s a dead simple solution: write triple quotes
to the .sage file to comment out the code. Okay, so this isn’t really commenting
out the code; PEP 8 says block comments should use “#” and Sage will read in the
“commented-out” code as a string literal. For the purposes of SageTEX, I think
this is a good decision, though, since (1) the pausing mechanism is orthogonal to
everything else, which makes it easier to not screw up other code, and (2) it will
always work.

This illustrates what I really like about SageTEX: it mixes LATEX and
Sage/Python, and often what is difficult or impossible in one system is trivial
in the other.

sagetexpause This macro pauses SageTEX by effectively commenting out code in the .sage file.
When running the corresponding .sage file, Sage will skip over any commands
issued while SageTEX is paused.

114 \newcommand{\sagetexpause}{\ifST@paused\relax\else

115 \ST@wsf{print ’SageTeX paused on \jobname.tex line \the\inputlineno’^^J"""}

116 \ST@pausedtrue

117 \fi}

sagetexunpause This is the obvious companion to \sagetexpause.
118 \newcommand{\sagetexunpause}{\ifST@paused

119 \ST@wsf{"""^^Jprint ’SageTeX unpaused on \jobname.tex line \the\inputlineno’}

120 \ST@pausedfalse

121 \fi}

6.1.6 End-of-document cleanup

We tell the Sage script to write some information to the .sout file, then check to
see if ST@rerun ever got defined. If not, all the inline formulas and plots worked,
so do nothing. We check to see if we’re paused first, so that we can finish the
triple-quoted string in the .sage file.

122 \AtEndDocument{\ifST@paused

123 \ST@wsf{"""^^Jprint ’SageTeX unpaused at end of \jobname.tex’}

124 \fi

125 \ST@wsf{_st_.endofdoc()}%

126 \@ifundefined{ST@rerun}{}%

Otherwise, we issue a warning to tell the user to run Sage on the .sage file. Part
of the reason we do this is that, by using \ref to pull in the inlines, LATEX will
complain about undefined references if you haven’t run the Sage script—and for
many LATEX users, myself included, the warning “there were undefined references”
is a signal to run LATEX again. But to fix these particular undefined references,
you need to run Sage. We also suppressed file-not-found errors for graphics files,
and need to tell the user what to do about that.

22

At any rate, we tell the user to run Sage if it’s necessary.
127 {\PackageWarningNoLine{sagetex}{There were undefined Sage formulas

128 and/or plots.^^JRun Sage on \jobname.sage, and then run

129 LaTeX on \jobname.tex again}}}

6.2 The Python module

The style file writes things to the .sage file and reads them from the .sout file.
The Python module provides functions that help produce the .sout file from the
.sage file.

A note on Python and Docstrip There is one tiny potential source of confu-
sion when documenting Python code with Docstrip: the percent sign. If you have
a long line of Python code which includes a percent sign for string formatting and
you break the line with a backslash and begin the next line with a percent sign,
that line will not be written to the output file. This is only a problem if you begin
the line with a (single) percent sign; there are no troubles otherwise.

On to the code: the sagetex.py file is intended to be used as a module and
doesn’t do anything useful when called directly, so if someone does that, warn
them. We do this right away so that we print this and exit before trying to import
any Sage modules; that way, this error message gets printed whether you run the
script with Sage or with Python.

130 import sys

131 if __name__ == "__main__":

132 print("""This file is part of the SageTeX package.

133 It is not meant to be called directly.

134

135 This file will be automatically used by Sage scripts generated from a

136 LaTeX document using the SageTeX package.""")

137 sys.exit()

Import what we need:
138 from sage.misc.latex import latex

139 import os

140 import os.path

141 import hashlib

142 import traceback

143 import subprocess

144 import shutil

We define a class so that it’s a bit easier to carry around internal state. We used
to just have some global variables and a bunch of functions, but this seems a bit
nicer and easier.

145 class SageTeXProcessor():

146 def __init__(self, jobname):

147 self.progress(’Processing Sage code for %s.tex...’ % jobname)

148 self.didinitplot = False

23

149 self.useimagemagick = False

150 self.useepstopdf = False

151 self.plotdir = ’sage-plots-for-’ + jobname + ’.tex’

152 self.filename = jobname

Open a .sout.tmp file and write all our output to that. Then, when we’re done,
we move that to .sout. The “autogenerated” line is basically the same as the lines
that get put at the top of preparsed Sage files; we are automatically generating a
file with Sage, so it seems reasonable to add it.

153 self.souttmp = open(self.filename + ’.sout.tmp’, ’w’)

154 s = ’% This file was *autogenerated* from the file ’ + \

155 os.path.splitext(jobname)[0] + ’.sage.\n’

156 self.souttmp.write(s)

progress This function just prints stuff. It allows us to not print a linebreak, so you can
get “start...” (little time spent processing) “end” on one line.

157 def progress(self, t,linebreak=True):

158 if linebreak:

159 print(t)

160 else:

161 sys.stdout.write(t)

162 sys.stdout.flush()

initplot We only want to create the plots directory if the user actually plots something.
This function creates the directory and sets the didinitplot flag after doing so.
We make a directory based on the LATEX file being processed so that if there are
multiple .tex files in a directory, we don’t overwrite plots from another file.

163 def initplot(self):

164 self.progress(’Initializing plots directory’)

We hard-code the .tex extension, which is fine in the overwhelming majority of
cases, although it does cause minor confusion when building the documentation. If
it turns out lots of people use, say, a ltx extension or whatever, We could find out
the correct extension, but it would involve a lot of irritating mucking around—on
comp.text.tex, the best solution I found for finding the file extension is to look
through the .log file.

165 if os.path.isdir(self.plotdir):

166 shutil.rmtree(self.plotdir)

167 os.mkdir(self.plotdir)

168 self.didinitplot = True

inline This function works with \sage from the style file (see section 6.1.2) to put Sage
output into your LATEX file. Usually, when you use \label, it writes a line such
as

\newlabel{labelname}{{section number}{page number}}

to the .aux file. When you use the hyperref package, there are more fields in the
second argument, but the first two are the same. The \ref command just pulls in
what’s in the first field of the second argument, so we can hijack this mechanism

24

for our own nefarious purposes. The function writes a \newlabel line with a label
made from a counter and the text from running Sage on s.

We print out the line number so if something goes wrong, the user can more
easily track down the offending \sage command in the source file.

That’s a lot of explanation for a very short function:
169 def inline(self, counter, s):

170 self.progress(’Inline formula %s’ % counter)

171 self.souttmp.write(’\\newlabel{@sageinline’ + str(counter) + ’}{{’ + \

172 latex(s).rstrip() + ’}{}{}{}{}}\n’)

We are using five fields, just like hyperref does, because that works whether
or not hyperref is loaded. Using two fields, as in plain LATEX, doesn’t work if
hyperref is loaded.

blockbegin

blockend

This function and its companion used to write stuff to the .sout file, but now they
just update the user on our progress evaluating a code block. The verbatim-like
environments of section 6.1.4 use these functions.

173 def blockbegin(self):

174 self.progress(’Code block begin...’, False)

175 def blockend(self):

176 self.progress(’end’)

plot I hope it’s obvious that this function does plotting. It’s the Python counterpart
of \ST@sageplot described in section 6.1.3. As mentioned in the \sageplot code,
we’re taking advantage of two things: first, that LATEX doesn’t treat commas
and spaces in macro arguments specially, and second, that Python (and Sage
plotting functions) has nice support for keyword arguments. The #3 argument to
\sageplot becomes _p_ and **kwargs below.

177 def plot(self, counter, _p_, format=’notprovided’, **kwargs):

178 if not self.didinitplot:

179 self.initplot()

180 self.progress(’Plot %s’ % counter)

If the user says nothing about file formats, we default to producing PDF and
EPS. This allows the user to transparently switch between using a DVI previewer
(which usually automatically updates when the DVI changes, and has support for
source specials, which makes the writing process easier) and making PDFs.6

181 if format == ’notprovided’:

182 formats = [’eps’, ’pdf’]

183 else:

184 formats = [format]

185 for fmt in formats:

If we’re making a PDF and have been told to use epstopdf, do so, then skip the
rest of the loop.

186 if fmt == ’pdf’ and self.useepstopdf:

187 epsfile = os.path.join(self.plotdir, ’plot-%s.eps’ % counter)

6Yes, there’s pdfsync, but full support for that is still rare in Linux, so producing EPS and
PDF is the best solution for now.

25

188 self.progress(’Calling epstopdf to convert plot-%s.eps to PDF’ % \

189 counter)

190 subprocess.check_call([’epstopdf’, epsfile])

191 continue

192 plotfilename = os.path.join(self.plotdir, ’plot-%s.%s’ % (counter, fmt))

193 _p_.save(filename=plotfilename, **kwargs)

If the user provides a format and specifies the imagemagick option, we try to
convert the newly-created file into EPS format.

194 if format != ’notprovided’ and self.useimagemagick:

195 self.progress(’Calling Imagemagick to convert plot-%s.%s to EPS’ % \

196 (counter, format))

197 self.toeps(counter, format)

toeps This function calls the Imagmagick utility convert to, well, convert something into
EPS format. This gets called when the user has requested the “imagemagick”
option to the SageTEX style file and is making a graphic file with a nondefault
extension.

198 def toeps(self, counter, ext):

199 subprocess.check_call([’convert’,\

200 ’%s/plot-%s.%s’ % (self.plotdir, counter, ext), \

201 ’%s/plot-%s.eps’ % (self.plotdir, counter)])

We are blindly assuming that the convert command exists and will do the con-
version for us; the check_call function raises an exception which, since all these
calls get wrapped in try/excepts in the .sage file, should result in a reasonable
error message if something strange happens.

goboom When a chunk of Sage code blows up, this function bears the bad news to the
user. Normally in Python the traceback is good enough for this, but in this case,
we start with a .sage file (which is autogenerated) which itself autogenerates a
.py file—and the tracebacks the user sees refer to that file, whose line numbers are
basically useless. We want to tell them where in the LATEX file things went bad,
so we do that, give them the traceback, and exit after removing the .sout.tmp
file.

202 def goboom(self, line):

203 print(’\n**** Error in Sage code on line %s of %s.tex! Traceback\

204 follows.’ % (line, self.filename))

205 traceback.print_exc()

206 print(’\n**** Running Sage on %s.sage failed! Fix %s.tex and try\

207 again.’ % ((self.filename,) * 2))

208 self.souttmp.close()

209 os.remove(self.filename + ’.sout.tmp’)

210 sys.exit(int(1))

We use int(1) above to make sure sys.exit sees a Python integer; see ticket
#2861.

endofdoc When we’re done processing, we have some cleanup tasks. We want to put the
MD5 sum of the .sage file that produced the .sout file we’re about to write

26

http://trac.sagemath.org/sage_trac/ticket/2861#comment:5
http://trac.sagemath.org/sage_trac/ticket/2861#comment:5

into the .sout file, so that external programs that build LATEX documents can
determine if they need to call Sage to update the .sout file. But there is a
problem: we write line numbers to the .sage file so that we can provide useful
error messages—but that means that adding non-SageTEX text to your source file
will change the MD5 sum, and your program will think it needs to rerun Sage
even though none of the actual SageTEX macros changed.

How do we include line numbers for our error messages but still allow a program
to discover a “genuine” change to the .sage file?

The answer is to only find the MD5 sum of part of the .sage file. By design,
the source file line numbers only appear in calls to goboom and pause/unpause
lines, so we will strip those lines out. What we do below is exactly equivalent to
running

egrep ’^(_st_.goboom|print .SageT)’ filename.sage | md5sum

in a shell.
211 def endofdoc(self):

212 sagef = open(self.filename + ’.sage’, ’r’)

213 m = hashlib.md5()

214 for line in sagef:

215 if line[0:12] != " _st_.goboom" and line[0:12] != "print ’SageT":

216 m.update(line)

217 s = ’%’ + m.hexdigest() + ’% md5sum of corresponding .sage file\

218 (minus "goboom" and pause/unpause lines)\n’

219 self.souttmp.write(s)

Now, we do issue warnings to run Sage on the .sage file and an external pro-
gram might look for those to detect the need to rerun Sage, but those warnings
do not quite capture all situations. (If you’ve already produced the .sout file
and change a \sage call, no warning will be issued since all the \refs find a
\newlabel.) Anyway, I think it’s easier to grab an MD5 sum out of the end of
the file than parse the output from running latex on your file. (The regular ex-
pression ^%[0-9a-f]{32}% will find the MD5 sum. Note that there are percent
signs on each side of the hex string.)

Now we are done with the .sout.tmp file. Close it, rename it, and tell the user
we’re done.

220 self.souttmp.close()

221 os.rename(self.filename + ’.sout.tmp’, self.filename + ’.sout’)

222 self.progress(’Sage processing complete. Run LaTeX on %s.tex again.’ %\

223 self.filename)

7 Included Python scripts

Here we describe the Python code for makestatic.py, which removes SageTEX
commands to produce a “static” file, and extractsagecode.py, which extracts
all the Sage code from a .tex file.

27

7.1 makestatic.py

First, makestatic.py script. It’s about the most basic, generic Python script
taking command-line arguments that you’ll find. The #!/usr/bin/env python
line is provided for us by the .ins file’s preamble, so we don’t put it here.

224 import sys

225 import time

226 import getopt

227 import os.path

228 from sagetexparse import DeSageTex

229

230 def usage():

231 print("""Usage: %s [-h|--help] [-o|--overwrite] inputfile [outputfile]

232

233 Removes SageTeX macros from ‘inputfile’ and replaces them with the

234 Sage-computed results to make a "static" file. You’ll need to have run

235 Sage on ‘inputfile’ already.

236

237 ‘inputfile’ can include the .tex extension or not. If you provide

238 ‘outputfile’, the results will be written to a file of that name.

239 Specify ‘-o’ or ‘--overwrite’ to overwrite the file if it exists.

240

241 See the SageTeX documentation for more details.""" % sys.argv[0])

242

243 try:

244 opts, args = getopt.getopt(sys.argv[1:], ’ho’, [’help’, ’overwrite’])

245 except getopt.GetoptError, err:

246 print str(err)

247 usage()

248 sys.exit(2)

249

250 overwrite = False

251 for o, a in opts:

252 if o in (’-h’, ’--help’):

253 usage()

254 sys.exit()

255 elif o in (’-o’, ’--overwrite’):

256 overwrite = True

257

258 if len(args) == 0 or len(args) > 2:

259 print(’Error: wrong number of arguments. Make sure to specify options first.\n’)

260 usage()

261 sys.exit(2)

262

263 if len(args) == 2 and (os.path.exists(args[1]) and not overwrite):

264 print(’Error: %s exists and overwrite option not specified.’ % args[1])

265 sys.exit(1)

266

267 src, ext = os.path.splitext(args[0])

28

All the real work gets done in the line below. Sorry it’s not more exciting-looking.
268 desagetexed = DeSageTex(src)

This part is cool: we need double percent signs at the beginning of the line because
Python needs them (so they get turned into single percent signs) and because
Docstrip needs them (so the line gets passed into the generated file). It’s perfect!

269 header = """\

270 %% SageTeX commands have been automatically removed from this file and

271 %% replaced with plain LaTeX. Processed %s.

272

273 """ % time.strftime(’%a %d %b %Y %H:%M:%S’, time.localtime())

274

275 if len(args) == 2:

276 dest = open(args[1], ’w’)

277 else:

278 dest = sys.stdout

279

280 dest.write(header)

281 dest.write(desagetexed.result)

7.2 extractsagecode.py

Same idea as makestatic.py, except this does basically the opposite thing.
282 import sys

283 import time

284 import getopt

285 import os.path

286 from sagetexparse import SageCodeExtractor

287

288 def usage():

289 print("""Usage: %s [-h|--help] [-o|--overwrite] inputfile [outputfile]

290

291 Extracts Sage code from ‘inputfile’.

292

293 ‘inputfile’ can include the .tex extension or not. If you provide

294 ‘outputfile’, the results will be written to a file of that name,

295 otherwise the result will be printed to stdout.

296

297 Specify ‘-o’ or ‘--overwrite’ to overwrite the file if it exists.

298

299 See the SageTeX documentation for more details.""" % sys.argv[0])

300

301 try:

302 opts, args = getopt.getopt(sys.argv[1:], ’ho’, [’help’, ’overwrite’])

303 except getopt.GetoptError, err:

304 print str(err)

305 usage()

306 sys.exit(2)

307

29

308 overwrite = False

309 for o, a in opts:

310 if o in (’-h’, ’--help’):

311 usage()

312 sys.exit()

313 elif o in (’-o’, ’--overwrite’):

314 overwrite = True

315

316 if len(args) == 0 or len(args) > 2:

317 print(’Error: wrong number of arguments. Make sure to specify options first.\n’)

318 usage()

319 sys.exit(2)

320

321 if len(args) == 2 and (os.path.exists(args[1]) and not overwrite):

322 print(’Error: %s exists and overwrite option not specified.’ % args[1])

323 sys.exit(1)

324

325 src, ext = os.path.splitext(args[0])

326 sagecode = SageCodeExtractor(src)

327 header = """\

328 # This file contains Sage code extracted from %s%s.

329 # Processed %s.

330

331 """ % (src, ext, time.strftime(’%a %d %b %Y %H:%M:%S’, time.localtime()))

332

333 if len(args) == 2:

334 dest = open(args[1], ’w’)

335 else:

336 dest = sys.stdout

337

338 dest.write(header)

339 dest.write(sagecode.result)

7.3 The parser module

Here’s the module that does the actual parsing and replacing. It’s really quite sim-
ple, thanks to the awesome Pyparsing module. The parsing code below is nearly
self-documenting! Compare that to fancy regular expressions, which sometimes
look like someone sneezed punctuation all over the screen.

340 import sys

341 from pyparsing import *

First, we define this very helpful parser: it finds the matching bracket, and doesn’t
parse any of the intervening text. It’s basically like hitting the percent sign in
Vim. This is useful for parsing LATEX stuff, when you want to just grab everything
enclosed by matching brackets.

342 def skipToMatching(opener, closer):

343 nest = nestedExpr(opener, closer)

344 nest.setParseAction(lambda l, s, t: l[s:getTokensEndLoc()])

30

http://pyparsing.wikispaces.com

345 return nest

346

347 curlybrackets = skipToMatching(’{’, ’}’)

348 squarebrackets = skipToMatching(’[’, ’]’)

Next, parser for \sage, \sageplot, and pause/unpause calls:
349 sagemacroparser = r’\sage’ + curlybrackets(’code’)

350 sageplotparser = (r’\sageplot’

351 + Optional(squarebrackets)(’opts’)

352 + Optional(squarebrackets)(’format’)

353 + curlybrackets(’code’))

354 sagetexpause = Literal(r’\sagetexpause’)

355 sagetexunpause = Literal(r’\sagetexunpause’)

With those defined, let’s move on to our classes.

SoutParser Here’s the parser for the generated .sout file. The code below does all the parsing
of the .sout file and puts the results into a list. Notice that it’s on the order of
10 lines of code—hooray for Pyparsing!

356 class SoutParser():

357 def __init__(self, fn):

358 self.label = []

A label line looks like

\newlabel{@sageinline〈integer〉}{{〈bunch of LATEX code〉}{}{}{}{}}

which makes the parser definition below pretty obvious. We assign some names to
the interesting bits so the newlabel method can make the 〈integer〉 and 〈bunch
of LATEX code〉 into the keys and values of a dictionary. The DeSageTeX class
then uses that dictionary to replace bits in the .tex file with their Sage-computed
results.

359 parselabel = (r’\newlabel{@sageinline’

360 + Word(nums)(’num’)

361 + ’}{’

362 + curlybrackets(’result’)

363 + ’{}{}{}{}}’)

We tell it to ignore comments, and hook up the list-making method.
364 parselabel.ignore(’%’ + restOfLine)

365 parselabel.setParseAction(self.newlabel)

A .sout file consists of one or more such lines. Now go parse the file we were
given.

366 try:

367 OneOrMore(parselabel).parseFile(fn)

368 except IOError:

369 print ’Error accessing %s; exiting. Does your .sout file exist?’ % fn

370 sys.exit(1)

Pyparser’s parse actions get called with three arguments: the string that matched,
the location of the beginning, and the resulting parse object. Here we just add

31

a new key-value pair to the dictionary, remembering to strip off the enclosing
brackets from the “result” bit.

371 def newlabel(self, s, l, t):

372 self.label.append(t.result[1:-1])

DeSageTeX Now we define a parser for LATEX files that use SageTEX commands. We assume
that the provided fn is just a basename.

373 class DeSageTex():

374 def __init__(self, fn):

375 self.sagen = 0

376 self.plotn = 0

377 self.fn = fn

378 self.sout = SoutParser(fn + ’.sout’)

Parse \sage macros. We just need to pull in the result from the .sout file and
increment the counter—that’s what self.sage does.

379 smacro = sagemacroparser

380 smacro.setParseAction(self.sage)

Parse the \usepackage{sagetex} line. Right now we don’t support comma-
separated lists of packages.

381 usepackage = (r’\usepackage’

382 + Optional(squarebrackets)

383 + ’{sagetex}’)

384 usepackage.setParseAction(replaceWith(r"""% "\usepackage{sagetex}" line was here:

385 \RequirePackage{verbatim}

386 \RequirePackage{graphicx}

387 \newcommand{\sagetexpause}{\relax}

388 \newcommand{\sagetexunpause}{\relax}"""))

Parse \sageplot macros.
389 splot = sageplotparser

390 splot.setParseAction(self.plot)

The printed environments (sageblock and sageverbatim) get turned into
verbatim environments.

391 beginorend = oneOf(’begin end’)

392 blockorverb = ’sage’ + oneOf(’block verbatim’)

393 blockorverb.setParseAction(replaceWith(’verbatim’))

394 senv = ’\\’ + beginorend + ’{’ + blockorverb + ’}’

The non-printed sagesilent environment gets commented out. We could remove
all the text, but this works and makes going back to SageTEX commands (de-de-
SageTEXing?) easier.

395 silent = Literal(’sagesilent’)

396 silent.setParseAction(replaceWith(’comment’))

397 ssilent = ’\\’ + beginorend + ’{’ + silent + ’}’

The \sagetexindent macro is no longer relevant, so remove it from the output
(“suppress”, in Pyparsing terms).

398 stexindent = Suppress(r’\setlength{\sagetexindent}’ + curlybrackets)

32

Now we define the parser that actually goes through the file. It just looks for any
one of the above bits, while ignoring anything that should be ignored.

399 doit = smacro | senv | ssilent | usepackage | splot | stexindent

400 doit.ignore(’%’ + restOfLine)

401 doit.ignore(r’\begin{verbatim}’ + SkipTo(r’\end{verbatim}’))

402 doit.ignore(r’\begin{comment}’ + SkipTo(r’\end{comment}’))

403 doit.ignore(r’\sagetexpause’ + SkipTo(r’\sagetexunpause’))

We can’t use the parseFile method, because that expects a “complete grammar”
in which everything falls into some piece of the parser. Instead we suck in the
whole file as a single string, and run transformString on it, since that will just
pick out the interesting bits and munge them according to the above definitions.

404 str = ’’.join(open(fn + ’.tex’, ’r’).readlines())

405 self.result = doit.transformString(str)

That’s the end of the class constructor, and it’s all we need to do here. You access
the results of parsing via the result string.

We do have two methods to define. The first does the same thing that \ref
does in your LATEX file: returns the content of the label and increments a counter.

406 def sage(self, s, l, t):

407 self.sagen += 1

408 return self.sout.label[self.sagen - 1]

The second method returns the appropriate \includegraphics command. It does
need to account for the default argument.

409 def plot(self, s, l, t):

410 self.plotn += 1

411 if len(t.opts) == 0:

412 opts = r’[width=.75\textwidth]’

413 else:

414 opts = t.opts[0]

415 return (r’\includegraphics%s{sage-plots-for-%s.tex/plot-%s}’ %

416 (opts, self.fn, self.plotn - 1))

SageCodeExtractor This class does the opposite of the first: instead of removing Sage stuff and leaving
only LATEX, this removes all the LATEX and leaves only Sage.

417 class SageCodeExtractor():

418 def __init__(self, fn):

419 smacro = sagemacroparser

420 smacro.setParseAction(self.macroout)

421

422 splot = sageplotparser

423 splot.setParseAction(self.plotout)

Above, we used the general parsers for \sage and \sageplot. We have to redo
the environment parsers because it seems too hard to define one parser object that
will do both things we want: above, we just wanted to change the environment
name, and here we want to suck out the code. Here, it’s important that we find
matching begin/end pairs; above it wasn’t. At any rate, it’s not a big deal to redo
this parser.

33

424 env_names = oneOf(’sageblock sageverbatim sagesilent’)

425 senv = r’\begin{’ + env_names(’env’) + ’}’ + SkipTo(

426 r’\end{’ + matchPreviousExpr(env_names) + ’}’)(’code’)

427 senv.leaveWhitespace()

428 senv.setParseAction(self.envout)

429

430 spause = sagetexpause

431 spause.setParseAction(self.pause)

432

433 sunpause = sagetexunpause

434 sunpause.setParseAction(self.unpause)

435

436 doit = smacro | splot | senv | spause | sunpause

437

438 str = ’’.join(open(fn + ’.tex’, ’r’).readlines())

439 self.result = ’’

440

441 doit.transformString(str)

442

443 def macroout(self, s, l, t):

444 self.result += ’# \\sage{} from line %s\n’ % lineno(l, s)

445 self.result += t.code[1:-1] + ’\n\n’

446

447 def plotout(self, s, l, t):

448 self.result += ’# \\sageplot{} from line %s:\n’ % lineno(l, s)

449 if t.format is not ’’:

450 self.result += ’# format: %s’ % t.format[0][1:-1] + ’\n’

451 self.result += t.code[1:-1] + ’\n\n’

452

453 def envout(self, s, l, t):

454 self.result += ’# %s environment from line %s:’ % (t.env,

455 lineno(l, s))

456 self.result += t.code[0] + ’\n’

457

458 def pause(self, s, l, t):

459 self.result += (’# SageTeX (probably) paused on input line %s.\n\n’ %

460 (lineno(l, s)))

461

462 def unpause(self, s, l, t):

463 self.result += (’# SageTeX (probably) unpaused on input line %s.\n\n’ %

464 (lineno(l, s)))

8 The remote-sagetex script

Here we describe the Python code for remote-sagetex.py. Since its job is to
replicate the functionality of using Sage and sagetex.py, there is some overlap
with the Python module.

The #!/usr/bin/env python line is provided for us by the .ins file’s pream-

34

ble, so we don’t put it here.
465 from __future__ import print_function

466 import json

467 import sys

468 import time

469 import re

470 import urllib

471 import hashlib

472 import os

473 import os.path

474 import shutil

475 import getopt

476 from contextlib import closing

477

478 ###

479 # You can provide a filename here and the script will read your login #

480 # information from that file. The format must be: #

481 # #

482 # server = ’http://foo.com:8000’ #

483 # username = ’my_name’ #

484 # password = ’s33krit’ #

485 # #

486 # You can omit one or more of those lines, use " quotes, and put hash #

487 # marks at the beginning of a line for comments. Command-line args #

488 # take precedence over information from the file. #

489 ###

490 login_info_file = None # e.g. ’/home/foo/Private/sagetex-login.txt’

491

492

493 usage = """Process a SageTeX-generated .sage file using a remote Sage server.

494

495 Usage: {0} [options] inputfile.sage

496

497 Options:

498

499 -h, --help: print this message

500 -s, --server: the Sage server to contact

501 -u, --username: username on the server

502 -p, --password: your password

503 -f, --file: get login information from a file

504

505 If the server does not begin with the four characters ‘http’, then

506 ‘https://’ will be prepended to the server name.

507

508 You can hard-code the filename from which to read login information into

509 the remote-sagetex script. Command-line arguments take precedence over

510 the contents of that file. See the SageTeX documentation for formatting

511 details.

512

35

513 If any of the server, username, and password are omitted, you will be

514 asked to provide them.

515

516 See the SageTeX documentation for more details on usage and limitations

517 of remote-sagetex.""".format(sys.argv[0])

518

519 server, username, password = (None,) * 3

520

521 try:

522 opts, args = getopt.getopt(sys.argv[1:], ’hs:u:p:f:’,

523 [’help’, ’server=’, ’user=’, ’password=’, ’file=’])

524 except getopt.GetoptError as err:

525 print(str(err), usage, sep=’\n\n’)

526 sys.exit(2)

527

528 for o, a in opts:

529 if o in (’-h’, ’--help’):

530 print(usage)

531 sys.exit()

532 elif o in (’-s’, ’--server’):

533 server = a

534 elif o in (’-u’, ’--user’):

535 username = a

536 elif o in (’-p’, ’--password’):

537 password = a

538 elif o in (’-f’, ’--file’):

539 login_info_file = a

540

541 if len(args) != 1:

542 print(’Error: must specify exactly one file. Please specify options first.’,

543 usage, sep=’\n\n’)

544 sys.exit(2)

545

546 jobname = os.path.splitext(args[0])[0]

When we send things to the server, we get everything back as a string, including
tracebacks. We can search through output using regexps to look for typical trace-
back strings, but there’s a more robust way: put in a special string that changes
every time and is printed when there’s an error, and look for that. Then it is
massively unlikely that a user’s code could produce output that we’ll mistake for
an actual traceback. System time will work well enough for these purposes. We
produce this string now, and we it when parsing the .sage file (we insert it into
code blocks) and when parsing the output that the remote server gives us.

547 traceback_str = ’Exception in SageTeX session {0}:’.format(time.time())

parsedotsage To figure out what commands to send the remote server, we actually read in the
.sage file as strings and parse it. This seems a bit strange, but since we know
exactly what the format of that file is, we can parse it with a couple flags and a
handful of regexps.

36

548 def parsedotsage(fn):

549 with open(fn, ’r’) as f:

Here are the regexps we use to snarf the interesting bits out of the .sage file.
Below we’ll use the re module’s match function so we needn’t anchor any of these
at the beginning of the line.

550 inline = re.compile(r" _st_.inline\((?P<num>\d+), (?P<code>.*)\)")

551 plot = re.compile(r" _st_.plot\((?P<num>\d+), (?P<code>.*)\)")

552 goboom = re.compile(r" _st_.goboom\((?P<num>\d+)\)")

553 pausemsg = re.compile(r"print.’(?P<msg>SageTeX (un)?paused.*)’")

554 blockbegin = re.compile(r"_st_.blockbegin\(\)")

555 ignore = re.compile(r"(try:)|(except):")

556 in_comment = False

557 in_block = False

558 cmds = []

Okay, let’s go through the file. We’re going to make a list of dictionaries. Each
dictionary corresponds to something we have to do with the remote server, except
for the pause/unpause ones, which we only use to print out information for the
user. All the dictionaries have a type key, which obviously tells you type they
are. The pause/unpause dictionaries then just have a msg which we toss out to
the user. The “real” dictionaries all have the following keys:

• type: one of inline, plot, and block.

• goboom: used to help the user pinpoint errors, just like the goboom function
(page 26) does.

• code: the code to be executed.

Additionally, the inline and plot dicts have a num key for the label we write to
the .sout file.

Here’s the whole parser loop. The interesting bits are for parsing blocks because
there we need to accumulate several lines of code.

559 for line in f.readlines():

560 if line.startswith(’"""’):

561 in_comment = not in_comment

562 elif not in_comment:

563 m = pausemsg.match(line)

564 if m:

565 cmds.append({’type’: ’pause’,

566 ’msg’: m.group(’msg’)})

567 m = inline.match(line)

568 if m:

569 cmds.append({’type’: ’inline’,

570 ’num’: m.group(’num’),

571 ’code’: m.group(’code’)})

572 m = plot.match(line)

573 if m:

574 cmds.append({’type’: ’plot’,

37

575 ’num’: m.group(’num’),

576 ’code’: m.group(’code’)})

The order of the next three “if”s is important, since we need the “goboom” line
and the “blockbegin” line to not get included into the block’s code. Note that
the lines in the .sage file already have some indentation, which we’ll use when
sending the block to the server—we wrap the text in a try/except.

577 m = goboom.match(line)

578 if m:

579 cmds[-1][’goboom’] = m.group(’num’)

580 if in_block:

581 in_block = False

582 if in_block and not ignore.match(line):

583 cmds[-1][’code’] += line

584 if blockbegin.match(line):

585 cmds.append({’type’: ’block’,

586 ’code’: ’’})

587 in_block = True

588 return cmds

Parsing the .sage file is simple enough so that we can write one function and just
do it. Interacting with the remote server is a bit more complicated, and requires
us to carry some state, so let’s make a class.

RemoteSage This is pretty simple; it’s more or less a translation of the examples in
sage/server/simple/twist.py.

589 debug = False

590 class RemoteSage:

591 def __init__(self, server, user, password):

592 self._srv = server.rstrip(’/’)

593 sep = ’___S_A_G_E___’

594 self._response = re.compile(’(?P<header>.*)’ + sep +

595 ’\n*(?P<output>.*)’, re.DOTALL)

596 self._404 = re.compile(’404 Not Found’)

597 self._session = self._get_url(’login’,

598 urllib.urlencode({’username’: user,

599 ’password’:

600 password}))[’session’]

In the string below, we want to do “partial formatting”: we format in the traceback
string now, and want to be able to format in the code later. The double braces
get ignored by format() now, and are picked up by format() when we use this
later.

601 self._codewrap = """try:

602 {{0}}

603 except:

604 print(’{0}’)

605 traceback.print_exc()""".format(traceback_str)

606 self.do_block("""

607 import traceback

38

608 def __st_plot__(counter, _p_, format=’notprovided’, **kwargs):

609 if format == ’notprovided’:

610 formats = [’eps’, ’pdf’]

611 else:

612 formats = [format]

613 for fmt in formats:

614 plotfilename = ’plot-%s.%s’ % (counter, fmt)

615 _p_.save(filename=plotfilename, **kwargs)""")

616

617 def _encode(self, d):

618 return ’session={0}&’.format(self._session) + urllib.urlencode(d)

619

620 def _get_url(self, action, u):

621 with closing(urllib.urlopen(self._srv + ’/simple/’ + action +

622 ’?’ + u)) as h:

623 data = self._response.match(h.read())

624 result = json.loads(data.group(’header’))

625 result[’output’] = data.group(’output’).rstrip()

626 return result

627

628 def _get_file(self, fn, cell, ofn=None):

629 with closing(urllib.urlopen(self._srv + ’/simple/’ + ’file’ + ’?’ +

630 self._encode({’cell’: cell, ’file’: fn}))) as h:

631 myfn = ofn if ofn else fn

632 data = h.read()

633 if not self._404.search(data):

634 with open(myfn, ’w’) as f:

635 f.write(data)

636 else:

637 print(’Remote server reported {0} could not be found:’.format(

638 fn))

639 print(data)

The code below gets stuffed between a try/except, so make sure it’s indented!
640 def _do_cell(self, code):

641 realcode = self._codewrap.format(code)

642 result = self._get_url(’compute’, self._encode({’code’: realcode}))

643 if result[’status’] == ’computing’:

644 cell = result[’cell_id’]

645 while result[’status’] == ’computing’:

646 sys.stdout.write(’working...’)

647 sys.stdout.flush()

648 time.sleep(10)

649 result = self._get_url(’status’, self._encode({’cell’: cell}))

650 if debug:

651 print(’cell: <<<’, realcode, ’>>>’, ’result: <<<’,

652 result[’output’], ’>>>’, sep=’\n’)

653 return result

654

655 def do_inline(self, code):

39

656 return self._do_cell(’ print(latex({0}))’.format(code))

657

658 def do_block(self, code):

659 result = self._do_cell(code)

660 for fn in result[’files’]:

661 self._get_file(fn, result[’cell_id’])

662 return result

663

664 def do_plot(self, num, code, plotdir):

665 result = self._do_cell(’ __st_plot__({0}, {1})’.format(num, code))

666 for fn in result[’files’]:

667 self._get_file(fn, result[’cell_id’], os.path.join(plotdir, fn))

668 return result

When using the simple server API, it’s important to log out so the server doesn’t
accumulate idle sessions that take up lots of memory. We define a close() method
and use this class with the closing context manager that always calls close()
on the way out.

669 def close(self):

670 sys.stdout.write(’Logging out of {0}...’.format(server))

671 sys.stdout.flush()

672 self._get_url(’logout’, self._encode({}))

673 print(’done’)

Next we have a little pile of miscellaneous functions and variables that we want to
have at hand while doing our work. Note that we again use the traceback string
in the error-finding regular expression.

674 def do_plot_setup(plotdir):

675 printc(’initializing plots directory...’)

676 if os.path.isdir(plotdir):

677 shutil.rmtree(plotdir)

678 os.mkdir(plotdir)

679 return True

680

681 did_plot_setup = False

682 plotdir = ’sage-plots-for-’ + jobname + ’.tex’

683

684 def labelline(n, s):

685 return r’\newlabel{@sageinline’ + str(n) + ’}{{’ + s + ’}{}{}{}{}}\n’

686

687 def printc(s):

688 print(s, end=’’)

689 sys.stdout.flush()

690

691 error = re.compile("(^" + traceback_str + ")|(^Syntax Error:)", re.MULTILINE)

692

693 def check_for_error(string, line):

694 if error.search(string):

695 print("""

696 **** Error in Sage code on line {0} of {1}.tex!

40

697 {2}

698 **** Running Sage on {1}.sage failed! Fix {1}.tex and try again.""".format(

699 line, jobname, string))

700 sys.exit(1)

Now let’s actually start doing stuff.
701 print(’Processing Sage code for {0}.tex using remote Sage server.’.format(

702 jobname))

703

704 if login_info_file:

705 with open(login_info_file, ’r’) as f:

706 print(’Reading login information from {0}.’.format(login_info_file))

707 get_val = lambda x: x.split(’=’)[1].strip().strip(’\’"’)

708 for line in f:

709 print(line)

710 if not line.startswith(’#’):

711 if line.startswith(’server’) and not server:

712 server = get_val(line)

713 if line.startswith(’username’) and not username:

714 username = get_val(line)

715 if line.startswith(’password’) and not password:

716 password = get_val(line)

717

718 if not server:

719 server = raw_input(’Enter server: ’)

720

721 if not server.startswith(’http’):

722 server = ’https://’ + server

723

724 if not username:

725 username = raw_input(’Enter username: ’)

726

727 if not password:

728 from getpass import getpass

729 password = getpass(’Please enter password for user {0} on {1}: ’.format(

730 username, server))

731

732 printc(’Parsing {0}.sage...’.format(jobname))

733 cmds = parsedotsage(jobname + ’.sage’)

734 print(’done.’)

735

736 sout = ’% This file was *autogenerated* from the file {0}.sage.\n’.format(

737 os.path.splitext(jobname)[0])

738

739 printc(’Logging into {0} and starting session...’.format(server))

740 with closing(RemoteSage(server, username, password)) as sage:

741 print(’done.’)

742 for cmd in cmds:

743 if cmd[’type’] == ’inline’:

744 printc(’Inline formula {0}...’.format(cmd[’num’]))

41

745 result = sage.do_inline(cmd[’code’])

746 check_for_error(result[’output’], cmd[’goboom’])

747 sout += labelline(cmd[’num’], result[’output’])

748 print(’done.’)

749 if cmd[’type’] == ’block’:

750 printc(’Code block begin...’)

751 result = sage.do_block(cmd[’code’])

752 check_for_error(result[’output’], cmd[’goboom’])

753 print(’end.’)

754 if cmd[’type’] == ’plot’:

755 printc(’Plot {0}...’.format(cmd[’num’]))

756 if not did_plot_setup:

757 did_plot_setup = do_plot_setup(plotdir)

758 result = sage.do_plot(cmd[’num’], cmd[’code’], plotdir)

759 check_for_error(result[’output’], cmd[’goboom’])

760 print(’done.’)

761 if cmd[’type’] == ’pause’:

762 print(cmd[’msg’])

763 if int(time.time()) % 2280 == 0:

764 printc(’Unscheduled offworld activation; closing iris...’)

765 time.sleep(1)

766 print(’end.’)

767

768 with open(jobname + ’.sage’, ’r’) as sagef:

769 h = hashlib.md5()

770 for line in sagef:

771 if (not line.startswith(’ _st_.goboom’) and

772 not line.startswith("print ’SageT")):

773 h.update(line)

Putting the {1} in the string, just to replace it with %, seems a bit weird, but if I
put a single percent sign there, Docstrip won’t put that line into the resulting .py
file—and if I put two percent signs, it replaces them with \MetaPrefix which is
when this file is generated. This is a quick and easy workaround.

774 sout += """%{0}% md5sum of corresponding .sage file

775 {1} (minus "goboom" and pause/unpause lines)

776 """.format(h.hexdigest(), ’%’)

777

778 printc(’Writing .sout file...’)

779 with open(jobname + ’.sout’, ’w’) as soutf:

780 soutf.write(sout)

781 print(’done.’)

782 print(’Sage processing complete. Run LaTeX on {0}.tex again.’.format(jobname))

9 Credits and acknowledgments

According to the original README file, this system was originally done by Gon-
zalo Tornaria and Joe Wetherell. Later Harald Schilly made some improvements

42

and modifications. Almost all the examples in the example.tex file are from
Harald.

Dan Drake rewrote and extended the style file (there is effectively zero original
code there), made significant changes to the Python module, put both files into
Docstrip format, and wrote all the documentation and extra Python scripts.

Many thanks to Jason Grout for his numerous comments, suggestions, and
feedback.

10 Copying and licenses

If you are unnaturally curious about the current state of the SageTEX package, you
can visit http://www.bitbucket.org/ddrake/sagetex/. There is a Mercurial
repository and other stuff there.

As for the terms and conditions under which you can copy and modify SageTEX:
The source code of the SageTEX package may be redistributed and/or modified

under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 2 of the License, or (at your option) any later
version. To view a copy of this license, see http://www.gnu.org/licenses/ or
send a letter to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

The documentation of the SageTEX package is licensed under the Creative
Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Change History

v1.0

General: Initial version 1

v1.1

General: Wrapped user-provided
Sage code in try/except clauses;
plotting now has optional for-
mat argument 1

v1.2

General: Imagemagick option; bet-
ter documentation 1

v1.3

\sageplot: Iron out warnings, cool
TikZ flowchart 17

v1.3.1

General: Internal variables re-
named; fixed typos 1

v1.4

General: MD5 fix, percent sign
macro, CTAN upload 1

v2.0

General: Add epstopdf option . . 15

Add final option 15

External Python scripts for pars-
ing SageTeX-ified documents,
tons of documentation improve-
ments, sagetex.py refactored,
include in Sage as spkg 1

Fixed up installation section, fi-
nal final 2.0 3

Miscellaneous fixes, final 2.0 ver-
sion . 1

\ST@sageplot: Change to use only
keyword arguments: see issue 2

43

http://www.bitbucket.org/ddrake/sagetex/
http://www.gnu.org/licenses/
http://creativecommons.org/licenses/by-nc-sa/3.0/

on bitbucket tracker 18
v2.0.1

General: Add TEXShop info 3
v2.0.2

goboom: Make sure sys.exit sees a
Python integer 26

v2.1
General: Add pausing support . . . 1

Get version written to .py file . . 1
v2.1.1

General: Add typeout if .sout file
not found 16

endofdoc: Fix bug in finding md5
sum introduced by pause facil-
ity . 27

v2.2
General: Add remote-sagetex.py

script 1
Update parser module to handle
pause/unpause 30

v2.2.1
RemoteSage: Fix stupid bug in

do inline() so that we actually
write output to .sout file 37

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\% 51, 53
\’ 707
\(. 550–552, 554
\) 550–552, 554
\@bsphack 95
\@esphack 109
\@ifnextchar 57
\@ifundefined . . 14,

31, 35, 48, 68, 126
\@makeother 97
\\ 171, 394, 397, 444, 448
\^ 97

\ 154, 171,
188, 195, 199,
200, 203, 206,
217, 222, 269, 327

A
\active 97
\AtBeginDocument . .

. . . . 14, 30, 34, 39
\AtEndDocument . 24, 122

B
\begin . 47, 401, 402, 425
\blockbegin 173
\blockend 173

C

\catcode 51, 53, 97

comment (environment) 9

D

\d 550–552

\DeclareOption 22, 28, 33

\def . . . 58, 102, 107, 111

\DeSageTeX 373

\do 97

\dospecials 97

E

\else 46, 65, 85, 114

\end . . . 47, 401, 402, 426

\endofdoc 211

\endverbatim . . 105, 113

environments:

comment 9

sageblock 9, 101

sagesilent . . . 9, 106

sageverbatim . 9, 110

\equal 62, 66

F

\fbox 84

\fi 49,
81, 93, 117, 121, 124

\framebox 55

G
\gdef 48, 79, 92
\goboom 202

H
\hspace 103, 111

I
\IfFileExists 24, 69, 86
\ifpdf 61
\ifST@paused . . . 12,

44, 83, 114, 118, 122
\ifthenelse 62, 66
\immediate 16, 17
\includegraphics 87, 415
\initplot 163
\inline 169
\InputIfFileExists . 38
\inputlineno

43, 60, 100, 115, 119

J
\jobname 16, 18, 20, 24,

25, 38, 54, 115,
119, 123, 128, 129

L
\let 97

M
\mbox 45

44

N

\n 155, 172,
203, 206, 218,
259, 317, 444,
445, 448, 450,
451, 456, 459,
463, 525, 543,
595, 652, 685, 736

\newcounter 6, 7

\newif 12

\newlabel 359, 685

\newlength 10

\newwrite 15

O

\openout 16

P

\PackageWarning . . .
. 71, 76, 89

\PackageWarningNoLine

. 24, 127

\par 103, 111

\parsedotsage 548

\percent 6, 51

\plot 177

\ProcessOptions . . . 37

\progress 157

\provideenvironment 39

R

\ref 47

\relax
21, 37, 114, 387, 388

\RemoteSage 589

\RequirePackage . . .
. . . . 1–5, 385, 386

\rule 55, 84

S

\sage 5, 40, 349

sageblock (environ-
ment) 9, 101

\SageCodeExtractor . 417

\sageplot . . . 6, 56, 350

sagesilent (environ-
ment) 9, 106

\sagetexindent . . 9,
10, 11, 103, 111, 398

\sagetexpause 10, 114,
114, 354, 387, 403

\sagetexunpause . . .
. 10, 118,
118, 355, 388, 403

sageverbatim (environ-
ment) 9, 110

\setcounter 8, 9

\setlength 11, 398

\SoutParser 356

\space 72, 77, 90

\ST@beginsfbl
. 94, 101, 106

\ST@endsfbl 98, 105, 109

\ST@final 23

\ST@inclgrfx
. 63, 64, 67, 80, 83

\ST@missingfilebox .
. . . . 55, 70, 75, 88

\ST@pausedfalse 13, 120

\ST@pausedtrue 116

\ST@plotdir . . 54, 69,
72, 77, 86, 87, 90

\ST@rerun . . . 48, 79, 92
\ST@sageplot 57, 58
\ST@sf 15–17
\ST@useimagemagick . 29
\ST@wsf 17,

32, 36, 40, 58,
95, 99, 102, 107,
115, 119, 123, 125

\stepcounter 50, 82

T
\TeX 45, 84
\textbf 55
\textwidth 56, 412
\thepage 72, 77, 90
\theST@inline 42, 47, 48
\theST@plot . . 59, 69,

72, 77, 86, 87, 90
\toeps 198
\typeout 38

U
\usepackage . . . 381, 384

V
\verbatim 104, 112
\verbatim@line

. 102, 103, 107, 111
\verbatim@processline

. . . . 102, 107, 111
\verbatim@start . . . 108

W
\write 17

45

	Introduction
	Installation
	As a Sage spkg
	From CTAN
	Using TeXShop
	Other scripts included with SageTeX

	Usage
	Inline Sage
	Graphics and plotting
	3D plotting
	But that's not good enough!

	Verbatim-like environments
	Pausing SageTeX

	Other notes
	Using Beamer
	Plotting from Mathematica, Maple, etc.
	Sending SageTeX files to others who don't use Sage
	Extracting the Sage code from a document

	Using SageTeX without Sage installed
	Limitations of remote-sagetex.py
	Other caveats

	Implementation
	The style file
	Initialization
	The sage macro
	The sageplot macro and friends
	Verbatim-like environments
	Pausing SageTeX
	End-of-document cleanup

	The Python module

	Included Python scripts
	makestatic.py
	extractsagecode.py
	The parser module

	The remote-sagetex script
	Credits and acknowledgments
	Copying and licenses

